
THE DESIGN OF A SYSTEM FOR DESIGNING KNOWLEDGE REPRESEMTATION SYSTEMS

James L. Welner
Computer Science Department
Un ive rs i t y of New Hampshire

Merthe Palmer
Computer end In format ion Science Department

Un ive re l t y of Pennsylvania

ABSTRACT

The use of ebs t rec t dete types as a basis f o r
designing experimental knowledge representa t ion
systems is discussed. Abst rect dete types ere
shown to heve features in common w i t h severe l
d iverse representat ion formalisms (e . g . semantic
networks, frames and KLONE). For example, ebs t rec t
data types have not ions analogous to concept,
subconcept end i nhe r i t ance . The r e l a t i v e l y smal l
conceptual d istence between abst rec t data types
and knowledge representa t ion formalisms make them
en i dea l veh ic le f o r implementing such formal isms.

I INTRODUCTION

Representat ion of knowledge is of pr imary im­
portance to programs dea l ing w i t h r e a l wor ld s i t u ­
a t i o n s . There have been several attempts to
der ive an appropr iate formalism tha t would help to
minimize the problems in t h i s d i f f i c u l t area.
There heve been j u s t as many r e s u l t i n g methodo-
l o g i e s , o f f e r i n g widely d i f f e r e n t s o l u t i o n s :
Frames [Minsky, 1975] , Semantic Networks [Q u l l l i a n ,
1968] , KRL [Bobrow and Wlnograd, 1977], F i r s t -
Order Logic [Hayes, 1977], and KLONE [Brachman,
1979]. These d i f f e r e n t methodologies ere based
on fundamental ly d i f f e r e n t assumptions about the
neture of knowledge, each w i t h convincing claims
f o r i t s precedence. In order to compare these
assumptions it would be necessary to f i n d a common
basis of represen ta t ion . Ue contend tha t the d i f ­
fe ren t formalisms can a l l be expressed in l o g i c
combined w i t h abst rac t data types, and tha t t h i s
proves to be a use fu l and In format ive t o o l f o r
designing knowledge representa t ion systems.

Logic w i t h abst rac t data types (ADTs) o f f e r s
a s o l i d foundat ion tha t already Includes many of
the f a c i l i t i e s b u i l t i n t o knowledge representa t ion
languages. I t a lso al lows a system to be b u i l t
tha t combines features from d i f f e r e n t formal isms,
p rov id ing an i d e a l t e s t i n g ground f o r purposes of
comparison. There are a lso inherent advantages in
the choice of l o g i c w i t h ADTs. By w r i t i n g programs
i n l o g i c , espec ia l l y c lausa l l o g i c [Kowalsk l ,
1980] , we have both a mathematical semantics or
specification and an opera t iona l semantics tha t
a l lows us to execute the t s p e c i f i c e t i o n , ADT's
have the same advantage, whether def ined a l g r e b r a l -
c a l l y [Z l l l e s , 1975, Goguen, Thatcher and Wegner,
1977] or mode l - theo re t i ca l l y [Nourani , 1980, Van
Emden and Maibaum, 1980]. This al lows the b u i l d e r
of the knowledge base to concentrate on d e f i n i n g
concepts independently of how they might be im-

plemented or executed, and thus al lows the designer
of the system to concentrate on issues of know­
ledge rep resen te t lon , re ther the t programming.
ADTs have the advantege of p rov id ing a powerful
t o o l f o r s t r u c t u r i n g the masses of knowledge
requi red in model l ing even the most t r i v i a l s i t u a ­
t i o n .

The r e s t of t h i s paper demonstretes the
usefulness of t h i s approach. Examples are given
using an extension of PROLOG [Warren, 1977] t ha t
supports ADTs. This extension is based on the
languages HOPE [B u r s t a l l , MacQueen and Sannel la,
1980] and OBJ [Goguen and Tardo, 1979] w i t h most
of the syntax taken from HOPE, A s i m i l a r ex ten­
s ion was proposed by Van Emden and Maibaum (1980).

