2.PAK:
ARTIFICIAL

Session 25 Hardware and Software
for Artificial Intelligence

A SNOBOL-BASED PROGRAMMING LANGUAGE FOR
INTELLIGENCE APPLICATIONS

JOHN MYLOPOULOS, NORMAN BADLER, LUCIO MELLI

AND NICHOLAS ROUSSOPOULOS

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TORONTO

Descriptive Terms: Programming language,

SNOBOL, backtracking, relational data base,
artificial intelligence.
Abstract

This paper describes a programming langu-
for Artificial Intelligence applications
which offers

(a) a data base, in the form of a collection
of labeled directed graphs where knowledge can
be stored

(b) pattern
and pattern

age

directed information retrieval
invoked function calls

(c) primitive statements which enable the
user to construct flexible searching algor-

ithms.

The language is an extension of SNOBOL
its design and implementation and uses
SNOBOL's string pattern matching facilities
for its own (graph) pattern matching.

1. Introduction

lLpak was designed and
order to facilitate Al research at the Uni-
versity of Toronto. Its design was influenced
by other languages designed for similar
such as CONNIVF.R[1,2] , PLANNFRI[3], QA4[4],
SAIL[5,6], and our decision to implement it as
an extension of SNOBOL and keep it relatively
inexpensive (in terms of the time and space

implemented in

reasons

required for the execution of programs).

This paper only discusses the main fea-
tures of [Ipak, how they can be used, their
relation to features offered by other languages
for Al, and the success of the current implc-
mentation. More details on the language are
available elsewhere [7] It is assumed that

the reader is familiar with the basic features
of SNOBOL [8].
2. The Data Base

The data base for each I[lpak program con-
sists of a collection of directed, labeled
graphs (hereafter graphs) such as that shown
in FIG. 1. A list of transitive and/or
intransitive edges is associated with each
node, which define either properties of (the
object represented by) the node or relations
which hold between the node and other elements
of the same graph.

A linear order exists for the nodes of
each graph defined by special edges labeled
NEXT. TYPE_SUN

ABOVE
TYPE HOUSE TYPE TREE

691

Edge labels (properties) consist of one
or more atoms separated by underscores. The
first atom is the attribute of the property,
while subsequent atoms are its modifiers.

Information can be retrieved from the

data base by matching (graph) patterns
against it.
Patterns arc specified in terms of se-

quences of path descriptions.

the pattern
<$X,(LEFT_AARB?YJ, (FAR).SW-

contains one path description which will

For example,

match paths that

(a) Begin at the node which is the value of
atom X ,

(b) Move along an edge whose label has LEFT
as attribute and is followed by at least one
modifier,

(c) Move along an edge whose label has FAR
as attribute,

(d) End at node $W.

If such a path connects nodes $X and
$W for a particular data base, the pattern
match succeeds and the modifier of LEFT is

assigned to atom Y , while the graph pattern
match returns $W , the last node vi?ited
during the match. Patterns are evaluated by
the function SEARCH.

AARB is a special property pattern which
will match any atom. lLpak offers several
other built-in property patterns and operators
similar to those offered by SNOBOL to help the
user specify classes of edge labels in his
graph patterns Thus (graph) pattern matching
is essentially driven by property pattern

matching and can be easily
the string pattern matching
SNOBOL.

Note that there may be several
which will match the same pattern.
example, the pattern match

SEARCH(<$X,(LEFT),(ABOVE*FAR)>)
could return node n1 or nZ In FIG.
The pattern match however will return
of the two nodes.

nt ()

implemented using
facilities in

paths
For

2.

just one

ABOVE_FAR_VERY

LEFT NEAR
6._

22 (O

We will later

show
the matching alternatives.

how to generate all

Information can be added to or deleted
from the data base through the special
functions ADD and DEL.

