PARAMETRIC CORRESPONDENCE AND CHAMFER MATCHING:
TWO NEW TECHNIQUES FOR IMAGE MATCHING

H.G. Barrow

Abstract

Parametric correspondence is a technique for
matching images to a three dimensional symbolic
reference map. An analytic camera model is used to
predict the location and appearance of landmarks in
the image, generating a projection for an assumed
viewpoint. Correspondence is achieved by adjusting
the parameters of the camera model until the
appearances of the landmarks optimally match a
symbolic description extracted from the image

The matching of image and map features is
performed rapidly by a new technique, called
"chamfer matching", that compares the shapes of two
collections of shape fragments, at a cost
proportional to linear dimension, rather than area
These two techniques permit the matching of
spatially extensive features on the basis of shape,
which reduces the risk of ambiguous matches and the
dependence on viewing conditions inherent in
conventional image based correlation matching.

Introduction

Many tasks involving pictures require the
ability to put a sensed image into correspondence
with a reference image or map. Examples include
vehicle guidance, photo interpretation (change
detection and monitoring) and cartography (map
updating). The conventional approach is to
determine a large number of points of
correspondence by correlating small patches of the
reference image with the sensed image. A
polynomial interpolation is then used to estimate
correspondence for arbitrary intermediate points
[Bernstein]. This approach is computationally
expensive and limited to cases where the reference
and sensed images were obtained under similar
viewing conditions. In particular, it cannot match
images obtained from radically different
viewpoints, sensors, or seasonal or climatic
conditions, and it cannot match images against
symbolic maps.

Parametric correspondence matches images to a
symbolic reference map, rather than a reference
image. The map contains a compact three
dimensional representation of the shape of major
landmarks, such as coastlines, buildings and
roads. An analytic camera model is used to predict
the location and appearance of landmarks in the
image, generating a projection for an assumed
viewpoint. Correspondence is achieved by adjusting
the parameters of the camera model (i.e. the
assumed viewpoint) until the appearances of the
landmarks optimally match a symbolic description
extracted from the image

The success of this approach requires the
ability to rapidly match predicted and sensed
appearances after each projection The matching of
image and map features is performed by a new
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technique, called "chamfer matching", that compares
the shapes of two collections of curve fragments at
a cost proportional to linear dimension, rather
than area.

In principle this approach should be
superior, since it exploits more knowledge of the
invariant three dimensional structure of the world
and of the imaging process. At a practical level,
this permits matching of spatially extensive
features on the basis of shape, which reduces the
risk of ambiguous matches and dependence on viewing
conditions.

Chamfer Matching

Point landmarks such as intersections or
promontories are represented in the map with their
associated three dimensional world coordinates.
Linear landmarks, such as roads or coastlines are
represented as curve fragments with associated
ordered lists of world coordinates. Volumetric
structures such as buildings or bridges, are
represented as wire frame models.

From a knowledge of the expected viewpoint, a
prediction of the image can be made by projecting
world coordinates into corresponding image
coordinates, suppressing hidden lines. The problem
in matching is to determine how well the predicted
features correspond with image features, such as
edges and lines.

The first step is to extract image features by
applying edge and line operators or tracing
boundaries. Edge fragment linking [Nevatia,
Perkins] or relaxation enhancement [Zucker, Barrow]
is optional. The net result is a feature array
each element of which records whether or not a line
fragment passes through it. This process preserves
shape information and discards greyscale
information, which is less invariant.

To correlate the extracted feature array
directly with the predicted feature array would
encounter several problems: The correlation peak

for two arrays depicting identical linear features
is very sharp and therefore intolerant of slight
misalignment or distortion (e.g., two lines,

slightly rotated with respect to each other, can
have at most one point of correspondence) [Andrus];
A sharply peaked correlation surface is an
inappropriate optimization criterion because it
provides little indication of closeness to the true
match, nor of the proper direction in which to
proceed; Computational cost is heavy with large
feature arrays,

A more robust measure of similarity between
the two sets of feature points is the sum of the
distances between each predicted feature point and
the nearest image point. This can be computed
efficiently by transforming the image feature array
into an array of numbers representing distance to
the nearest image feature point. The similarity
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measure is then easily computed by stepping through
the list of predicted features and simply summing
the distance array values at the predicted
locations.