II SEMANTIC NETWORKS

We view semantic networks as a combination of
l o g i c and ADTs. This view d i f f e r s s l i g h t l y from e
view held by many, notab ly Hayes (1977), which
s ta tes tha t semantics networks are equiva lent to e
set of asser t ions in F i r s t -Order Logic and tha t
the only velue they heve is as syn tac t i c sugar f o r
those esser t i ons . In t h i s v iew, the network in
Figure 2 - l a would be equiva lent to the esser t ions
in Figure 2 - l b and the network in Figure 2 - l c
would be equiva lent to the asser t ions in Figure 2-
l d .

Although t h i s view sheds important l i g h t on
the s ta tus of semantic networks as a formal ism, i t
ignores t h e i r velue as an important s t r u c t u r i n g
technique. That i s , one can a lso view Semantic
Networks as both e s t r uc tu re and a set of ru les

277

f o r I n t e r p r e t i n g tha t s t ruc tu re Independent o f the
s p e c i f i c nodes or arcs an instance of a network
conta ins .

In our v iew, a Semantic Network can most
c l e a r l y be represented as an ADT. The ADT def ines
the s t r uc tu re of the network and def ines operat ions
which i n t e r p r e t t ha t s t r u c t u r e . * To understand how
one s i g h t go about d e f i n i n g a Sematlc Network
using ADTs, consider the f o l l o w i n g :

A Semantic Network is def ined in (1) as cons i s t i ng
of a set of nodes (def ined in (2)) of soma type
alpha and a set of arcs (def ined in (3)) of type
alpha and beta (which are the type of the node and
of the l a b e l r e s p e c t i v e l y) . Alpha and beta are
va r iab les ranging over types. Data d e f i n i t i o n s
such as (1) are used to in t roduce a new data type
along w i t h the const ruc tors which create elements
of tha t type, mksn ("make semantic network") is a
f u n c t i o n * * which takee~"se"ts"~of nodes and sets of
arcs between these nodes and const ructs a semantic
network from them. A d e f i n i t i o n of a parameterized
t ype , such as (1) , is not r e a l l y a t ype , but a
type cons t ruc to r . I t const ructs d i f f e r e n t so r ts
of semantic ne t s , depending on the type (or types)
suppl ied as a parameter. Por example, if we
def ine mary. j am, j udy . John and I l e a as persons:

which def ines a type of semantic network whose
nodes are of the type person (where Judy, sam e t c .
are constants of tha t type) and whose arcs are
l a b e l l e d by fami ly r e l a t i onsh ips (where mother and
fa the r are constants of tha t t ype) .

Now, s ince we def ined a semantic net as
r e a l l y a const ruc tor of semantic n e t s , we can use
i t to def ine a simple form of p a r t i t i o n e d network
iHendr ix , 1979]. To do t h i s , we simply view a
p a r t i t i o n e d semantic net as a network whose nodes

*Glven t h i s v iew, one cou ld , in t u r n , argue tha t an
ADT is a lso j u s t syn tac t i c sugar f o r a set of as ­
s e r t i o n s , but t h i s becomes l i k e arguing tha t one
should not prograa in a h igh l e v e l language. Since
i t i s equiva lent to a Tur ing machine.
**Our extended PROLOG provides a f u n c t i o n a l i n t e r ­
face.

are themselves networks. For example, if we
de f i ne :

We have a network whose arcs are l abe l l ed by the
neighbor r e l a t i o n , and whose nodes are networks of
f a m i l i e s . This could be used to answer a query
l i k e "Who is the youngest person in John's neigh
bor ing f a m i l y . "

To a c t u a l l y complete the d e f i n i t i o n we would
have to def ine operat ions to i n t e r p r e t the network.
These, of course, are lengthy and w i l l not be
given here .