ADD's main function is to create new
formation with a graph as context. For
example, the function call

in-

ADD(<$X,(LEFT),(FAR),?W>)
will create enough new edges and nodes
the pattern match of its argument against
data base successful. In the process, a
value will be assigned to W ADD will also
perforin a simple consistency-redundancy test
for each new edge attached to a node, with
respect to the edge list of that node. Thus
an intransitive edge labeled TYPE HOUSE will
not be added to the edge list of a node which
already contains an edge labeled TYPE_HOUSE
TALL because it is redundant.

to make
the
(node)

An example of a DEL function call is
DEL(<?X,(LEFT),-$Y,(RTGHT)>)

where the special operator e specifies
that the node or edge it operates on must be
deleted. For this function call, a pattern
match takes place first, and if unsuccessful
the call fails; otherwise the node $Y s
deleted along with all the edges that point, to

or away from it.

lpak also offers SNOBOL tables and
arrays as means for representing information.
Moreover, as in SNOBOL, the user can define
his own data types. Explicit list facilities
using CONS, CAR and CDR and list notation are
provided. Expressions such as

$L = (3A, $B, $C, $D)
may be used to construct lists; here the value
of L is a four element list.
3- Program Structure and Control
lL.pak statements are similar to their

SNOBOL cousins. For example, the statement

A: DEL(<$X, (LEFT), - (R1GITJVBOYE) >) :S(A)F(B)
is labeled A , and will attempt to delete the
edge whose label matched R1GHT_ABOVE, if the
pattern match of <$X,(LEFT),(RICHT_ABOVE)>
against the data base succeeds. If the DEL
function call succeeds, control is passed back
to A , otherwise control is passed to the
statement labeled B

Each Ipak statement
and this can be used for
less otherwise specified, control will pass to
the next statement of a [lpak program. Thus
backtracking as encountered in PLANNER and QA4
is only offered during graph pattern matching

will succeed or fail
program control. Un-

in lpak. A different kind of backtracking
will be discussed later.
4 . Function Requesjts_
4.1 Explicit function requests

lLpak functions can be defined through
PDEFINE. For example, the statement

PDEFINE(NEW(X:NODEJNULL,Y:PROPERTY|PATTERN,? Z)
W_W1,NEW)

defines a function named NEW with three formal

parameters; the first must be of type NODE or

have as value the null string, the second of

type PROPERTY or PATTERN, while the third is

called by result. Thus the statement
NEW($X1,$Y1,$21)
will fail even before NEW is called because
the third argument is not called by result,
while
NEW($X1,8Y1,221)
will proceed with the execution of the function

call if $xX1 is a node or the null string,

and $Y1 is a property or a (graph) pattern.
The specification of allowable types for

each formal parameter does not mean that the

type of function arguments is fixed inside a

function call; it only helps to check whether
the function request makes sense.

The same function name may be used inside
several PDEFINE calls, thus giving the same
name to several different functions. This
means that a statement such as

NEW($X1,$Y1,?2Z)
may cause several function calls unti] one is

the function
request in [lpak

found that succeeds. In fact,
name specified by a function
can be a string pattern, as in
(T11JAX) ($X,$Y,?2)
which will cause the call of any function
whose name matches the string pattern (THJAX)
(i.e., begins with TH or AX) and whose
parameter description is matched by the argu-
ments of the function request.

This feature offers the wuser flexibility
in specifying a function request similar to
that offered by theorem provers where each
axiom can be considered as a function without
a name to be called whenever there is a sus-
picion that it may be of use.

Unlike SNOBOL, Ipak treats
nators of programmer-defined data
references and table
of a function request.
writes

field desig-
types, array
lookups as special cases
Thus, if the user

CAR($X)
1pak will try to treat this as a field desig-
nator, then as an array reference, then as a
table lookup, and if all these attempts fail,
it will start calling functions named CAR
until one of them succeeds.

4.2 function requests

that information not

Implicit

It is often the case
stored in the data base is actually true in
the universe of discourse. For example, a
node may represent a house which has been
recognized as one of the objects represented
in a line drawing, and the question "Does
there exist an object to the left of the
house?" may be asked. The user may attempt to
answer it by writing
SEARCH (<-$X, (LEFT_* FCN) ,?Y>)

points to the node representing the
house, and *JFCN arc special modifiers to be
discussed later. If the pattern match fails,
either there is no such object, or it exists
but it is not represented by a node in the
graph where $X is imbedded. We would like
to keep the value of the pattern match inde-
pendent of these two possibilities and have
therefore introduced the notion of implicit
function requests m Informally, such function
requests will be invoked by the system in an
attempt to construct information needed for
the successful evaluation of a pattern match
whenever the special modifier FCN appears at
the end of a property pattern. * is also a
special modifier which specifies that modifiers
that follow it should be treated differently
by ILpak than atoms that precede it. In the
previous example, if the system has found no
edges which leave $X and match LEFT (not
LEFT *FCN), it will therefore call functions
named" LEFT with implicit argument $X , looking
for one that succeeds.

