PROBLEMS IN BUILDING AN INSTRUCT ABLE
PRODUCTION SYSTEM

M. Rychener, C. Forgy, P. Langley, J. McDermott,
A. Newell, and K. Ramakrishna

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213
Keywords: production system, instruction, means-ends
analysis, general intelligence, representation.

The Instructable Production System project is
exploring the incremental growth properties of production
systems (PSs) by constructing a generally intelligent
problem-solving system by gradual (external) instruction.
The definition of PS and our current architecture are given
elsewhere in this volume (Newell, 1977; Forgy and
McDermott, 1977). The present task domain is an abstract
job shop, in which finished goods are made from raw
materials. We start with a Kernel (a small PS of about 200
productions) which has the basic capabilities to grow by
instruction: (1) process a restricted natural language; (2)
form productions from its input; (3) impose PS control
conventions on them; and (4) perform basic manipulations
in its environment (Rychener & Newell, 1977). We take the
basic computational and representational adequacy of PSs
for Al programs as established.

This short note presents some immediate difficulties
we expect to encounter. These derive from the
instructional situation: (1) The instructor can observe the
system in the environment and can communicate with it
freely, but cannot examine its internal structure directly.
(?) Interaction with the system is in an external language,
analogous to natural language. (3) The initiative for
interaction is mixed. (4) Instruction may be on any topic:
specific tasks, general properties of tasks, the language of
communication, possible errors, how to plan and explore,
etc. (5) Knowledge and system structure gained through
instruction accumulates over the life of the system.

Our current approach uses m”ns-e”Kls analysis as

the basic, philosophy of both problem-solving and
instruction. Goals are symbol structures in Working
Memory that describe desired states and processing

entirely through the means and tests. Means are encoded
as productions that recognize goals and assert subgoals
whose satisfaction will achieve the goals. Tests are
encoded as productions that recognize the conditions of
satisfaction of the goal. The means productions form a
means-ends network of goals. Instruction consists of
elaborating the nodes of this network as required by a
task.

Now for the difficulties on the immediate horizon:

1. Contact: How can initial contact be made with
existing knowledge that might be relevant to the task at
hand, which is not part of the means-ends network
deliberately created by instruction for the task? Use of
the data acquired through experience is required in any
intelligent agent. Once detected, much processing can be
spent on discovering relevance, but initial contact may be
extremely difficult. Any general intelligent system will
have too much knowledge to consider exhaustively. PS
architectures exploit this by storing all knowledge as
productions which are evoked only if their conditions "see

Knowledge Acq.-2:
337

themselves" in the Working Memory. But means
productions are acquired in specific contexts and their
conditions become keyed to specific goals and task
features. One approach might be to generate variations of
current Working Memory goals and data until something is
evoked.

2. Incoherency: The PS may be essentially
incoherent in describing its situation and difficulties to an
external instructor. The means-ends network helps (by
providing the same level of explanatory capability as in
current expert systems), but is not sufficient. E.g.,
describe what went wrong from the debris left in Working
Memory. The PS's diagnostic and explanatory capabilities
are expandable by instruction, but it is currently unclear
how this will work.

3. Means-ends analysis efficiency: Initial instruction
produces a more elaborate network than is necessary. The
instructor uses numerous intermediate goals, both to make
his instruction sequences easier to generate and to allow
complex procedures to be taught at all; miscommunication
leads to a patchwork of variant procedures; the PS uses a
goal-encumbered monitoring mode of operation inserting
supervisory goals and processes; etc. There are three
modes of varying efficiencies: a compiled, efficient mode;
ordinary instruction mode; and the monitoring mode. Our
primary concern is transforming from the ordinary form to
the compiled form, while maintaining a capability to revert
back to the other two in debugging situations. This may
not be attainable simply through instruction; architectural
modification may be required.

4. Utilizing distantly related knowledge: Knowledge
about other tasks is imperfect for a given task; it is also
embedded in methods and encoded in representations
created for (and local to) the distant task. All these
aspects cause difficulty, even if contact is made (per 1). A
clear symptom will be repetitive instruction to cover minor
task variations. One approach is to avoid the difficulty by
adopting uniform conventions for encoding. We think this
won't work. We favor attempting to map methods to
methods (and representations to representations), using
ideas from Merlin (Moore & Newell, 1973).

Support. This research was supported in part by the
Defense Advanced Research Projects Agency under
Contract no. F44620-73-C-0074 and monitored by the Air
Force Office of Scientific Research.

References

Forgy, C. and McDermott, J., 1977. "OPS: A
domain-independent production system language", in
Proc. IJCAI-77.

Newell, A., 1977. "Notes on knowledge representation
aspects of production systems", in Proc. IJCAI-77.

Moore, J. and Newell, A, 1973. "How can MERLIN

understand?", in Gregg, L, Ed., Knowledge and
Cognition. Potomac, MD: Lawrence Erlbaum Associates,
Pp. 201-252.

Rychener, M. D. and Newell, A, 1977. "An instructable
production system: Basic design issues", in D. A.
Waterman and F. Hayes-Roth, Eds., Pattern-Directed
Inference Systems, New York, NY: Academic Press.
Forthcoming.

Rychener