In the d e f i n i t i o n given above, we have t r i e d
to be consis tent w i t h the way semantic networks
are t r a d i t i o n a l l y de f ined . A s l i g h t l y d i f f e r e n t
fo rmula t ion would be to d i s t i n g u i s h d i f f e r e n t
so r ts o f a r cs , not by t h e i r l a b e l s , but by t h e i r
t ype . To do t h i s , we need to Introduce a c o r r e ­
spondence between not ions used to descr ibe ADTs
and not ions used to describe semantic networks.
Corresponding to concept i s , o f course t ype , to
subconcept subtype, and to Inher i tance the no t ion
of coerc ion : a f unc t i on tha t takes an ob jec t of
one type and re turns an ob jec t of another t ype .
Using these no t i ons , fa ther_arc and mother_arc can
be def ined as subtypes of arc as f o l l o w s :

(9)

assuming mother arc and fa the r arc were prev ious ly
de f i ned .

Using t h i s f o rmu la t i on , any opera t ion on arcs
w i l l apply to both fa the r arcs and mother a r cs , by
having the system automat ica l l y coerce an ob jec t
of type mother or fa ther arc to type a rc .

We can a lso get r i d of arcs a l toge ther by
t r e a t i n g them as operat ions whose source type is
the type of the node at the a r c ' s t a i l , and whose
t s rge t type is the type of the node at the a r c ' s
head (we would a lso have to inc lude some env i ron ­
ment). Thus, Instead of i nco rpora t ing knowledge
about mother and fa the r through the arcs and the
ru les which I n t e r p r e t them, we Incorporate i t
through the semantics of the corresponding opera­
t i o n . For example, we could def ine general opera­
t i ons corresponding to mother and fa the r as :

along w i t h a set of clauses which def ine how,
given a person, h i s / h e r mother or fa the r could be
determined.

What we get by doing t h i s is e s s e n t i a l l y a
Frame-l ike rep resen ta t i on . In the next sec t ion we
w i l l see how Frames can also be represented by
ADTs.

270

I l l FRAMES

In t h i s s e c t i o n , we w i l l show how ADTs can be
used to implement Frames, by comparing a d e f i n i t i o n
of a date frame, w r i t t e n in KRL, a frame-based
language, w i t h a d e f i n i t i o n of a date ADT w r i t t e n
in our extended PROLOG.

F i r s t , consider the d e f i n i t i o n of date in KRL
(taken from [Bobrow and Winograd, 1977])

[date
month name (when f i l l e d reset-day)
day (bounded in teger 1-31)
year Integer (to f i l l assume 1975)

]

A date cons is ts of three s l o t s , month, day, and
year which are to be f i l l e d by a name, an in teger
between 1 and 31 and an in teger respec t i ve l y .
Attached to the month and year s l o t s are procedures
which are to be automat ica l ly ac t i va ted when t h e i r
associated condi t ions are s a t i s f i e d . These proce­
dures must contain a great deal of task s p e c i f i c
in fo rmat ion such as the number of months in a
year , days in a month e t c . The procedure attached
to the month s l o t w i l l reset the day s l o t back to
1 whenever the month s l o t is f i l l e d , and the
procedure attached to the year s l o t w i l l r e tu rn
the In teger 1975 whenever the s l o t is referenced
before i t i s f i l l e d .

Now consider the d e f i n i t i o n of a date ADT.
F i r s t , we need to def ine a year , a month-date and
a day ADT.

(10) data month__name == January 4+ febuary ++
march ++ a p r i l ++ may ++ June ++ Ju ly 4+
august ++ September ++ October ++
november ++ december

(11) data year — mkyear(num)
(12) data day == mkday(num) ++ out-of-bounds

The func t ion mkday which takes a number and
returns a day is a hidden f u n c t i o n ; i t is not
accessible to the user. Ins tead , the user i n t e r ­
faces to the type day t h r u a func t i on day declared
as:

day:num --> day
and def ined by the f o l l ow ing c lauses:

which r e s t r i c t the user to de f i n i ng a day numbered
between 1 and 3 1 . More s p e c i f i c a l l y , these clauses
say tha t i f the number passed to the func t i on day
is between 1 and 31 then a day corresponding to
that number is returned (mkday(n)) otherwise o u t -
of-bounds is re tu rned , which ind ica tes the appro­
p r i a t e e r r o r .