The distance values can be determined in two
passes through the image feature array by a process
known as "chamfering" [Munson, Rosenfeld]. The
feature array (F[i j] i.j=1 N) is initially two-
valued: 0 for feature points and infinity
otherwise The forward pass modifies the feature
array as follows

FOR i< 2 STEP 1 UNTIL N DO
FOR j < 2 STEP 1 UNTIL N DO
F[i.j] <- MINIMUM(FTi,j]
(FLi-1 j-1]+3)
(F[i+1.J-1]+3));

(FLi 1 j]1+2).
(FIi,j-11+2),

Similarly, the backward pass operates as follows:
FOR i <- (N-1) STEP -1 UNTIL 1 DO
FOR j <- (N-1) STEP -1 UNTIL 1 DO
F[i,j] <- MINIMUM(F[i,j], (F[i+1,j]1+2),
(F[i+1,j*11*3), (F[i,j+1]+2)
(F[i-1.j+1]+3));

The incremental distance values of 2 and 3 provide
relative distances that approximate the Euclidean
distances 1 and the square root of 2

Chamfer matching provides an efficient way of
computing the integral distance (i.e. area) or
integral squared distance, between two curve
fragments, two commonly used measures of shape
similarity. Note that the distance array is
computed only once, after image feature extraction.

Parametric, Correspondence

Parametric correspondence puts an image into
correspondence with a three dimensional reference
map by determining the parameters of an analytic
camera model (3 position and 3 orientation
parameters).

The traditional method of calibrating the
camera model takes place in two stages: first, a
number of known landmarks are independently located
in the image, and second, the camera parameters are
computed from the pairs of corresponding world and
image locations, by solving an over-constrained set
of equations [Sobel, Quara, Hannah].

The failings of the traditional method stem
from the first stage. The landmarks are found
individually, using only very local context (e.g.
a small patch of surrounding image) and with no
mutual constraints. Thus local false matches
commonly occur. The restriction to small features
is mandated by the high cost of area correlation,
and by the fact that large image features correlate
poorly over small changes in viewpoint.

Parametric correspondence overcomes these
failings by integrating the landmark-matching and
camera calibration stages. It operates by hill-
climbing on the camera parameters. A
transformation matrix is constructed for each set
of parameters considered, and it is used to project
landmark descriptions from the map onto the image
at a particular translation, rotation, scale and

V1slon

-7:
660

perspective. A similarity score is computed with
chamfer matching and used to update parameter
values. Initial parameter values are estimated
from navigational data.

Integrating the two stages allows the
simultaneous matching of all landmarks in their
correct spatial relationships. Viewpoint problems
with extended features are avoided because features
are precisely projected by the camera model prior
to matching. Parametric correspondence has the
same advantages as rubber-sheet template matching
[Fischler, Widrow] in that it obtains the best
embedding of a map in an image, but avoids the
combinatorics of trying arbitrary distortions by
only considering those corresponding to some
possible viewpoint.

An Example

The following example illustrates the major
concepts in chamfer matching and parametric
correspondence. A sensed image (Figure 1) was
input along with manually derived initial estimates
of the camera parameters. A reference map of the
coastline was obtained, using a digitizing tablet
to encode coordinates of a set of 51 sample points
on a USGS map Elevations for the points were
entered manually. Figure 2 is an orthographic
projection of this three dimensional map.

A simple edge follower traced the high
contrast boundary of the harbor, producing the edge
picture shown in Figure 3. The chamfering
algorithm was applied to this edge array to obtain
a distance array. Figure U depicts this distance
array; distance is encoded by brightness with
maximum brightness corresponding to zero distance
from an edge point.

Using the initial camera parameter estimates,
the map was projected onto the sensed image (Figure
5). The average distance between projected points
and the nearest edge point, as determined by
chamfer matching, was 25.8 pixels.

A straightforward optimization algorithm

adjusted the camera parameters, one at a time, to
minimize the average distance. Figures 6 and 7
show an intermediate state and the final state, in

which the average distance has been reduced to 0.8
pixels. This result, obtained with 51 sample
points, compares favorably with a 1.1 pixel average
distance for 19 sample points obtained using
conventional image chip correlation followed by
camera calibration. The curves in Figure 8
characterize the local behavior of this minimum,
showing how average distance varies with variation
of each parameter from its optimal value.
Approximately 60 iterations (each involving a
parameter adjustment and reprojection). were
required for this example. The number of
iterations could be reduced by using a better
optimization algorithm, for example, a gradient
search

Dscussion.

