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INTRODUCTION 

This paper addresses the problem of determining local surface 
orientation from the intensity information contained in a single 
monocular view. It represents another look at the problem of 
obtaining shape from shading information. This problem was 
first formulated by <Horn 1970> as the solution of first-order 
non-linear partial differential equations. It was subsequently 
reformulated by <Horn 1975> to take advantage of the 
geometric insight provided by the gradient space approach 
popularized by <Huffman I97l,1975> and <Mackworth 1973>. 

The goal of this work is to understand how the observed 
intensity variation across surfaces of objects forces conclusions 
about the local topography of those surfaces. The problem is 
formulated as a problem in image analysis. This paper adopts 
the position that it is important to examine ways of squeezing 
out the last ounce of information from the intensity values 
recorded in an image before taking recourse to high-level 
knowledge. 

In order to exploit intensity information, it is vital to 
understand how intensity values arise in an image. The paper 
begins by introducing gradient space and reflectance map 
techniques. Hav ing developed these tools, the physical 
constraints imposed by the light source, object surface and 
viewer geometry are re-examined to recast the <Horn I975> 
formulation as a cooperative computation which determines 
local surface orientation by matching points in an image to 
their corresponding points in gradient space. Finally, the 
method is illustrated using the simple example of a Lambertian 
sphere illuminated by a single distant light source. 

GRADIENT SPACE AND THE REFLECTANCE MAP 

In order to understand the correspondence between intensity 
data and local surface orientation, it is necessary to relate the 
geometry of the image forming process to the photometry of 
the object being imaged. The problem of determining local 
surface orientation from intensity can be characterized as a 
mapping: 

T : I(u,v) -> LSO(u,v) 
which assigns to each image intensity point I(u,v) a local 
surface orientation LSO(u,v). In a visual world consisting of 
opaque smooth objects immersed in a transparent medium, the 
mapping T is well defined since each image intensity point 
I(u,v) arises from a unique object point (which, in turn, defines 
a unique surface orientation). What is not obvious, however, is 
whether T can be determined from intensity data alone. The 
dif f iculty, of course, is that T is not a local operator. In 
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so that the local (outward) surface normal becomes (p,q,-l). The 
quantity (p,q) will be called the gradient and gradient space is 
defined to be the two-dimensional space of alt such points (p,q). 

The fraction of light reflected by a surface in a given direction 
depends upon the optical properties of the object material, the 
surface micro-structure and the spatial and spectral distribution 
of the incident light. The important photometric observation 
underlying this work is the following: no matter how complex 
the distribution of incident illumination, for most surfaces, the 
fraction of the incident light reflected in a particular direction 
depends only on the local light source, object surface and 
viewer geometry. To make this observation more concrete, one 
can standardize the local representation of the light source, 
object surface and viewer geometry and tie this representation 
down to gradient coordinates p and q. 

A surface photometric function ø(i,e,g) is typically defined in 
terms of the three angles i, e and g illustrated in figure I. These 
angles are called, respectively, the incident, emergent and phase 
angle. Here, the emergent angle e will be referred to as the 
view angle. 

Figure 1 

If both the viewing direction and the direction of incident 
illumination are known, then expressions for cos(i), cos(e) and 
cos(g) can be derived in terms of gradient space coordinates p 
and q. To simplify matters, consider an image forming system 
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f o rmu la t i ng an algori thm for determining local surface 
orientation from image intensity. It will be important to keep 
track of how additional physical constraints are used in the 
computation. 

Now, LSO(u.v) is a two-valued function of u and v since two 
parameters are required to specify an arbitrary orientation in 
space. One might expect surface orientation to be difficult to 
represent explicitly. Gradient space is introduced as the 
appropriate formalism for reasoning about surface orientation. 