Using these d e f i n i t i o n s , we can def ine date
as:

(13) data date — mkdate(month_name#day#year)
To create a da te , the user uses a func t i on date
declared as:

date : month_name --> date
to take a month_name and re tu rn a da te . The
other funct ions which update and access a date
a re :

The semantics of date are given by the fo l l ow ing
ru les or c lauses:

Rule 14 creates a new da te , ru les 15, 17 and
19 se lec t from a date the day, month_name and
year r espec t i ve l y , and ru les 16, 18 and 20 update
the day, month__name and year respec t i ve l y and r e ­
tu rn a new date w i t h those par ts updated.

The work done by the attached procedures in
the KRL d e f i n i t i o n is done by ru les 14 and 18,
Rule 14 w i l l cause the year 1975 to be returned if
the date is not updated before i t i s re ferenced.
For example, get-year(mkdate (J u l y))) w i l l r e tu rn
1975 but get-year(put-year(mkyear(1977), mkdate
(J u l y))) w i l l r e tu rn 1977. Rules 14 and 18 w i l l
reset the day when the month_name is f i l l e d . An
advantage of the ADT d e f i n i t i o n is tha t we can
represent knowledge about d e f a u l t s , such as that
the de fau l t year is 1975, and knowledge about what
is implied by an a c t i o n , such as that the day is
to be reset to 1 when the month d i r e c t l y w i t h the
clauses wi thout having to resor t to an add i t i ona l
mechanism, as is the case in KRL.

In t h i s sec t ion we have shown how Frames can
be represented by ADTs. This should not be seen as
d e t r a c t i n g from the importance of Frames or KRL,
since t h e i r importance is not as a system, but as
a theory of knowledge representat ion which empha­
sizes ideas l i k e prototypes and m u l t i p l e desc r i p ­
t i o n s .

In the next sec t ion we w i l l consider the need
f o r a methodology f o r b u i l d i n g up a knowledge
base, and whether one developed f o r knowledge
representa t ion can be used f o r ADTs and v i ce
versa.

Regardless of the formal ism used, a knowledge
representa t ion system must embody a methodology
f o r adding to i t s knowledge base. I f n o t , the
system w i l l eventua l ly be overcome w i t h the com-

279

p l e x l t y of the knowledge needed to model the
s i t u a t i o n at hand. One system whose main c o n t r i ­
bu t ion is such a methodology, which i t c a l l s an
epistemology because of the broader context i t is
working i n , is KLONE.

The KLONE methodology is based on concepts
and t h e i r i n t e r r e l a t i o n s h i p s . Concepts consis t of
ro les (par ts of the concept) and s t r u c t u r a l desc r i p ­
t i ons (r e l a t i onsh ips between the par ts) . The
essence of the KLONE methodology is the a b i l i t y to
b u i l d up knowledge by genera l i sa t i on and s p e c i a l i ­
z a t i o n . For example, once we have def ined course
w i t h ro les i ns t ruc to r and s tudents , we can spe­
c i a l i s e i t to the subtype serv ice course which
r e s u l t s i n s p e c i a l i s i n g , i n t u r n , student and
teacher f i l l e r s of those ro les . One cou ld , of
course, go in the other d i r e c t i o n , and f i r s t
de f ine serv ice course and then course. D i f f e r e n t i a -
t i o n is another type o f s p e c i a l i s a t i o n . F i r s t we
def ine I n s t r u c t o r and then d i f f e r e n t i a t e i t i n t o
two subro les : lab i n s t r u c t o r and l e c t u r e r .

In t h i s sec t ion we w i l l attempt to separate
out the KLONE methodology from i t s implementation
by showing how we can apply the methodology to the
design of ADTs. In some ways, we can view KLONE
as a user ' s i n t e r f a c e to the design of ADTs where
KLONE is the source language and ADTs are the
ta rge t language of some t r a n s l a t o r .

The i n t e r r e l a t i o n s h i p s we are concerned w i t h
here are

1. Subordinat ion between concepts such tha t
one concept is a subconcept (or super-
concept) of another.

2. I n d i v i d u a t i o n of a concept by another.
For example, the concept Babe Ruth is an
i n d i v i d u a l concept from the set rep re ­
sented by the generic concept basebal l
s t a r .

3. R e s t r i c t i o n on the type of ob jec t t ha t
can f i l l a r o l e o f another.

4 . D i f f e r e n t i a t i o n o f a r o l e i n t o subro les .