We have presented a scheme for establishing
correspondence between an image and a reference map
that integrates the processes of landmark matching
and camera calibration. The potential advantages
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of this approach stem from 1) matching shape,
rather than brightness, 2) matching spatially
extensive features, rather than small patches of
image, 3) matching simultaneously to all features,
rather than searching the combinatorial space of
alternative local matches, 4) using a compact three
dimensional model; rather than many two dimensional
templates.

Snape has proved to be much easier to model
and predict than brightness. Shape is a relatively
invariant geometric property whose appearance from
arbitrary viewpoints can be precisely predicted by
the camera model. This eliminates the need for
multiple descriptions, corresponding to different
viewing conditions, and overcomes difficulties of
matching large features over small changes of
viewpoint.

The ability to treat the entirety of the
relevant portion of the reference map as a single
extensive feature reduces significantly the risk of
ambiguous matches, and avoids the combinatorial
complexity of finding the optimal embedding of
multiple local features.

A number of obstacles have been encountered ir
reducing the above ideas to practice The distance
metric used in chamfer matching provides a smooth,
monotonia measure near the correct correspondence,
and nicely interpolates over gaps in curves.
However, scores can be unreliable when image and
reference are badly out of alignment. In
particular, discrimination is poor in textured
areas, aliasing can occur with parallel linear
features, a single isolated image feature can
support multiple reference features.

The main problem is that edge position is not
a distinguishing feature and consequently many
alternative matches receive equal weight. Ore way
of overcoming this problem, therefore, is to use
more descriptive features brightness
discontinuities can be classified, for example, by
orientation, by edge or line, and by local spatial
context (texture versus isolated boundary). Each
type of feature would be separately chamfered and
mep features would be matched in the appropriate
array. Similarly, features at a much higher level
could be used, such as promontory or bay, area
features having particular internal textures or
structures, and even specific landmarks, such as
"the top of the Transamerica pyramid". Ideally,
with a few highly differentiated features
distributed widely over the image the earanietric
correspondence process would be able to home in
directly on the solution regardless of initial
conditions.

Another dimension for possible improvement is
the chamfering process itself. Determining for
each point of the array a weighted sum of distances
to many features (e.g. a convolution with the
feature array), instead of the distance to the
nearest feature, would provide more immunity from
isolated noise points. Alternatively, propagating
the coordinates of the nearest point instead of
merely the distance to it, it becomes possible to
use characteristics of features, such as local
slope or curvature, in evaluating the goodness of
match. It also makes possible a more directed
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search, since corresponding pairs of points are now
known, an improved set of parameter estimates can
be analytically determined.

Chamfer matching and parametric correspondence
are separable techniques. Conceptually, parametric
correspondence can be performed by re projecting
image chips and evaluating the match with
correlation. However, the cost of projection and
matching grows with the square of the template
size: The cost for chamfer matching grows linearly
with the number of feature points. Chamfer
matching is an alternative to other shape matching
techniques, such as chain-oode correlation
[Freeman], Fourier matching [Zahn], and graph
matching [e.g. Davis]. Also, the smoothing
obtained by transforming two edge arrays to
distance arrays via chamfering can be used to
improve the robustness of conventional area-based
edge correlation.

Parametric correspondence, in its most general
form, is a technique for matching two
parametrically related representations of the same
geometric structure. The representations can be
two- or three-dimensional, iconic or symbolic; the
parametric relation can be perspective projection,
a simple similarity transformation, a polynomial
warp, and so forth. This view is similar to
rubber-sheet template matching as conceived by
Fischler and Widrow [Fischler, Widrow]. The
feasibility of the approach in any application, as
Widrow points out, depends on efficient algorithms
for "pattern stretching, hypothesis testing, and
pattern memory", corresponding to our camera model,
chamfer matching, and three dimensional map.

