Section 5: Search Techniques
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Abstract

The paper discusses necessity of stru-
cturing a search tree. A theorem is sta-
ted that the a-p procedure is the only
search reduction procedure for non-struc-
tured minimay problems. For a class of
problems structure in some way a non-tri-
vial search reduction method is described.

Introduction

In most problems of artificial inte-
llegence an exhaustive search is an im-
portant (we think, main) method of choos-
ing a solution among certain alternatives.
The central problem, which arrises here
is the problem of search reduction without
prejudice to the quality of solution. A
search reduction is called absolute if
the search graph is certainely lessened,
and it is called heuristic if reduction
of the search graph depends on the good
luck. \We do not consider here search
reduction techniques which may lead to
the loss of solution, although they are
sometimes also called heuristic). The
subject of the theory of exhaustive search
(considered as part of the artificial in-
telligence theory) should be, naturally,
heuristic search reductions. In this con-
nection the following problems arrise:
the problem of formalisation, the problem
of inventing a search reduction method,
(heuristic by itself) the problem of ana-
lysis of a reduction method. A analysis
consists apparently of the following
parts: an applicability domain, unique-
ness results (under such and such condi-
tions no other method exists), results on
optimal effect, examples of the absence
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of effect, results on "rentability" of a

method whether the time spent to answer
question: "To reduce or not" is saved by
essential reduction of the size of sear-
ched set). In the present talk we ohose
a simple (but important) case of exhaus-
tive search - namely minimax problems -
and o-g method as a heuristic search reduc-

tion method, to make a part of such an
analysis. We show that if a corresponding
method is used for a too wide class of
problems, then it is the only search
reduction method for this class (more
precisely it majorates all other methods).
A class is too wide if, roughly speaking,
the structure of problems of the class is
subject only to trivial restrictions.
Example: there is no search reduction
method applicable to all cooperative
games (a degenerate case, where all verti-
ces in the game tree are maximal).

As philosophical implication of this
result we conclude that to construct a
non-trivial search reduction methods one
needs to use a structure of a problem, A
method of search reduction discussed in
the second part of the talk confirms our
conclusion. It uses a sort of symmetries
of some problems. This agrees with the
P. Klein's general principle according to
which Mathematics studies symmetries of
the World. (However unlike the situation
in geometry, in our case those symmetries
do not form a group).

It is important that this method is
compatible with the d-g algorithm and sup-
plies essentially different, additional
possibilities for search reduction. This
method distinguishes our class of prob-
lems from earlier classes of problems with
restrictions (traveling salesman etc).
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In those problems restrictions were used
to strengthen application of method and
do lead to any innovation in it.

1. Notations, assumptions, definitions

We go over now to a formal descript-
ion of the problem and of the results.
All trees to be met in the talk are fin-
ite, directed and have the unique root.
If T is a tree, V,=V, (TY) denotes its root,
V(T) (resp. E(T)) denotes the set of ver-
tices (resp. edges) of 7', End T denotes
the set of end vertices, For ve¢V(T)
T(v) i3 the tree "having"” at vV , EN(V )
is the set of edges exitting from v ,
N(v) is the set of end vertices of e¢€
EN(V ). For v,,\,€V(T), [V, v,;] denotes the
(directed) path from V; to V, . Suppose
we are given a ma.p ¢ VIT) =1} .

V= it +),V = i"(-). Suppose fu.rther
we are given a complet:ely ordered set D
such that for any D's D, inf D'e¢d and sup
DeD are defined (e.g. D = Py {+oojui-oo}).
For dd,eD we set -(-d,)-d, , and we
assume that -d, ¢ -d, 1is equivalent to
dy» d, . The letter &f denotes always a
evaluation function f : End T - D and F
denotes a transition function F£: £(T')x
XD —» D . A denotes the set of pairs
(F, £) such that F is monotone non-dec-
reasing with its second argument and
PexD ) = D, VecElll For (F,£)eA the
function ¥y :V(T)~+D is defined inducti-
vely by Yep (V) = #{v) » VEENDT |

e g (V) = L(V')su N\ F(tor, w1, ¥ 3(w))

V(-V('T') ENDT A functions' fami-
ly 2<A 1is called too wide if the follo-
wing holds. Suppose an algorithm A is
given (with value-set D x D), which for
any Ve¢V(T)and for any subtree 7, < T
and for any (¥, £)€ 3 computes sup and
inf of ¥p £, (V) over all (P, , £,)e¢Z
which coincide with (F, ) on T,. Our
condition has a form
(9d) V(F f)eZ VT <T Vv, ¥neV(T)with

E(T, AT VL%V )or 7] | for any

choice
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of Jtt[A('T}Ffv)' A(T ¥ 4 v)"] there

exists (f f)eZ such that (A f)/,r. =
(FHIT}L and ‘v’;.;(V)“b . !