Gradient space can be derived in several ways. For present 
purposes, it will be related directly to surface orientation. If the 
equation of a smooth surface is given by: 



that performs an orthographic projection. The Important 
simplification inherent in the assumption of an orthographic 
projection is that the viewing direction, and hence the phase 
angle g, is constant for all image points (u,v). To further 
simplify the mathematics, one can align the viewing direction 
with the negative Z-axis and assume a scaling in U and V that 
takes object point (x.y.z) to Image point (u,v) where u - x and 
v - y (see figure 2). Under this projection, the use of separate 
image coordinates (u,v) is redundant. Henceforth, image 
coordinates (x,y) and object coordinates (x.y) will be referred to 
interchangeably. With this geometry, object space vector (0,0,-1) 
points in the direction of the viewer. That is, the viewer is 
located at gradient space point (0,0). 

point (ps,qs,). Specifying a single distant point source is not a 
fundamental restriction on the development. Non-point sources 
can be modeled as the superposition of single point sources. 
The development does, however, assume equal illumination at 
all surface points. For non-convex surfaces, the reflectance map 
does not account for the fact that certain surface points can be 
shadowed with respect to one or more of the sources nor for 
the fact that certain surface points can receive additional 
i l lumination due to light reflected from other sections of 
surface (mutual illumination). 

Recall that, object space vector (p.q.-l) is an (outward) normal to 
the surface point (x.y,z). That is, (p,q) is the gradient point 
corresponding to the surface point (x,y,i). Then, using 
standard vector algebra, the expressions for cos(i), cos(e) and 
cos(g) become: 

Figure 2 

Now, for a given distribution of incident illumination, a given 
surf ace-viewer geometry and a given object material, the image 
intensity corresponding to a surface point with gradient (p,q) is 
unique. The intensities recorded at each (p,q) is called the 
reflectance map R(p,q). Reflectance maps can be determined 
empirically, derived from phenomenotogical models of surface 
ref lect ivi ty or derived f rom analytic models of surface 
micro-structure. Once determined, however, the reflectance map 
Is independent of the shape of the objects being viewed. It 
represents explicit knowledge of intensities that can be recorded 
f rom objects made of a given material and viewed under a 
particular light source and viewer geometry. The reflectance 
map accounts for the physical intensities that can be recorded 
under varying components of diffuse and specular reflection. It 
does not, of course, account for the human perception of those 
intensities, (eg. A local specular component can make an 
otherwise "dull" surface appear "glossy") 

Consider an image whose Intensity values I(x,y) have been 
normalized to equal the reflectance map values at the 
corresponding gradients (p,q). Then, the following equation 
describes the image forming process: 

I(x.y) - R(p.q) 
Th is is the basic equation relating image intensity to the 
geometry of the image forming process. It is one equation in 
the two unknowns p and q. Thus, the problem of determining 
local surface orientation from intensity becomes the problem of 
finding the point in gradient space (p,q) corresponding to the 
image intensity point I(x,y). 

Now, the simplest case for Incident illumination Is that of a 
single distant point source. Choose such a source and place it 
so that object space vector (ps,qs,-1)points in the direction of 
the source. That is, the source is located at gradient space 
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This gives a first useful interpretation that the inclination of 
the surface wi th respect to the viewing direction varies 
monotonicalty with the distance from the origin in gradient 
space. Specifically, the distance from the origin is the tangent 
of the angle between the surface normal and the view vector. 
As the gradient (p,q) moves away from the or igin, the 
inclination of the surface with respect to the viewer increases. 
As the gradient (p,q) moves toward the origin, the inclination 
of the surface with respect to the viewer decreases. 

Now, the view angle e characterizes one of the two degrees of 
freedom associated with an arbitrary orientation in space. Note 
that the locus of points in object space having a constant view 
angle e defines a right circular cone oriented along the viewing 
direction. The angular position of each gradient (p,q) on the 
circle p2 ♦ q2 - tan2(e) defines the direction of steepest descent 
in image space along this cone. This gives a second useful 
interpretation that the angular position of a point (p.q) in 
gradient space corresponds to the direction of steepest descent 
in Image space along the original surface. Rotating object 
space about the view vector induces an equal rotation in 
gradient space. 
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Using elementary trigonometry, the expression for cos(e) can be 
rewritten as: 

Using the above expressions, it is clear that one can transform 
an arbitrary surface photometric function 4(i,e,g) into a 
reflectance map R(p,q). By now, it should be clear how points 
in gradient space correspond to orientations in object space. 
However , it is possible to be more expl ic i t about the 
correspondence between movement in gradient space and 
changes in local surface orientation. 