5. S a t i s f a c t i o n , or the r e l a t i o n between a
r o l e of a generic concept and one of i t s
I n d i v i d u a l concepts such t ha t the
f i l l i n g o f one is the same as f i l l i n g
of the o the r . For example, a t o l l may
requ i re 50 cents , but t h i s requirement
may be s a t i s f i e d , I ns tead , by 3 quarts
of chop suey.

The arcs have the f o l l o w i n g i n t e r p r e t a t i o n —
arcs of the form A superc £ i n d i c a t e tha t B is
superconcept of A, arcs of~the form A ind * I nd i ca te
tha t A Is an i n d i v i d u a l concept of gener ic B, arcs
of the fo r A V/R B i n d i c a t e t h a t the f i l l e r of r o l e
A must be ol type~B, arcs of the form A s a t i s f i e s
B Ind i ca te tha t r o l e A s a t i s f i e s r o l e B, arcs of
the form A d i f f B i n d i c a t e t ha t A is a eubrole of
B, and, f i n a l l y , arcs of the form A r o l e B i n d i c a t e
t ha t B is a r o l e of A.

Now l e t ' s def ine some of the ADTs tha t co r ­
respond to the above KLONE d e s c r i p t i o n . S t a r t i n g
w i t h course, we see tha t i t has ro les i n s t r u c t o r
*nd s tudents , and tha t i n s t r u c t o r is d i f f e r e n t i a t e d
i n t o ro les lab i n s t r u c t o r and l e c t u r e r . Now to
def ine a corresponding ADT f o r course, we need to
know how to const ruct i t . That i s , what par ts
come together to form a course. These par ts a r e ,
of course, the d i f f e r e n t r o l e s . Therefore, one
way to def ine the ADT course is as:

data course — mkcourse(teacher! teacher!
l i s t student)

where one teacher is the lab i n s t r u c t o r and the
other i s the l e c t u r e r . Roles also i nd i ca te tha t
we need corresponding operat ions which access and
update them.

The d i f f e r e n t i a t i o n l i n k s i nd i ca te tha t we
need operat ions which a l low you to se lec t out only
those teachers which are l e c t u r e r s and those which
are lab i n s t r u c t o r s . One way to d i f f e r e n t i a t e
between these ob jec ts is to type them (or in t h i s
case subtype them). We can def ine i n s t r u c t o r as :

<

which says tha t i ns t ruc to rs are e i t h e r lab in-
s t r u c t o r s o r l e c t u r e r s .

The above d e f i n i t i o n may appear odd, s ince
the f ac t tha t i n s t r u c t o r s cons is t o f teachers i s
spec i f i ed tw i ce , once in the d e f i n i t i o n o f lab
i ns t ruc to rs snd once in the d e f i n i t i o n o f l e c t u r e r ,
ra ther than spec i f y ing i t on ly once i n the d e f i n i ­
t i o n o f i ns t r uc to r and l e t t i n g " i n h e r i t a n c e " pass

♦Note tha t t h i s network would on ly l e t a s ing le
graduate student be s teaching a a s i s t a n t . Although
c l e a r l y c o n t r i v e d , t h i s al lowed us to include a
s a t i f a c t i o n l i n k w i thou t over compl icat ing the n e t ­
work.

280

i t down. The problem is tha t the data d e f i n i t i o n
not only spec i f i es knowledge at the conceptual
l e v e l , bu t , a t the Implementation l e v e l , spec i f i es
how to construct i t . For which, l i k e any func t i on
in any programming language, we need to know what
i t s parameters are and t h e i r order . This informa-
t i o n , al though necessary at some l e v e l , is proba-
b l y not necessary at the l e v e l in which the user
I n te rac t s w i t h the system; t h i s gives another
reason fo r needing some i n t e r f a c e , whether or not
it is KLONE. Now we can change the d e f i n i t i o n of
course approp r ia te l y .

