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ABSTRACT

The use of ebstrect dete types as a basis for
designing experimental knowledge representation
systems is discussed. Abstrect dete types ere
shown to heve features in common with severel
diverse representation formalisms (e.g. semantic
networks, frames and KLONE). For example, ebstrect
data types have notions analogous to concept,
subconcept end inheritance. The relatively small
conceptual distence between abstrect data types
and knowledge representation formalisms make them
en ideal vehicle for implementing such formalisms.

I INTRODUCTION

Representation of knowledge is of primary im-
portance to programs dealing with real world situ-
ations. There have been several attempts to
derive an appropriate formalism that would help to
minimize the problems in this difficult area.
There heve been just as many resulting methodo-
logies, offering widely different solutions:
Frames [Minsky, 1975], Semantic Networks [Qulllian,
1968], KRL [Bobrow and Winograd, 1977], First-
Order Logic [Hayes, 1977], and KLONE [Brachman,
1979]. These different methodologies ere based
on fundamentally different assumptions about the
neture of knowledge, each with convincing claims
for its precedence. In order to compare these
assumptions it would be necessary to find a common
basis of representation. Ue contend that the dif-
ferent formalisms can all be expressed in logic
combined with abstract data types, and that this
proves to be a useful and Informative tool for
designing knowledge representation systems.

Logic with abstract data types (ADTs) offers
a solid foundation that already Includes many of
the facilities built into knowledge representation
languages. It also allows a system to be built
that combines features from different formalisms,
providing an ideal testing ground for purposes of
comparison. There are also inherent advantages in
the choice of logic with ADTs. By writing programs
in logic, especially clausal logic [Kowalskl,
1980], we have both a mathematical semantics or
specification and an operational semantics that
allows us to execute thet specificetion, ADT's
have the same advantage, whether defined algrebral-
cally [Zllles, 1975, Goguen, Thatcher and Wegner,
1977] or model-theoretically [Nourani, 1980, Van
Emden and Maibaum, 1980]. This allows the builder
of the knowledge base to concentrate on defining
concepts independently of how they might be im-
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plemented or executed, and thus allows the designer
of the system to concentrate on issues of know-
ledge representetlon, rether thet programming.
ADTs have the advantege of providing a powerful
tool for structuring the masses of knowledge
required in modelling even the most trivial situa-
tion.

The rest of this paper demonstretes the
usefulness of this approach. Examples are given
using an extension of PROLOG [Warren, 1977] that
supports ADTs. This extension is based on the
languages HOPE [Burstall, MacQueen and Sannella,
1980] and OBJ [Goguen and Tardo, 1979] with most
of the syntax taken from HOPE, A similar exten-
sion was proposed by Van Emden and Maibaum (1980).

II' SEMANTIC NETWORKS

We view semantic networks as a combination of
logic and ADTs. This view differs slightly from e
view held by many, notably Hayes (1977), which
states that semantics networks are equivalent to e
set of assertions in First-Order Logic and that
the only velue they heve is as syntactic sugar for
those essertions. In this view, the network in
Figure 2-la would be equivalent to the essertions
in Figure 2-Ib and the network in Figure 2-lc
would be equivalent to the assertions in Figure 2-
Id.

Although this view sheds important light on
the status of semantic networks as a formalism, it
ignores their velue as an important structuring
technique. That is, one can also view Semantic
Networks as both e structure and a set of rules
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Fig. 2=1: Sesantic Retvorks as Assertions



for Interpreting that structure Independent of the
specific nodes or arcs an instance of a network
contains.