RE-EXAMINING PHYSICAL CONSTRAINTS 

One can formulate the problem of determining the point in 
gradient space (p,q) corresponding to the image intensity point 
I(x,y) analytically as has been done in <Horn 1970,1975>. This 
work wil l not be reviewed here. Instead, the formal nature of 
the computation will be put aside in order to first re-examine its 
basis in the physical world. 

Two constraints of importance can be identified: 
1. A given point on a physical surface has a unique orientation 

in space. 
2. Matter is cohesive. It is separated into objects. The surfaces 

of objects are generally smooth compared with their distance 
from the viewer. 

The reader wi l l note that these are essentially the same two 
constraints <Marr and Poggio 1976> use as a basis for their 
computation of stereo disparity. As in their paper, the goal is 
to translate the above two physical constraints into rules for 
how points in an image can be matched to points in gradient 
space. 

In their most general form, these rules can be expressed as. 
1. UNIQUENESS: Each image point may be assigned to at 

most one location in gradient space 
2. C O N T I N U I T Y : Surfaces vary smoothly almost everywhere 

Only a small fraction of the area of an image is composed of 
boundaries that correspond to discontinuities of surface. 

The task ahead is to demonstrate that these rules can be 
exp l ic i t ly embedded in a computation. The result is an 
algorithm which attempts to achieve a global correspondence 

- between image points and points in gradient space via local, 
interactive constraints. 

It has become fashionable to call such algorithms "cooperative" 
after similar phemomena in physics. Perhaps the reader will 
be more comfortable if the algorithm is presented as a 
"relaxation scheme". Nonetheless, what is important is to get 
the flavor of how local constraints can propagate back and 
fo r th to globally constrain possible matches between image 
points and points in gradient space. 

SPECIFYING LOCAL CONSTRAINT 

The basic equation 
I(x,y) = R(p,q) 

is one equation in the two unknowns p and q. With this 
equation alone, the gradient corresponding to a particular 
image point is constrained to lie on a one parameter (family of) 
contour(s) in gradient space. The goal is to apply further 
constraint in order to assign a unique location in gradient space 
to each image point. 

T h e essential physical constraint to be exploited is the 
assumption that, compared to the viewing distance, surfaces 
vary smoothly almost everywhere. This surface smoothness 
assumption is translated into monotonicity rules on changes to 
view angle and changes to direction of steepest descent 
permitted between (closely spaced) image points. 
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One can illustrate how physical constraint adds additional 
constraint to the possible gradient space solutions to the basic 
equation 1(x,y) - R(p,q). Suppose, two (closely spaced) image 
points (x, ,y,) and (x2,y2) are hypothesized to correspond to 
object points on the same section of smooth surface. Further, 
suppose that the view angle increases in going from (x,,y,) to 
(x2,y2) and that the direction of steepest descent decreases in 
going f rom (x,.y,) to (x2,y2). Let (p1.q1) and (p2,q2) be the 
gradient locations corresponding to (x,,y,> and (x2,y2). 

Suppose, fu r ther , that the basic equation I(x,y) - R(p,q) 
constrains (p t .q i) and (p2,q2) to lie on the contours C, and C2 

respectively as shown In figure 3. 