As an illustration of its versatility, the
technique can be used with a known camera looation
to find a known object whose position and
orientation are known only approximately. In this
case, the object's position and orientation are the
parameters; the object is translated and rotated
until its projection best matches the image data
Such an application has a more iconic flavor, as
advocated by Shepard [Shepard], and is more
integrated than the traditional feature extraction
and graph matching approach [Roberts, Falk and
Grape].

As a final consideration, the approach is
amenable to efficient hardware implementation.
There already exists commercially available
hardware for generating parametrically specified
perspective views of wire frame models at video
rates, complete with hidden line suppression. The
chamfering process itself requires only two passes
through an array by a local operator, and match
scoring requires only summing table lookups in the
resulting distance array.

Conclusion

Iconic matching techniques, such as
correlation, are known for efficiency and precision
obtained by exploiting all available pictorial
information, especially geometry. However, they
are overly sensitive to changes in viewing
conditions and cannot make use of non-pictorial
information. Symbolic matching techniques, on the
other hand, are more robust because they rely on
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invariant abstractions, but are less precise and
less efficient in handling geometrical
relationships. Their applicability in real scenes
is limited by the difficulty of reliably extracting
the invariant description. The techniques we have
put forward offer a way of combining the best
features of iconic and symbolic approaches.
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Figure 1. An aerial image of a section of

coastline.

Figure 2.

A set of sample points taken from a
USGS map.
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Figure 3. The traced boundary of the coastline. Figure 6. Projection of map points onto .he image
after aome adiustment of camera
parameters.

Figure 4, The distance array produced by Figure 7. Projection of map points onto the image
chamfering the boundary. after optimization of camera
parameters.

Figurs 5, Initial projection of map pointa onto Figure §. Behavior of average distance score with
the image. variation of the six camera parameters
from their optimal values.
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a query has been satisfied, the template node is
represented by instantiated nodes with attached
specialized location descriptions as shown in Fig-
ure 2.1. Four basic types of links provide a sim-
ple syntax to the network structure. A powerful
advantage to this syntax is that the executive
procedure can direct the analysis in a more gene-
ral way.

CONSTRAINT
RELATHOMN

LOC AT 1ON
DESCRIPTOR

MAPPIN G
PROCBDURE

The Next Level of Detail in Model-
Sketchmap Nodes

Figure 2.1

2.2 Constraints

Links to other model nodes encode (perhaps
parametrized) constraint relations between model
nodes. Links can encode:

- the probability that the relationship holds;

- a quantifier representing the expected

value of the relationship;

- conditions under which the relationship

holds.
For example, the relationship SHIP ADJACENT DOCK
might have a certain probability of being true,
an expected distance that the ship is from the
dock, and conditions for the relation being true.
We refer to the template nodes and geometric rela-
tions between them as the constraint network.
This network may be interpreted like a program to
find subsets of the model or the image that satis-
fy the constraints. Its results take account of
partial or unspecified information, and it may be
updated upon receipt of better data with a mini-
mal amount of work. It is much like the graph of
variable dependencies in AL [Feldman et al. 1975].
In brief, each node has a "Constraint Operation,"”
such as Intersection, Translation, Union, or
indeed any function of up to two arguments; it
has two operand nodes; a father node; a status
that may be "Up-To-Date" or "Out-Of-Date"; and a
value that is some data structure such as a num-
ber, a list of linear objects, a region, etc.

The constraint network for the prose: "The
centroids of docked ships are on lines parallel

to the intersection of coastlines with dock areas
at a distance of one-half a ship width" is shown
Vision-7:
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in Figure 2.2.

Docked Ship Centrnid-l

(:Eara11e1 at a distance ‘::t

Intersection

Dock Area object

M

El

Figure 2.2 A Portion of a Constraint Network

ShipWidth/2

5

Coastline object|

“

The network starts out with data (from the
model or from previous scene analysis) as the
values of the tip nodes, but no values at nonter-
minal nodes and all nonterminals marked Out-Of-
Date. Data at a tip node can have one of three
statuses: it can be known that the object does
not exist in the scene (so the value of the node
is the null set), it can be known to some degree
of accuracy where objects are in the scene (so
the value of the node is a subset of image or
world points), or perhaps nothing is known (in
which case the object could be anywhere, and the
value is implicitly the universe of image or
world points).