where X

Thus the pattern match
SEARCH(<$X,(DIMENSIONS AARB?Y AARB?Z AARB?W
* FCN)>)

will either match an edge label to
perty pattern

DJMENS10NS_AARB?Y AARB?Z AARB?W
and will return its modifiers through Y, 2
and W , or it will call a function named
DIMENSIONS which has three formal parameters,
all called by result, which will attempt to
find the dimensions of $X . In this case the
modifiers of the property for which we are
trying to establish an edge were used as argu-
ments of the implicit function call, while the

the pro-

attribute was used as a function name. In the
example
SEARCH(<$X, (TYPE_HOUSE_TALL VKRY_*_ FCN)>)

on the other hand, we may want to establish
the existence of an (intransitive) edge
labeled TYPEJIOUSE_TALL_VERY by first calling
the function TYPE with only argument the node
$X , then the function HOUSE with arguments
$X and the output of TYPE, then TALL and
finally VERY. In other words, an attempt to
establish an edge in the data base may cause
several function calls.

Calls

Generators were introduced by PLANNER
and used extensively by CONNIVER where they
provide one of the most important language
constructs. lLpak offers them too,
of generating alternatives.

5. Generator

A generator is defined by a piece of code
and is assigned a name. For example,
GEN.INT, INTEGER;
SINT = $INT+1;
$DOMAIN = CONS($INT,$DOMA1TN)
END.INT;
defines an
generator
stored in

 (EXIT);

integer generator named INT. This
simply considers the first element

its DOMAIN Ilist (which is similar to
CONNTVER's possibilities list), increments it
by 1, stores the result in DOMAIN, and returns
it as value. EXIT specifies that execution of
this generator call is complete and that its

DOMAIN list should be kept active for future

calls.

A generator can be used once it has been
bound to an atom. Thus

$X <= INT(5)
assigns the generator INT to X and initial-
izes its DOMAIN list to (5). Now whenever we
write X< > | the INT generator will be evalu-
ated returning another integer. Note that
there can be several active copies of the same
generator, each bound to a different atom.
For example,

$X <- INT(51;
$Y <« INT(7);
A: $OUTPUT = X< > + Y< >;

LT($OUTPUT,100) :S(A);
will assign to X the generator INT with its
DOMAIN list initialized to (5). It will also
assign to Y the generator INT with its
DOMAIN list initialized to (7). 547 will

then be evaluated and assigned to OUTPUT. As
in SNOBOL, any string assigned to OUTPUT is
automatically printed. It is then checked

whether the value of OUTPUT is less than 100
and if so 6+8 is added and printed, then
7+9, 8+10 etc.

In general, the
angle brackets a list
appended to the DOMAIN
each time he calls it.

user can pass within the
of expressions to be
list of a generator
He can also pass an

as a method

to be used for that

call.

argument
generator

particular

There are several built-in generators.
For example, NODES will generate all the nodes
that lie at the end of a path which matches a
given graph pattern. Thus if we write

$Z <= NODES(<$X,(LEFT),(ABOVE_FAR)>)

the first time Z< > is encountered with
background the graph shown in FIG. 2, it will
return, say, node n] , the second time node
n2 , and if it is called again it will fail.
6. More on Backtracking

In some cases backtracking (i.e., reset

of the program state in case of failure) will
not be necessary, but in others it will save
the programmer considerable effort. 1.pak
allows a form of backtracking by extending the
feature of declaring variables local to a
function or a generator in several directions:
(a) AIll variables which appear in a function

or generator body can be declared local for a

particular function or generator call by using
the keyword VLOCAL during the function defin-
ition or generator definition or binding.

LOCALness may be specified as dependent on the

success of failure of a function or generator
call by using SVLOCAL or FVLOCAE instead of
VLOCAL. Thus FVLOCAL defines a backtracking
situation (i.e., reset in case of failure) for

program variables only for "the function or
generator it is associated with.