In our view, a Semantic Network can most
clearly be represented as an ADT. The ADT defines
the structure of the network and defines operations
which interpret that structure.* To understand how
one sight go about defining a Sematlc Network
using ADTs, consider the following:

data semantic_net{alpha,beta) ==

mkksn (set node(alpha)fsat arc{alpha,bata})
dats node {(alpha) =« mknode (alpha)

data arc (alpha,bets) ==

okarc (node(alpha)#node(alpha)fbeta)

1)

(2)
)

A Semantic Network is defined in (1) as consisting
of a set of nodes (defined in (2)) of soma type
alpha and a set of arcs (defined in (3)) of type
alpha and beta (which are the type of the node and
of the label respectively). Alpha and beta are
variables ranging over types. Data definitions
such as (1) are used to introduce a new data type
along with the constructors which create elements
of that type, mksn ("make semantic network") is a
function** which takee~"se"ts"~of nodes and sets of
arcs between these nodes and constructs a semantic
network from them. A definition of a parameterized
type, such as (1), is not really a type, but a
type constructor. It constructs different sorts
of semantic nets, depending on the type (or types)
supplied as a parameter. Por example, if we
define mary. jam, judy. John and llea as persons:

(4) data person == mary ++ sam + judy ++
john ++ lisa

and mother and father as relations betwean members
of a family:

(5)data family relaticnships »= mother + fathar
we can then dafine a family network a» in:

(6)data family net ==
mkfn{semantic_net(person,
family relationships))

which defines a type of semantic network whose
nodes are of the type person (where Judy, sam etc.
are constants of that type) and whose arcs are
labelled by family relationships (where mother and
father are constants of that type).

Now, since we defined a semantic net as
really a constructor of semantic nets, we can use
it to define a simple form of partitioned network
iHendrix, 1979]. To do this, we simply view a
partitioned semantic net as a network whose nodes

*Glven this view, one could, in turn, argue that an
ADT is also just syntactic sugar for a set of as-
sertions, but this becomes like arguing that one
should not prograa in a high level language. Since
it is equivalent to a Turing machine.

**Qur extended PROLOG provides a functional inter-
face.
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are themselves networks. For example, if we

define:

(7) data neighbor_relation == nsighbor
and then
(8} dats neighbtor_net ==
mkan(semantic net{family net,
neighbor_relation))

We have a network whose arcs are labelled by the
neighbor relation, and whose nodes are networks of
families. This could be used to answer a query
like "Who is the youngest person in John's neigh
boring family."

To actually complete the definition we would
have to define operations to interpret the network.
These, of course, are lengthy and will not be
given here.

In the definition given above, we have tried
to be consistent with the way semantic networks
are traditionally defined. A slightly different
formulation would be to distinguish different
sorts of arcs, not by their labels, but by their
type. To do this, we need to Introduce a corre-
spondence between notions used to describe ADTs
and notions used to describe semantic networks.
Corresponding to concept is, of course type, to
subconcept subtype, and to Inheritance the notion
of coercion: a function that takes an object of
one type and returns an object of another type.
Using these notions, father_arc and mother_arc can
be defined as subtypes of arc as follows:

(9) data arc == pkerc(father_arc) ++

mkarc (mother_arc)
assuming mother arc and father arc were previously
defined.

Using this formulation, any operation on arcs
will apply to both father arcs and mother arcs, by
having the system automatically coerce an object
of type mother or father arc to type arc.

We can also get rid of arcs altogether by
treating them as operations whose source type is
the type of the node at the arc's tail, and whose
tsrget type is the type of the node at the arc's
head (we would also have to include some environ-
ment). Thus, Instead of incorporating knowledge
about mother and father through the arcs and the
rules which Interpret them, we Incorporate it
through the semantics of the corresponding opera-
tion. For example, we could define general opera-
tions corresponding to mother and father as:

fathar: person, snvironment + person
mother: pereon, eavironmant -+ parson

along with a set of clauses which define how,
given a person, his/her mother or father could be
determined.

What we get by doing this is essentially a
Frame-like representation. In the next section we
will see how Frames can also be represented by
ADTs.



Il FRAMES

In this section, we will show how ADTs can be
used to implement Frames, by comparing a definition
of a date frame, written in KRL, a frame-based
language, with a definition of a date ADT written
in our extended PROLOG.