If any interval [d, ,] , d,#d,
is infinite, (g1 ) may be replaced (as
far as our aims are concerned) by a more
weak assumption of absence in Z of rela-
tions of the equality of inequality type:
(82) V(FL)eZ VT cT ¥v,, Ve VIT)
E(Ty anT)=e v e,y for trj for any
function p:D™-D for any sign O taken
from the set > = £ for any d €D there
exists (F,, £, )eZ such that (3'1.1',,)[.,,
}f(F £) IT- and p(¥, |, W), Ye g, (V)

An exhaustive search working on ZcA

a rule of walking around T. Explicitly:
it is a computable function 7: Mx F —
—~ V(T') such that V(FfeZ vnelN
one has 'I-‘(nri,F,f)eLgn NMT (L, F 1)) .
A search reduction or cut-off of the

search 77 is a computable function
R NxZ = 1{t4)  gyuch that VneAN ,
VIEF)e3 V(F #)eZ such that (A, § )y 7l Fi)=

= (FDY 7w fb) VIR B)es "
such that (F, M=o ni ty = (F 6

T Ty (n G f) one has implication
LnFf)=-1> ¥ pv,)= ¥r, f ) . Given
cut-off f_ one constructs the new search
7' (aleo exhasustive) which walks around
less vertices: if B (n F#)=-{ then
for all ¢3n such that 7 (¢, F”ﬂ}r(n )
we set F'(¢ Ff) =m0 F 19) . Repetitions
may be afterwards excluded.

2. Results on u-g method

The o-g method is applied to the
problem of computing ¥g f (v,) . This
problem is sclved by exhaustive search,
Suppose we are given a tree T, a family
Z</A on which we are working, an exhaus-
tive search (a way of walking around T)
7 and an algorithm A with properties
described above. To construct a cut-off
called - method, we construct at first
for (F, £)€Z2 the set T(n):bgmﬂc,ﬁ, £)
Then we construct a system of Bounds




(- ¢A(Tn), F,{v) | on functions of
7 . Then we construct the set
Vo (T(n)‘ @) equal to the union of trees
T. over those ve¢ V{T") for which there
exists we[v, w] such that F{&«,VJ,J “"’m)a
> g"“"’)(w) . At last we put
Jantn.Fl)=-1 & s inFf)eVyg (TN}, 8)
To construct an A one uses restrictions
on functions from Z and explicit com-
putations of ¥¢ ¢ in certain vertices,
Theorem 1., If J is too wide then the
only search reduction for an exhaustive
search § working on 2 is _Pwm- (in the
sence that all other search reductions
are wearser in the obvious sense).
Thie theorem in a slightly different
form is contained already in [1] .
Without going into technicalities
let us note another result which can be
either deduced from Theorem 1 or proved
independently. Under assumption that the
number of edges in min and max-vertices
is aproximately equal, the number of end
vertices in the optimal search tree is
not less than VIENDT{ .
Simple examples of restrictions on
Z : a) the sum of wvalues of ‘f,,—j (V)
V(F{)eZ over some fixed set of vertices
(e.g. over vertices of the given level)
is bounded by a given element; b) the
problem of traveling salesman: V = V(T)
D=Ryfrec}uf-e} a function ¢.V{T)—D
(the tramsport fares) ia given, cV)20
such that F(EV,W]_J.) = d + ¢ (W)
Then restriction follows from the evident
relations
F(L'V. vl ,‘f’,.-.plv)) 2 o)+ ¥t wyy Z Ciw)
wi v ) ' wefy, vl

3. Structures

Theorem 1 shows (as we have mentioned
in the Introduction)that new methods of
search reduction should be sought for
families 2. distinguished by nontrivial
relations.