(b) Changes made to the data base can also
be declared local by using SDLOCAL, FDLOCAL or
DLOCAL.

If the user wants a
and the data base state,
FLOCAL or LOCAL. This way he has some flexi-
bility in specifying exactly which changes in
his program he considers reversible and under
what, conditions .

reset of variables
he can use SLOCAL,

7. Examples

This section describe?
programs which demonstrate
ready discussed and point
that arc not as important.

three simple [pak
the features al-
out a few others

Suppose that we want to define a collec-
tion of functions named LEFT which somehow

express adequately our own notion of what LEFT

means (geometrically). These functions will
be defined with respect to a list, $LIST, of
objects and it will be assumed that there

exists a function REL.LEFT which succeeds or
fails depending on whether the object repre-
sented by its first argument is to the left of
the object represented by its second argument.

First we give a definition of LEFT which
postulates its transitivity
PDEFINE(LEFT(TA1L:NODE,HEAD:NODE)Z_AUX,
LEFT,DLOCAL);

BEGIN.LEFT;
$Z <- NODES(<$TAIL,(LEFT)>);
$AUX = Z< > :F(FRETURN);

A: ADIH<$AUX,(TRIED)>) :F(B);
| DENT($AUX,$HEAD) :S(RETURN);

B; $AUX -
END.LEFT;

This function will be evaluated as follows

for given $TAIL and $HEAD:
(a) Z is bound to the NODES generator
cribed in section S with its DOMAIN list

Z<(<$AUX,(LEFT)>)> :S(A)F(FRETURN);

des-

initialized tfo the pattern
Thus the first call of Z will return a node
to the LEFT of $TA1L which is assigned to AUX.

(b) Each node assigned to AUX is labeled
TRIED by ADD. If $AUX already has an intrans-
itive edge labeled TRIED, ADD fails (because
it cannot change the data base) and another
node to the LEFT of $TAIL is assigned to AUX

(c) It is checked whether $AUX is IDENTical
to $HEAD, and if so the function call RETURNS;

(d) Otherwise, another node to the LEFT of
$TAIL is assigned to AUX and the new graph
pattern <$AUX, (LF.FT)> is appended to the
DOMAIN list of Z

When all the nodes to the LEFT of $TAIL
have been considered, Z will Start gener-
ating nodes to the LEFT of nodes to the LEFT
of $TAIL, and this will be repeated until all
the nodes to the LEFT of nodes... to the LEFT
of $TAIL have been tried. Because of the third
argument of PDEFINE, all changes made to the
data base will be erased when the call to LEFT
is complete, also AUX, Z will be reset to the
values they had before the function call.

Thus this definition of LEFT defines a
breadth-first search of the graph where $TAIL
is imbedded in an attempt to find $HEAD, and
it has been formulated by using the generator
feature. it is interesting to compare it with
the following Ipak function which also postu-
lates the transitivity properly of LEFT, by
relying on graph pattern matching and implicit
function requests:

PDEFINE (LEFT (TAIL: NODE ,1IEAI): NODE),
SLEFTY

<$TAIL, (LF.FT)>

BEGIN.SLEFT;
SEARCH{<$TAIL, (LEFT),$i[FAD>) :S(RETURN);
SEARCH{<$TATL, {LEFT)}, (LEFT * FCN),
$HEAD>]) :S(RETURNTF{ERETURN);
END.SLEFT;

Here it is first checked whether there is
an edge with attribute LEFT connecting $TAIL

to $HEAD, and if this is not the case, it is
checked whether there is a node, say nl , such
that there is an edge with attribute LEFT con-

and nl and $HEAD can
labeled LEFT. In

necting $TA1L to nl
be connected with an edge
checking for the latter condition, the wuser
has specified that implicit function requests
involving LEFT-named functions are allowed.
This is a recursive definition of transitivity
for LEFT in other words. The searching algor-
ithm it defines is depth-first and may enter
an infinite loop for graphs representing geo-
metrically strange worlds.