Figure 4 shows, superimposed on the two contours of figure 3, 
the gradient space circle corresponding to the maximum view 
angle interpretation of (p2,q2) and the gradient space line 
corresponding to the minimum direction of steepest descent 
interpretation of (p2,q2). Since the view angle increases in 
going from (x,,y,) to (x2,y2), the contour of permissable (p,,q,) 
can be restricted to include only those gradient points on C, 
lying on or within the circle of the maximum view angle 
interpretation of (p2,q2). Similarly, since direction of steepest 
descent decreases in going from (x,,y,) to (x2,y2), the contour of 
permissable (p t ,q t > can be restricted to include only those 
gradient points on or above the line of the minimum direction 
of steepest descent interpretation of (p2,q2). Thus, without any 
addit ional constraint on (p2,q2), the assumed monotonicity 
relations between (x,,y,) and (x2,y2) have been applied to the 
topography of the reflectance map to constrain the possible 
interpretation of (p,,q,) to include only those points of C, 
indicated by the solid line of figure 4. 

Generalizing f rom the above illustration* the following two 
rules are stated: 
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Let (r J) denote the polar representation of the gradient space 
point (p,q). That is: 



RULE I: CHANGES IN VIEW ANGLE 
Let I | . I 2 In be a set of (closely spaced) image points 
hypothesized to correspond to object points on the same section 
of smooth surface that are monotonically non-decreasing in 
view angle. Let C1 ,C2 , .Cn be the corresponding set of 
gradient contours determined from the reflectance map. Then, 
each contour Cj can be further constrained such that, for each 
(r,θ)ei C it i - 2,3 n-l 

min {r | (r,$) c Ci-1} < r < max {r | ( r j ) f Ci+1) 
Similarly, if 1112--In *$ hypothesized to correspond to a set of 
object points on the same section of smooth surface that are 
monotonically non-increasing in view angle, then each contour 
Cj can be further constrained such that, for each (r,0) 1 C„ 
i - 2.3 n-l 

min {r | ( r j ) « C^ } s r s max {r | ( r j ) 1 CM ) 

RULE I I : CHANGES IN DIRECTION OF STEEPEST 
DESCENT 
Let 11,12 ^n be a set of (closely spaced) image points 
hypothesized to correspond to object points on the same section 
of smooth surface that are monotonically non-decreasing in 
direction of steepest descent. As above, let C,,C2, ,Cft be the 
corresponding set of gradient contours. Then, each contour C, 
can be further constrained such that, for each (r,f) 1 C„ 
i - 2,3„..,n-l 

min {$ I (r,f) t CMJ s $ s max {# | ( r j ) € CHl] 
Similarly, if li,I2»..Jn is hypothesized to correspond to a set of 
object points on the same section of smooth surface that are 
monotonically non-increasing in direction of steepest descent, 
then each contour Cj can be further constrained such that, for 
each (r J) e Cj, i - 2.3,..,n-l 

min {$ I ( r i ) 1 C M ) s $ s max ( I | ( r j ) 1 Cj.,} 

HYPOTHESIZING MONOTONICITY RELATIONS 

It is now time to turn to the question of how to hypothesize 
monotonicity relations between selected image points. To begin 
wi th, consider the worst possible approach. For some small 
value of n, one might explore all possible orderings, with 
respect to both view angle and direction of steepest descent, of 
selected (closely spaced) image points I|,I2..,In. The hope would 
be that only a small fraction of those orderings would have 
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observe that py = qx ( for smooth surfaces, the order of 
differentiation can be interchanged). Thus, one can define a 
matrix H by: 

H is the standard Hessian matrix (which captures the notion of 
surface curvature). The first observation to be made is that 
smoothness guarantees that H is symmetric. Thus, it is 
reasonable to ask under what conditions is H positive 
semidefinite (A real symmetric n x n matrix A is positive 
semidefinite if and only if x'Ax > 0. for all vectors x in R".) 
Now, H is positive semidefinite if and only if z • f(x,y) is 
convex. This result is used to show how convexity adds 
constraint. Suppose z - f(x,y) is convex. Thus, H is positive 
semidefinite. Multiplying the two matrix equations on the left 
by (non-zero) [Rp Rq] and (non-zero) [dx dy] respectively, gives 
the two inequalities: 
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admissable interpretations (ie. interpretations that included at 
least one gradient point for each image point). The constraints 
imposed by each local interpretation would propagate to 
neighboring sets of selected image points to provide further 
mutual constraint. Again, the hope would be that propagation 
of local constraint would converge to a correct global 
interpretation while "incorrect" propagations would (quickly) die 
out. 