(24)data course
mkcourse (ins t ruc to r# ins t ruc to r / / l i s t student)

The KLONE desc r i p t i on above ac tua l l y implies a
d i f f e r e n t d e f i n i t i o n , because courses (i n our very
l i m i t e d desc r ip t i on) consis t only o f serv ice
courses. Therefore, the ADT should be def ined as:

(25)data course == mkcourse(service_course)
(26)data service_course ==

mkcourse(teaching_assistant#
t e a c h l n g _ a s s i s t a n t a n t # freshman)

Of course, the operat ions on course can s t i l l be
appl ied to serv ice course, because the system w i l l
au tomat ica l l y coerce a serv ice course i n t o a
course* For example, assume we have an operat ion
to se lec t out the l e c t u r e r from a course, declared
as:

ge t_ lec tu re r : course - -> i n s t r u c t o r

When it is appl ied to an object of type serv ice
course i t w i l l r e tu rn an i n s t r u c t o r who is a
l ec tu re r who i s , in t u r n , a teaching ass i s tan t .

Nothing has to be added to handle r e s t r i c t i o n
l i n k s i f the value o f the r e s t r i c t e d ro le i s j u s t
a subtype of the value of the un res t r i c ted r o l e .
I f no t , a l l t ha t has to be done is f o r add i t i ona l
clauses to be added to the d e f i n i t i o n of the
operat ions corresponding to the r o l e . A s i m i l a r
s i t u a t i o n occurs f o r s a t i s f a c t i o n l i n k s .

The a d d i t i o n a l clauses to implement a s a t i s ­
f a c t i o n l i n k def ine a mapping between ob jects of
one ro l e and ob jec ts of another. Given operat ions
that se lec t the id[from a teacher and the student
id from a graduate student, declared as:

g e t - i d : teacher --> employees
g e t - s t u d e n t - i d : graduate_student - ->

soc ia l_secur i ty#

We can then add the fo l l ow ing clause to def ine the
mapping from the ro l e student id to id:

ge t - i d (g rad) <■ ss#toemp0(get-student- id(grad))

where grad Is a graduate student which is coerced
t 0 teacher before being appl ied to g e t - i d and
ssfltoempd* is a func t i on which changes soc ia l
secu r i t y numbers to employee numbers.

ADTs also come w i t h t h e i r own methodology f o r
b u i l d i n g up knowledge which al lows e x i s t i n g types
to be combined and enriched to produce new types
([Goguen, Thatcher and Wagner, 1977, and Nouranl,
1980]) . Although t h i s methodology is not as
s p e c i f i c and d i rec ted as the KLONE methodology, it
is Important , because i t guarantees tha t the new
types are we l l -de f i ned i f the o ld ones were.

We have t r i e d to show that the methodology
provided by KLONE can be accommodated by using
ADTs and there fore one can view KLONE simply as an
i n te r f ace to such an ADT system. This has the
advantage tha t we can decouple the concerns of the
methodology from i t s implementat ion.

V SUMMARY AND CONCLUSIONS

In t h i s paper we have t r i e d to demonstrate
the usefulness of developing a system fo r know­
ledge representat ion tha t is based on a foundat ion
of ADTs and l o g i c . This foundat ion is strong
enough to al low other systems support ing var ious
formalisms f o r knowledge representa t ion to be
b u i l t upon i t .

The advantages of t h i s approach are many,
i n c l ud i ng : easing the problem of implementing a
system by p rov id ing a base, a l low ing several
formalisms to be supported by one system, and,
f i n a l l y , p rov id ing a common language w i t h which to
compare representat ions in the d i f f e r e n t fo rma l ­
isms.

To demonstrate the usefulness of our appro­
ach, we have shown tha t two competing formalisms
(Frames and Semantic Networks) can be supported by
a system such as we propose, and tha t our founda­
t i o n is cons is tent w i t h a methodology fo r adding
to a knowledge base which is already in use.

Several ob jec ts and s i t u a t i o n s have been
modelled in a system designed along the proposed
l i n e s of t h i s paper and run in our extended PROLOG.
These inc lude , a blocks w o r l d , a company wor ld ,
and the la rges t one; an ATN and a lex icon f o r that
ATN (f o l l o w i n g [Woods, 1979]) .