The second definition of LEFT accepts two
as arguments and succeeds or fails de-
pending on whether the object represented by
the first node is to the LEFT of the object
represented by the second
PDEFINE[LEFT(TAIL:NODE,HEAD:NODE)A B,

nodes

TLEFT)7
BEGIN.TLEFT;
SEARCH (<$TAIL, {REPR_AARB?A)
$HEAD, (REPR_AARB?B)>)
:F(FRETURN) ;

REL.LEFT($$A,$3B) :S{RETURN)F(FRETURN]:
END.TLEFT;

The graph pattern match executed by
SEARCH finds the atoms which modify REPR on
intransitive edges associated with $TAJL and
$HEAD and assigns them to A and B respec-
tively. specifies the end of one path

description and the beginning of another. The

694

values of the two aftoms assigned to A and B
are the elements of $L1ST represented by $TAIL
and $HEAD (FIG. 3). Once these atoms are
found, REL.LEFT can be

TAIL REPR_AT1 HEAD REPR_AT2
B
AT1 AT2
Lrii’ “\\x
MESSNEISNESEnE
object.l object.i object.j object.n
FIG. 3.

called with arguments the objects object.i,
object,j, represented in some way.

A third possible definition of LEFT as a
generator returns nodes representing objects
to the LEFT of a given node S$TAIL which is
passed as message to the generator, and is
also a global variable:

$Lt-ir <= LIIFTDEF (#$rAlLj
This statement assigns to LEFT the generator

LEFTDEF with its DOMAIN list initialized to

the unevaluated expression $TAI1. (‘W' keeps
its operand unevaluated until it is encount-
ered at execution time, and is therefore
similar to the SNOBOL, unary operator '*') -
Below we define LEFTDEF.

GEN.LEFTDEF, NODE;

GA: SLEFTDEF = SEARCH (- $LEFTDEF, (NEXT)>) ;
| DENTfSLEFTDEF,$TAIL) :S(FRETURN) ;
SEARL'H(<$TAIL, (LEFT_*_FCN) ,$LEFTDEF>)

:F(GA>;
$DOMAIN = L (EXIT)
END.LEFTDEF;

Whenever this

(SLEFTDEF)

generator is executed,
LEFTDEF is first assigned the value of TAIL
(this is done automatically by the system).
Then the NEXT node is found and assigned to
LEFTDEF; NEXT defines a circular order on the
nodes of the graph where STAIL is imbedded,
and we are using it here in order to traverse
the graph. It is checked whether SLEFTDEF s
IDENTical to $TAIL, which would mean that we
are back at the starting node and there are no
more nodes to the LEFT of $TAIL; if not, it is
checked whether the current value of LEFTDEF
is to the LEFT of S$TA1L. Implicit function
requests are allowed for this check. If the
answer is negative, control returns to the
statement labeled GA and another node is
assigned to LEFTDEF', otherwise the DOMAIN list
of LEFTDEF is set to ($LEFTDEE), a one-element
list, and we EXIT. Next time this copy of
LEFTDEF is called, search will resume with the
NEXT node in the graph where $TAIL is imbedded
until they have all been considered.

The user can now write

SEARCH(<$X,(LEFT * FCN),$Y>)
or SEARCH(<$X,(LEFT~*_GEN),?Y>)
and expect the system to either find the
necessary information in the data base or to
call the appropriate functions or generators
(depending on whether the special modifier is

FCN or GEN) in an attempt to construct it.

§. Discussion

l.pak has been implemented in SPITBOL[S],
an efficient version of ENOBOL, SPITBOL uses
both a compiler and an interpreter, offers
most SNOBOL features {in particular the func-
tion LVAL), plus a [ew more, has a very fast
parbage collector and handles user-defined
data types very efficiently. 1t requircs
approximately ~50K bytes and runs scveral
times faster than the BTL implementation of
SNOBOL.

Some of the reascns that led us to choose
SNOBOL over other candidate languages are
listed below!

{a) It offers pattern matching facilities.
This has helped the design and implementation
of graph pattern matching; noreover, SNOBOL
users will have no difficulty adapting ta the
graph pattern matching formalism since 1t is
an cxtension of string pattern natching.

{b) 1t affers tables and user-defined duta
types. These teatures wore used extensively
during the implementation ol the I.pak system,
and dre offered by [l.pak at very little extra
cost.

{c) SNOBOL's control struycture s unusyd]
but ilexible and well-suited to Al applicatiuns
programming. .pak olfers most of that control
structure, in addition to the various shades of
the LOCAL feazture, function requests, gener-
ator calis etc¢.