Consider a second possible approach. Suppose a particular 
surface interpretat ion is forced onto the data. Such an 
interpretation would provide a framework to (partially) order 
selected (closely spaced) image points with respect to changes in 
both view angle and direction of steepest descent. Instead of 
allowing all possible orderings to compete, this second approach 
pursues a particular interpretation. Again, the hope would be 
that propagation of local constraint would converge to a single 
global interpretation that represents a simple distortion of the 
particular interpretation being forced. (Here, simple distortion 
implies any surface that preserves the assumed monotonicity 
relations concerning changes to view angle and changes to 
direction of steepest descent.) 

The method actually implemented corresponds to this second 
approach. The program has a small set of interpretations it is 
wi l l ing to pursue. Some are quite rigid, others are quite 
flexible. In the next section, a specific example is presented. 
For now, a brief analysis is given to show of how convexity 
can be used to hypothesize monotonicity relations between 
(closely spaced) image points. 

By partially differentiating the basic equation I(x,y) - R(p,q) 
with respect to X and Y we obtain two equations which can be 
written as the single matrix equation: 

(subscripts denote partial differentiation). Similarly, the two 
first-order equations dp - pxdx + pydy and dq - qKdx + qydy 
can be written as the single matrix equation: 



Ix Rp + I y Rq > 0 
dp dx +dq dy >0 

This first inequality can be viewed as an additional a priori 
constraint on the contour in gradient space of possible solutions 
to the basic equation I(x,y) - R(p,q). The tangent vector 
[Rp.Rq] to the contour of constant reflectance at any point (p,q) 
hypothes ized to be a solut ion to the basic equation 
I(x,y) = R(p,q) must have a non-negative component in the 
direction of the tangent vector [Ix,Iy] to the contour of constant 
intensity at (x,y). 

The second inequality can be viewed as an additional 
constraint on the possible movement [dp,dq] in gradient space 
corresponding to a movement [dx,dy] in the image. As above, 
the vector [dp,dq] must have a non-negative component in the 
direction [dx,dy] Thus, by choosing [dx.dy] appropriately, it is 
possible to guarantee either the sign of the change to the view 
angle or the sign of the change to the direction of steepest 
descent. 

ACHIEVING GLOBAL CONSTRAINT 

Regardless of what mechanism is used to hypothesize (local) 
monotonicity relations between points in image space, it is stilt 
necessary to embed that mechanism in a computation to achieve 
global constraint. The implementation approach taken here is 
admittedly ad hoc. The program selects nine points in a simple 
3 x 3 square pattern as its basic set of (closely spaced) image 
points. This pattern serves as the set I|,I2 In for applying the 
local constraint criteria (Rules I and II). First, however, the set 
I1.I2..,In is passed to the chosen hypothesizing routines to be 
(partially) ordered with respect to view angle and direction of 
steepest descent. The reflectance map R(p,q) is then used to 

- determine the in i t ia l contour of possible gradient space 
locations for each point I,. Rules I and II are interatively 
applied to these contours until no further mutual constraint is 
provided. 

The above describes the basic application of local constraint to 
each 3 x 3 template. The selection of successive 3 x 3 square 
patterns is allowed to overlap. Thus, each image point I, will 
eventually belong to nine templates. Each time a particular 
image point I, is further constrained by the application of local 
constraint to a template of which it is a member, each of its 
eight other templates is marked for reconsideration. Before 
mov ing on to a previously unconsidered template local 
constraint is applied recursively to each marked template, with 
add i t iona l mark ing added as required, unti l no marked 
templates remain to be reconsidered. Each time an image point 
Ii is considered, any additional constraint on the gradient space 
contour of possible solutions to the basic equation 
I(x,y) - R(p,q) propagates through this local filtering mechanism 
to all other image points under consideration. 