As an model which (in a reasonable
approach) includes all non-trivial rest-
rictions known to us we propose the fol-

lowing schema: Let M be a set, possibly
endowed with a structure of partially
ordered set or some other suitable struc-
ture. Suppose that a mgp (structure map)
6 : B(T)-* M is given. Requiring of F
and f a "good" behaviour with respect to
& and structure on M, we shall get a
non-trivial restrictionson X . A tra-
velling salesman problem is an example.
We came now to a detailed description of
an example of conditions on and of
ways of its application to search reduc-
tion.

These conditions have naturally
arrisen in analysis of exhaustion of var-
iants in a chess progmamm (c¢f. [1] ).

For chess &6(e), e¢ E(T') , is a mowe from
initial position of edge to its final
position, considered on the empty board
and containing a indication of which
piece was captured; M is the set of all
moves on an empty board with capture in-
dications.

One has in this case IV(T’)I}IO
IM|€10% . 6 and M are analogously def-
ined for checkers and card plays with
cards being open.

Suppose that V'and V “are interlaced
in V(T), i.e.tW)s-((v) for we N(v) .
Suppose further that M = M*u M~ and that
for we NV} one has 6 (IVw])eM'e cv)=+ .
Let us write ((m)z=+ for meM and itm=-~
otherwise. The set of non-enmpty paths
vwl vweV(T) is denoted Yaths T. Seq
M denotes the set of ordered sequences of
elements from M (possibly with repetitions)
whose signs alternate. Seg M is endowed
with the natural structure of a tree and
we shall consider Seq M with thﬁis struc-
ture. Then 6 induces the map € : Paths
T —» Seq M cor, the same, the map &: 7 =
Seq M. Suppose that 6 ! is unambiguous on
edges e€EN(v),VveV(T) (i.e. e ' ¢t ENW)
Gey-6le)de=e’ ).

Then for ve V('T'), se¢Seq M ome denotes
by v+$ the unique vertex we¢V(T,) such
that 6{{vwl)=s(if, of course, ¢ ¢ &
(Paths Ty, )). Let us introduce on Seq i
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operation + by: m=m;rm, if m 18 obta-
ined by writing down m, after m,and if
m, is even. We ahall write also m=m9m,
if My =m, + Hﬂ“ m, M, + +m,, om> Z.m

if in the latter sum all lengths, except
possibly last, are even,

4., Relation of influence

Suppose that on the tree Seq M a rela-
tion of influence is given and that a
relation of influence of elements fronm
Seq M on elements of M is given. Suppose
that relation of influence satisfies the
following conditions (where m m'€e M
S 5',5‘;"‘.‘3‘ € Seq M):

Axiom of symmetry of influence:

$ influences s'> s influences S .

Axjiomsa of extension of influence:

me€S => 5 influences m

m€sS and 5 influences m=> & influen-
ces § .

Axioms of the transfer of influence:

S influences S’ and 5=S45,$at least one

S. influences S'.

S influences m and 5:59S,= either
some S, influences m or s, influences
S; .

S influences S’ and $=5,05, = either
some S, influences S 'or $; influen-
ces S;.

This relation of influence is exten-
ded with the help of 6 to relation of

influence in the Paths T and to influence

of elements of Paths T on elements of M,

For this extension some additional axioms

are to hold (where ve V(T w, w, w; ¢ V(Ty)
sfvw_,,] &[v w1]06[vw¢]

Axioms connecting admissibility of moves

and influence: a) Ime MY

me6 (EN(w)) =12 mg 6 EN(Wy) =

P [v.w,1] influences [V W,] ‘D)]m"M

me 6§ (ENNV)) me¢c 6{(ENw.) =1 3

me S(EN(WA)).:vLV,wL] influences either

[vw,] or m ¢) -}meM"’"’"_me 6 (EN (W)

influenees me6 (ENWy)) = [v w,l+m

influences [vw,]
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5. Method of geometrical relations