Labeled graphs have already been used for
the representdation of knuwledge {e.g.,
Palme [10], Rumelhart et al [11]1. 1.pak
graphs have the additional feature however
that the user has a chejce of representing a
piece of information structurally or as 4
property., Which form he chooses should depend
on how often the parts of this piece of inlor-
mation will be retrieved and manipulated inde-
pendently of each other. For caxample, the
statement "John gives 4 gift to Mary" could
ke represented (rather crudely and with various
subtleties of the sentence’s meaning ignored)
by the graph shown in FIG. 4(al, 4{(b) or 4(c},
depending on whether we will be referring
explicitly te the gift or Mary and their
properties, or will simply refer to them as
parts of a property Johmn has.

RARY
JOQQ John JOHN
GIVE GIFL 27
e
M
GIVE _GIFT_MARY Mary
{a) (b)
Mary MARY
JOHN GIVL
ACT - CIFT
(,f T
: ~—
John Give Gift
{c)
F1G. 2.

Unlike PLANNER etc¢., Z.pak'e data base
offers only partial associativity. T7This may
be inconvenient for the user in certain cases,
but it offers him wore control over his data
base's thirst for memery space. More con-
vential data structures (arrays, tables, user-
delined data tvpes) arc also available in
I.pak at very little gexpense for the 7.paek
system since they are mostly handled by SNOBOL.

Graph pattern matching offers many
features fTound in PLANNER in thuat a similar
hacktracking nechanism is uged and implicit
function requests ¢an be considered as con-
scquent theorem calls, I{ the user agrees
with Sugsman and McDermott's criticism of
PLANKER's backtracking [2], he can switch to
4 programming style favoring gencrators where
he has more contrel over the backiracking
mechanism he uses. We feel that hoth features
will be found useful.

The J.pak implementatieon uses both a
compiler and un interpreoter and requires u
minimum of ~140k (thi® includes ~50K for
the SPITBAOL svstem). There dve plans to use
I.pak for guestion-answering, scene anzlysis
and patural language understanding to test it
and {ind which leatures are uselul and should
be made more prominent and which ones =hould
be modificd.

Acknowlodgeunents

We would 1ike ta thank larl Hewitt for
several useful sugpestions, alse Walter Berndl
for helping us with the implementation and
portions of the design of 7.pak. This
rescarch was partially supported by DOC and
BER grants,

References

1. Mchermett, B.V., Sussman, G.J. The
CORNIVEN reference manual . MIT Al Memo.
250,

2. Sussman, G.J., McDermott, D.V. Yrom

PLAKKER to CONNIVER:
Fjce, 1872, 1171-1180.
tlewitt, . Description and theoretical
analysis of PLANNER. MIT A1-TR-258,
1972,
1. Tberksen, J., Rulilsen, J.F., Waldinger,
R.J. The {Ad language applied to rohot
planning. [PIcc, 1972, 11BLE-1192.

5. Swinehart, I., Spreull, R. SAIL. Stanford
Al Project, Operating Note No. 57,2,
Janaury 1972.

6. Teldman, J.A., Low, J.R., Swinchart,
and Taylor, R.H. Recent developments
in SATL., FJCC, 21972, 1193-1202.

7. Mylopoulos, J., Badler, N., Melli, L.,
Roussopoulos, N. An intreduction to
J.pak, a programming language {or Al
applications. TR-%Z, Depariment of
Computer Science, lUniversity of Teronto,
May 1973.

8. Crisweld, R.U., Poage, J.F., Polensky, 1.P.
The SNOBOL4 programming language.
Prentice-Hall, 1971 (second editicn).

8, bewar, R.B.X. SPLITBOL, Version 2.0.
11linois Institute of Technology, 1971.

d genetic approach.

Tl

n.C.

685

10. Palme, J. Making computers understand
natural language. In Artificial
Intelligence and Heuristic Programming,
Findler N." and Meltzer, B. (Eds.).
Edinburgh University Press, 1971.

11. Rumelhart, D,, Lindsay, P.H., Norman, D.A.

A process model for long-term memory.
In Organization of Memory, Tulving, E.
and 'Donaldson, W. (Eds.), Academic
Press, 1972.

696