The next issue to arise is the question of how to terminate the 
growth of templates. Currently, the program terminates only 
when some image point under consideration has no admissable 
gradient space interpretation, in which case the "forced" 
interpretation is deemed to have failed, or when all boundary 
points to existing templates have view angle greater than some 
preassigned value, in which case the surface Is deemed to be 

too oblique for further expansion. Clearly, these termination 
conditions are not adequate for a general surface analysis 
routine. The question of termination also raises deeper issues. 
How important are boundaries to surface interpretation? How 
can a comp lex sur face be segmented in to simpler 
(convex/concave) subsections? How does one handle the 
inherent indentation/protrusion ambiguity in trying to piece 
together surfaces? These issues must be dealt with. But, for 
now, let us consider a specific example in order to illustrate the 
method in operation. 

AN EXAMPLE 

Consider the simple example of a "Lambertian" sphere 
illuminated by a single distant light source. The intensity space 
to gradient space correspondence will be derived analytically 
and then it will be used as a basis for Judging the performance 
of the computation. 

The first task is to generate a reflectance map. To do this, a 
ref lect iv i ty funct ion must be specified. Now, the term 
Lambertian refers to a phenomenological model of a perfect 
diffuse reflector such that the surface appears equally bright 
from all viewing directions. For such a surface, the reflectivity 
depends only on the forshortening effect of the varying angle 
of incidence. In particular, the reflectance function ø(i.e.g) is 
given by: 

ø(i,e,g) = cos(i) 
This reflectivity function is transformed Into a reflectance map 
by simply recalling the expression derived earlier for cos(i). 
The reflectance map is thus given by: 
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The second task is to determine the local surface orientation of 
each image point. In the example, this result is particularly 
easy to obtain. Let the object sphere be centered at the origin 
and have radius r. Thus, the equation of the sphere is: 

x2 + y2 + z2 + r2 

Elementary calculus will verify that the vector (x,y,z) defines an 
(outward) normal at each point (x,y,z) on the surface. The 
appropriate gradient is obtained by rewriting this normal as 
(-x/z,-y/z,-l). Now, for each (x,y), there are actually two possible 
z values to be considered. Note, however, that in this example 
the hemi-sphere actually in view corresponds to negative values 
of z (recall figure 2). 

The parameters of the image forming system can be factored 
out by assuming that the image intensity has been normalized 
to correspond directly to reflectivity. In this case, the intensity 
recorded at each image point (x,y) is equal to the value of the 
reflectance map at the corresponding (p,q). Thus, the equation 

Finally, the mechanism by which monotonicity relations were 
hypothesized for this example must be specified. One 
additional assumption was used. The algorithm assumes that it 
knows at least one image point corresponding to an object point 
oriented directly facing the viewer. Now, let such a point 
define a pseudo-origin in image space. Since the view angle is 



assumed to be zero at the pseudo-origin, the only possible 
interpretation is that, in a particular direction, the view angle is 
locally non-decreasing with increasing Image distance from the 
pseudo-origin. In general, one can not hope to assert any local 
monotoniclty relation on direction of steepest descent based on 
angular position about the pseudo-origin. If, however, the 
surface is known to be convex, the direction of steepest descent 
is (locally) non-decreasing with increasing angular position 
about the pseudo-origin. For the example, the set of image 
points |1I2,...,In was ordered in view angle according to their 
distance in image space from the pseudo-origin and ordered in 
direction of steepest descent according to their angular position 
about the pseudo-origin. Applied together, these hypothesis 
rules are equivalent to the strong assumption that the surface 
in question is a convex solid of revolution. 