When the constraint network is "run" to de-
termine what is known about the location of its
object, each node recursively evaluates its
Out-Of-Date operand nodes, performs its operation,
and stores the result in its value. It marks its
status Up-To-Date. Intersection and Union work
properly with the definitions of partial informa-
tion of the last paragraph. When new (or better)
information about an object at a tip of the graph
comes in, all nodes on a path from the tip to the
root are marked Out-Of-Date. Then when the graph
is next run, (only) the necessary partial results
are re-computed. In keeping with our philosophy,
the graph is not self-activating, but is run on
explicit user command.

2.3  Location Descriptors

A location descriptor provides information
about where to find an entity. The part of the
location descriptor which specifies a point set
enclosing the region has been referred to as a
tolerance region [Bolles 1975]. A shape location
descriptor might have the structure shown in
Figure 2.3.

This organization is suggestive of a frame-
like structure. However, not all the entries need
exist; just the syntax is necessary to allow the
entries to be found. In practice only the
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properties relevant to a particular query will be
generated. Such partial instantiations are easy in
our implementation language LEAP [Feldman & Rovner
1969].

[ ShapelLocationDescriptor
nodetype: specialization prototype
instance-of: a LocationDescriptor
locates: OneOf {(a ShapeObject),
(a ShapeFeature)}

coordsystem: a CoordinateSystem
centroid: a PointSet

/lallows for "fuzziness"
orientation: an AngleRange

/l...ditto
tol. region: a PointSet ]

...similarly for Point, Linear, and
ArealLocati onDescri ptors

[ CoordinateSystem

nodetype: abstract prototype
units: a LengthlinitSpecification
scale: a NumberRange

/llength units / system unit
transforms: SetOf {((a Coordinate Transform)
(a Coordinate System)),

)
Figure 2.3 Example of a Shape Location Descriptor

There are many advantages to having a stand-
ard representation for object locations:

a. If such descriptions are data types, their
computations can be separated from the
procedures that use them. If they can be
passed as arguments, they provide a cer-
tain "common currency" between procedures,
thus simplifying and modularizing the
procedures that use them.

b. Location descriptors can represent approx-
imate locations, which is useful for
queries unconcerned with exact answers.

c. Constraints between locations can propa-
gate knowledge throughout the model. Loca-
tion descriptors can be computed from
other location descriptors via relations,
or by union and intersection of the
described point sets. A system which
applied linear programming techniques to
the problem of locating regions through
constraints placed on their boundaries
was developed in [Taylor 1976].

d. Use of location descriptors is geared to
an abandonment of the exhaustive segmenta-
tion paradigm wherein every region must
correspond to some object. Different lo-
cation descriptors may refer to disjoint
point sets or may overlap on the image,
and different objects may have similar
location descriptors.

3. Control

3.1 General Philosophy

Generally a query results in the synthesis
of a sketchmap with instance nodes whose location
descriptors are accurate enough for the purposes
of the query. A query might also result in further
refinement of location descriptors of the exten-
sion of an existing sketchmap to account for more
image structure. A query-directed vision system
should thus be able to use relevant information
generated in successive queries. Most queries will
take the form of user-written programs, since
nontrivial tasks usually require fairly rigid
recommendations about how the system should go
about solving them. Initially the system will not
attack the problem of automatically translating
queries in some command language into programs.
At the highest level control is embedded in the
form of a user-written executive program.

Figure 3.1 shows a fragment of the code used in
the current executive procedure for selecting
mapping procedures which identify instances of
rib nodes in chest radiograph images. Each mapping
procedure has pre-conditions, including an associ-
ated accuracy measure, which can depend on its
neighbors, as well as a cost measure. The cheapest
rib procedure which satisfies the pre-conditions
is selected. The important point here is that the
executive can have a relatively simple structure.
This facilitates the experimentation of various
control strategies other than the depth-first
strategy shown in the example.