ACKNOWLEDGEMENTS

We are indebted to Joe Goguen fo r shar ing h i s
i ns i gh t s i n t o the nature of Abstract Data Types.
We would a lso l i k e to thank Rod B u r s t a l l and
Farshid Nouranl f o r discussions about issues
re la ted to t h i s paper, Gabr ia l Bar ta , Eugene
Freuder and Chris M e l l l s h f o r comments on the
s t ruc tu re of t h i s paper, and Barbara Layne fo r
preparat ion o f t h i s paper.

REFERENCES

[1] Bobrow, D.G., and Winograd, T. An overview of
KRL, a knowledge representa t ion language.
Cogni t ive Science. 1977, 1 (1) , 3-46.

[2] Brachman, R.J. On the Epistomological Status of
Semantic Networks. In N.V. F in lde r (F d .) ,
Assoc ia t ive Networks Representat ion and use in

261

knowledge by Computers,: Academic Press,
1979.

[3] B u r s t a l l , R.M., D. MacQueen and D. Sannel la.
HOPE: An Experimental App l i ca t i ve Language.
In Proceedings of the 1980 LISP Conference.:
The LISP Company, 1980.

[A] Goguen, J,A. and J . J . Tardo. An In t roduc t i on
to OBJ: A Language f o r Wr i t i ng and Test ing
Formal Algebraic Program S p e c i f i c a t i o n s . In
Proceedings of the Conference on Spec i f i ca ­
t i ons of Re l iab le Software. Cambridge IEEE,
1979.

[5] Goguen, J .A . , J.V. Thatcher, E.G. Wagner. An
I n i t i a l Algebra Approach to the Spec i f i ca t i on
of Abst ract Data Types. In R. Yeh (Ed .) ,
Current Trends in Programming Methodology,
New York: P r e n t i c e - H a l l , 1977.

[6] Hayes, Pat J. In Defence of Logic . In
Proceedings of the 5th I n t e r n a t i o n a l Jo in t
Conference on A r t i f i c i a l I n t e l l i g e n c e , :
IJCAI, 1977.

[7] Hendrlx, G. Encoding Knowledge in P a r t i t i o n e d
Networks. In N.V. F ind le r (Ed.) Assoc ia t ive
Networks: Representation and use in knowledge
by Computers.: Academic Press, 1979.

[8] Kowalski , R. Logic fo r Problem So lv ing .
Amsterdam: North-Hol land 1980.

[9] Minsky, M.A. Framework f o r Representing
Knowledge. In Pa t r i ck H. Winston (E d .) ,
The Psychology of Computer V i s i o n , New York:
McGraw-Hi l l , 1975.

[10] Nourani , F.A. Model-Theoretic Approach to
S p e c i f i c a t i o n , Extension, and Implementat ion.
In B. Robinet (E d .) , Proceedings of the Fourth
I n t e r n a t i o n a l Symposium on Programming.:
Spr inger -Ver lag, 1980. Lecture Notes in
Computer Science v o l 83.

[11] Q u i l l l a n , M.R. Semantic Memory. In M. Minsky
(Ed .) , Semantic In format ion Processing.
Cambridge: M. I .T . Press, 1968.

[12] Van Emden, M and T. Malbaum. Clauses versus
Equations in the Spec i f i ca t ions of Abstract
Data Typea. In J .L . Minker and H. Ga l l a i r e
(Ed .) , Advances in Data Base Theory. : Plenum
Press, 1980.

[13] Warren, D.H.D., L.M. Pe re l ra , F.C.N. Pere l ra .
PROLOG — The Language and I t s Implementation
Compared w i t h LISP. In Proceedings of the
Symposium on A r t i f i c i a l I n t e l l i g e n c e and Pro­
gramming Languages Rochester. N.Y.: ACM,
1977.

[14] Woods, W.A. Research in Natura l Language
Understanding: Annual Progress Report ,
1 September 1978 - 31 August 1979. Technical
Report 4279, BBN, 1979.

[15] Z i l l e s , S. Algebraic Spec i f i ca t i on of Abstract
Progress Report X I , : Laboratory of Computer
Science, MIT, 1975.

282