For the example, ps = 0.7, qs - 0.3 and R - 60. A 128 x 128 test 
image was considered. The algorithm was applied to this 
image using 3 x 3 square templates sampled at an image 
spacing of 5 points (in both X and Y). The pseudo-origin was 
defined as x - 0 and y = 0. The results are first presented as a 
pa i r of f igures. F igure 5 shows the reflectance map 
R(p,q) - cos(i) drawn as a series of contours (spaced 0.1 units 
apart). Superimposed are crosses marking the known gradient 
points (p,q) corresponding to the image points (x,y) sampled 
f rom the image. All gradient points to the left of the contour 
R(p,q) - 0.0 correspond to surface points oriented more than 90° 
away from the direction of incident illumination and hence to 
the self-shadowed region of the sphere. Figure 6 shows the 
restricted subsection of contour determined for each sampled 
image point. Again, crosses are superimposed to illustrate how 
well the algorithm has performed. The crosses mark the 
correct gradient points, determined analytically, while the 
corresponding subsection of contour marks how well the 
algorithm has isolated those points. 

DISCUSSION 

The ultimate criteria for judging the performance of this 
method is, of course, to discover whether it can be used to solve 
interesting problems. For now, however, the discussion is 
restricted to some simple statistics and some qualitative 
observations. 

How well has the algorithm performed on this example? To 
answer this question, the freedom remaining at each image 
point I| can be examined. Since each point in gradient space 
defines an orientation, this freedom can be characterized by the 
angular spread remaining in the corresponding gradient 
contour Cr This freedom has been measured in two ways. 
First, define the angular spread in local surface orientation at 
image point Ii by: 
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(View angle is useful because it determines the degree of 
surface forshortening at each image point. Knowing the view 
angle, one can calculate the area of surface equivalent to a 
given area of image.) To tabulate the results, the sample points 
were split into two classes. First, consider all sample points 
wi th in 45° view angle (ie. lying within gradient space circle 
p2 + q2 = I). Second, consider all sample points within 60° view 
angle (ie. lying within gradient space circle p2 + q2 - 3). 
Table 1 summarizes the results: 



Note that these measures refer to total angular freedom. If a 
choice algorithm is adopted which selects the "correct" answer 
to be at the midpoint of the angular spread, this choice is 
guaranteed to be no more than half the angular spread in 
error. Thus , the upper r ight portion of table 1 can be 
interpreted as follows: 

On the average, by sampling at an image spacing of 5 points in 
X and Y, the algorithm was able to position image points, 
corresponding to surface points less than 60° in view angle, to 
within 5° of their true orientation in space. The standard 
deviation of this measure over all such points was 3.5° while the 
worst case point was located to within 2/° of its true orientation 
in space. 

The performance of the algorithm depends critically on two 
factors: the ability to hypothesize monotonicity relations 
between selected image points and the topography of the 
reflectance map. The discussion of convexity gives some 
indication of how one can use a priori assumptions about 
surface geometry to specify monotonicity relations. In any 
event, given a particular hypothesis mechanism, the algorithm 
generates a constrained interpretation consistent with that 
hypothesis mechanism (or demonstrates that no such consistent 
interpretation is possible). 

The topography of the reflectance map is determined by two 
factors: the local photometry of the surface being viewed and 
the l ight source, object surface and viewer geometry. In 
general, one would not expect to have much control over the 
local photometry of the surfaces being viewed. In principle, 
however, the user is free to vary the light source and viewer 
geometry to achieve optimal results with the algorithm. This 
approach has proven particularly useful in extending these 
techniques to the problem of inspecting for surface defects in 
metal castings (where it is feasible to construct inspection 
stations w i th independently controllable l ight sources 
<Woodham I977>). 

it allows one to formulate physical constraints on the object 
surface as simple geometric constraints on the gradient space 
contour of possible solutions to the basic image forming 
equation I(x,y) = R(p,q). The beauty of the "cooperative" 
a lgor i thm is that it provides a simple mechanism for 
propagating these geometric constraints. 
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