Decureive Procedure MatchRIb{ llepvar Node);
begin
1iemvar x,viintager Varg
if INSTANCE of Node Is ANY

thean
bugin
Prinit"rib ",Node,” nliready matched "}y
returng
end

&lpe
! runs procedure that will do the Job with min comty
hegin
ttapvar ToenpProct tnteger MinCowst,TempCost:
MinCost :¢ Verylarge:
foreach x such that
RIBIPROCEDURE of Node l» x do
begin
Vor !¢ CotConmirainisAndVar lence{Rode,.x);
if Var ¢ Tolerance then
begin
TewpCost 1= FINDowti{Nods,x) s
if TempCowt < MinCoet them
beagin
TempComt =z my
MinCowt " Templomtyg
end|
end
ead)

if MinCowt = Verylarge
then

Pript( *Me procedure can do Job for *,FMode)
elme ApplyProc(TempProc, Nodel
fareach v such that NEICHBOR of Rode im v
and TYPE of v 1a RIBE do

MatchRibiw),
endy

and;
Figure 3.1 Executive Procedure for Ribs
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3.2 Characterizations of Mapping Procedures

Mapping procedures have associated descrip-
tions which are used by executive procedures, The
descriptions contain the following:

- the slots in the data object which must be

filled for the procedure to run;

- the slots the procedure can fill in;

- the cost and accuracy of the procedure in

some meaningful units;

- the a priori reliability of the procedure.
Examples of the kinds of facts we expect to be
able to encode in this structure are (for a
straight-line structure) that a Hough transform

cannot find the endpoints of a line but is more
reliable than the cheaper Shirai tracker, which
itself needs to know the direction of a line

before it can track it, and that a Heuckel opera-
tor is more expensive, but can furnish many facts
about the line with little known a priori, and
can rate itself on reliability of its result.

There are several advantages to separating
the executive procedure from the mapping proce-
dures and their descriptions:

a. The executive procedure can be written
without considering the implementation
details of mapping procedures in great
depth.

Mapping procedures are similarly simpli-
fied without the burden of determining an
appropriate context for their application.
The executive procedure can automatically
select alternative procedures in the event
of mapping procedure failures.
Descriptions allow a choice between
methods (if several are available) based
on capability, resource requirements, and
a priori reliability. (Also, recovery
from failure of individual routines can
be automated through planning [Feldman
and Sproull 1975].)

If the mapping procedures can produce
reliable a priori estimates of their
success, the analytical results of [Bolles
1975] and [Taylor 1976] could be extended
to select the procedure which produces
sufficiently exact data objects.

4. Applications

4.1 Finding Docked Ships

Finding ships in a dock scene illustrates
how high-level metrical knowledge about the image
(such as provided by a topographic map) can make
certain scene analysis problems easy.

The model contains in a Constraint Graph
form (see Section 2.2) the knowledge that docked
ships are in the ocean adjacent to dock areas,
parallel to the dock and with centroid a distance
away related to the width of the ship. In a
Shape Object Descriptor, some facts about the
sorts of ships we are trying to find are stored,
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viz. a template for matching them (in our case, a
rectangle of I's in an array for template-
matching), their width, length, average bright-

ness, etc. Template-matching is among the simplest
vision primitives. Only in a context having a
great deal of structure could it be expected to

work in scenes as complex as Figure 4.1.

The system, under direction of the user-
written query, begins by deciding where to look by
satisfying a constraint network; the more infor-
mation provided, the narrower the focus of atten-
tion. In the case illustrated in this section,
the constraint network looked as it does in
Section 2.2. Figure 4.1 shows a halftoned version
of the image, with the dock area and coastline
overlaid as black lines. Recent work at SRI
[Barrow and Tenenbaum 1977] has shown that map
data may be automatically registered with images
such as ours to within better than a pixel, so we
felt comfortable about bypassing the registration
problem in this study. Were the registration un-
certain, the constraints would produce a more
fuzzy area to search than they did. Shown in the
ocean are black lines indicating the areas of
search which arise from the constraint tree; their
linear nature makes a simple template-matching
technique a possibility (in this exercise it was
the only technique, but an executive procedure
might well have chosen it as applicable). The ship
template is rotated to be parallel to the midline
as given by the constraint graph, and template-
matching is done along the line; note is taken of
where the score for the match goes over threshold,
and when it comes back down under threshold. The
average of these two positions is taken as the
location of a ship. The black crosses show the
results.

Our image data is a USGS mapping photograph
provided by SRI, digitized to 256 grey levels on
a .007" grid at USC. The image is stored on disk
in RV format, and can be sampled at integral size
reductions into an integer array in core for pro-
cessing (see [Maleson & Rashid 1977] re. RV format).