Let T, be a subtree in Ty ve¢ V(Tq).
Suppose that we are given an algorithm B
(for games B is the choice of the best
move) which constructs for anyv e V(T)
and any subtree T,<T a vertex we N(v )
such that ¥g,m (v)=P'(L’v,ur}_?Fjﬂ(w)). (Subseript
T, in ¥ denotes that computation of this
¥ involves edges and vertices only from
T; ). Let us define far T, two subtrees
§ X(T)), 8°(T,) is defined inductively beg-
inning from the root by comiitions:
ve V(8'(T)) i Yue VBT (T) LNW T)) =

= 8w T H]: Yue V(ST IV 87T = Mu 1) ]

Analogically & (T}) is defined induc-
tively by conditioms: ve¢ V{(§7(Ty)}
Vu eV (TY [V (w877 M, T;)]

Vue V(T [N (.8 (R) =§B(u T)Y]
I£ T,<Ty T T, weV*Y(T) we set

E(T, T)=6(8°(T))n6 (87(T, )€ Seqg M
If T, T2 are subtrees in T, P € Paths
T, meM , we s8ay that T.1 influences m
(resp. P ) if there exists P, € Paths
§ (T,) such that B influences m
(resp. P ). We say that T, influences
T, if there exist P, ¢ Paths §(T) (=12
such that P, influences B, .

Let us now distingulsh some special

subtrees. Set OWwWWV)=6(ENWING(EN(V)
L(ww) = {mes(ENW): [WW

influences mj we T . Subtree T, <T,

is called testing if 6(ENM(W T}))2

2 0w Vv (w, V) for we V¢V (T,)

and EN(W T)=EN(W  for weV " (T,)
Further, subtree T;cT,, we¢ Vv (Tv)
is called parallel to Tyc Ty if Mw,T)=

= M) forue V “™(T)and NM(u, T))=
=z & *(O(u WIUN{V+ §(Lwul) T})
for ue V*™)(T}). Suppose now that we are

given a function & :M-=2R.jro0buj-ooy

Suppose that Fled):d VeeE(T) and put
Sive)=¢ | s("}"ei:mw 3 (6(e))
Suppose that a condition of ma joration

holds: S(V)>Siw) D ¥, (v) > ¥y (w)
k.G, for chess S(v) may be taken to be
materisal balance).



Theorem 2. Let T, c T, T, be testing
subtree, weV*V(T,) . If T, does not in-
fluence (v w/,6 Sw)g S(V) apnd Ve Vg (T})
then weVp,(Ty) for subtree T,<7T, which
is parallel to T,.

This theorem menas, in terms of
search, that if at the completion of
search over T, We nave established that
ch%ﬁ('r') then, in conditions of Theorem
2 the search over rI‘2 is superfluous and
T, can be cut-off.

Let us describe ome more result using
potions introduced above. et 4 be a
fixed search computing Y« f (%) . Let
T Fb)u  EAT(NFRU) ee ENW .
Let us assume, to fix setting, th.athueV’ .
Put Ko =@ To=Th Go=EN(u). Define Bhch
e¢ G, inductivily (for I =1, 2, . . .)
subtree T, <7), and a set K  (ue) in
the following manner: u € V(T ,) yENWT J)=
- e WYV eV (Tl e) LENM(V,T, )=
cEN (V) Vv eV T, )-u [ cENWWT. )&

¢ (61e)e (K (Ue)n (6(e’) ¢ 6 (EN(u))n

n(f(uvl)influences S(e))]

G, -{eeG, . ?F}',T_'etlu)é 3
K;(u‘e\ﬁ{e‘eGL T o influences 7‘--99 . Set atg
last To:bm T, 6=bm6G,

Theorem 3. Let 6'¢G and ' be a
search over subtree 7,<7, such that
T (W, F £)nG =g . Suppose g(ﬁu,VJ) and
Ty do not influence 7p,veec G’ . It
Yo (v)$&&  then . (v)<fd where %’ is
a search such that

Esr (Th aTp)NEg (TgenTy) €6
The following method of search reduc-

tion is based on Theorem 3, Determine for
a vertex « € V (T) subset G. Edges e€(
will not be taken into search while the
current path from « does not influence
Te -

Besides in the nmoment of return in a
vertex one should check whether 7. in-
fluences T, or not. If it influences
one should include € into search. In the
contrary

Theorem 3 permits one to
consider the search from the vertex under
condideration as finished. It should be

308

noted that different edges are rejected
independently.

1.
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