Linear objects are SAIL records making
linked lists of (x,y) points. They can have four
types at present: a list of points to be connected
in order; a list of segments, or pairs of end-
points to be connected pairwise; and logically
circular lists of points representing boundaries.
A robust and general routine based on merging was
written to compute the intersection of such linear
features. Other useful geometric routines find
the distance of a point from a segment (not a
line), and compute a segment parallel to and some
distance from another segment.

Regions (except for templates, which are
arrays) are SAIL list items. A region is a list
of y-lists; a y-list has a y-value followed by an
even number of x-values. The first x-value is an
"entering region" boundary point, the second is
a "leaving region" boundary point, and so on
alternately. The region: 001

101
011
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would be represented as ((1 2 3)(2 1 1 3 3)(3 3 3)).
Routines were written, again based on merging, to
create the union and intersection of such regions,
and to convert (via an asvmmetric DDA algorithm
[Newman and Sproull 1973]) linear objects to
regions. We find multiple representations of ob-
jects simplifies the work of routines such as the
constraint primitives.

Template-matching utilities can produce
an array containing a rotated and scaled version
of a template and can compute the correlation of
a template (at some rotation and translation) with
the image array.

Ehip! at x« 74.00000 v 28.50000
Ship2 at x= 93,50000 y» 35.00000
Shipd at x= §9,50000 ¥= 102,5000
Ship4 at x= 49.00000 V= 171.5000

End of SAIL sxecution

Harbor Scene with Dock Areas, Lines
of Search, and Detected Ships

Figure 4.1

4.2 Finding Ribs in Chest Radiographs

The problem of finding ribs in chest radio-
graphs illustrates the use of multiple procedures
attached to the same template node and the use of
less precise geometric constraints arising from
anatomy rather than cartography.

The model contains nine right and left ribs
(the maximum amount normally visible on a chest
film). Presently only the lower edge of each rib
is detected. Each rib is modelled as a template
node with offset parameters from itself to each
immediate neighbor (above, below, opposite).
Additionally, three kinds of procedures are
attached to each rib node as shown in Table 4.1.

LookForARib uses the Weschler parabolic model
[Weschler & Sklansky 1975] to find a rib segment.
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AffirmARib translates that segment using the off-
set parameters and attempts to verify the presence
of a rib by a correlation technique. Halluci-
nateARib instantiates a rib by translating a
neighbor with no verification.

Table 4.1 RibFinding Procedures
Procedure Precon- Cost | var. | Postcon-
ditions ditions
LookForARib nona 20 0 instance
of rib
AffirmARib instance 4 1 instance
of neigh- of rib
bor in
sketchmap
HallucinateARib | instance 1 5 instance
of neigh- of rib
bor in
sketchmap

Figure 4.2 shows the result of finding ribs
on a particular chest film. The ribs are labelled
with special symbols to denote the procedures
which located them.

Figure 4.2a Local Edges Detected by Hueckel
Edge Operator
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Legend:

Found by (ookForAR1b
’ v

P Found by AffirmARib
£¥ Found by HallucinateARib
Figure 4.2b Results of Rib Finding

5. Summary

The semantic network is a kind of lumped
parameter model in the spirit of [Fischler and
Eschlager 1973]. The geometric constraints in the
network relate template nodes whose descriptions
(the "lumped parameters") are generated by
attached mapping procedures. The key difference
is that information found during the analysis can
change the way template nodes are located.

In analyzing an image it is crucial that the
generating of abstract descriptions of parts of
the image, segmentation, be intimately connected
with the interpretation of those parts. In our
system the former operation corresponds to gene-
rating sketchmap-image links whereas the latter
corresponds to generating model-sketchmap links.
Interpretation and segmentation are united through
multiple mapping procedures and the executive,
which can efficiently change the way a part of the
image is analyzed as new information about the
rest of the image develops.

Finally, we want the image analysis process
to do as little work as possible to satisfy a
given task or query. This is attempted through
the specialization of all parameters to the given
task, the inclusion of performance and accuracy
measures in the mapping procedure descriptions,
and the use of the constraint network. All of this
is just the beginning of a long term effort to
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study what can be done in a general way for goal
directed image understanding tasks.
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