First, consider the definition of date in KRL
(taken from [Bobrow and Winograd, 1977])

[date
month name (when filled reset-day)
day (bounded integer 1-31)
year Integer (to fill assume 1975)

]

A date consists of three slots, month, day, and
year which are to be filled by a name, an integer
between 1 and 31 and an integer respectively.
Attached to the month and year slots are procedures
which are to be automatically activated when their
associated conditions are satisfied. These proce-
dures must contain a great deal of task specific
information such as the number of months in a
year, days in a month etc. The procedure attached
to the month slot will reset the day slot back to
1 whenever the month slot is filled, and the
procedure attached to the year slot will return
the Integer 1975 whenever the slot is referenced
before it is filled.

Now consider the definition of a date ADT.
First, we need to define a year, a month-date and
a day ADT.

(10) data month _name == January 4+ febuary ++
march ++ april ++ may ++ June ++ July 4+
august ++ September ++ October ++
november ++ december

(11) data year — mkyear(num)
(12) data day == mkday(num) ++ out-of-bounds

The function mkday which takes a number and
returns a day is a hidden function; it is not
accessible to the user. Instead, the user inter-
faces to the type day thru a function day declared
as:

day:num -->day
and defined by the following clauses:

day(n) < = mkday{n) 1f n =<31, n>= 1
day({n} < = out-of-bounds 4f n > 3l
day(n) < = out-of=bounds if n > 1

which restrict the user to defining a day numbered
between 1 and 31. More specifically, these clauses
say that if the number passed to the function day
is between 1 and 31 then a day corresponding to
that number is returned (mkday(n)) otherwise out-
of-bounds is returned, which indicates the appro-
priate error.

Using these definitions, we can define date
as:

(13) data date — mkdate(month_name#day#year)
To create a date, the user uses a function date
declared as:
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date: month_name -->date
to take a month_name and return a date. The
other functions which update and access a date
are:

get-month: date + month_name
put-month: month_name, date + date
get-year: date + year

put-year: year,date + date
get=-day: date + day

put—day: day,date + date

The semantics of date are given by the following
rules or clauses:

(14)
{15)
(16)

(17)
(18)

(19)
(20)

date(em) <= mkdate(on,mkday(l),mkyear(1975))
get—day{mkdate{dm,dd,dy)) «= dd
put-day(d ,mkdate{dm,dd,dy)) <=
nkdate(dn,d, dy)
get-month(mkdate(dm,dd,dy)) <= dm
put-month (zm ,ckdate{dm,dd, dy)) <=
mkdate {mn,mkday(1) ,dy)
get-year (wkdate (dm,dd,dy}) <= dy
put-year{y,mkdate{dm,dd,dy)) <=
mkdate{dm,dd,y)

Rule 14 creates a new date, rules 15, 17 and

19 select from a date the day, month_name and
year respectively, and rules 16, 18 and 20 update
the day, month _name and year respectively and re-
turn a new date with those parts updated.

The work done by the attached procedures in
the KRL definition is done by rules 14 and 18,
Rule 14 will cause the year 1975 to be returned if
the date is not updated before it is referenced.
For example, get-year(mkdate (July))) will return
1975 but get-year(put-year(mkyear(1977), mkdate
(July))) will return 1977. Rules 14 and 18 will
reset the day when the month_name is filled. An
advantage of the ADT definition is that we can
represent knowledge about defaults, such as that
the default year is 1975, and knowledge about what
is implied by an action, such as that the day is
to be reset to 1 when the month directly with the
clauses without having to resort to an additional
mechanism, as is the case in KRL.

In this section we have shown how Frames can
be represented by ADTs. This should not be seen as
detracting from the importance of Frames or KRL,
since their importance is not as a system, but as
a theory of knowledge representation which empha-
sizes ideas like prototypes and multiple descrip-
tions.

In the next section we will consider the need
for a methodology for building up a knowledge
base, and whether one developed for knowledge
representation can be used for ADTs and vice
versa.

IV METHODOLOGY

Regardless of the formalism used, a knowledge
representation system must embody a methodology
for adding to its knowledge base. If not, the
system will eventually be overcome with the com-



plexlty of the knowledge needed to model the
situation at hand. One system whose main contri-
bution is such a methodology, which it calls an
epistemology because of the broader context it is
working in, is KLONE.

The KLONE methodology is based on concepts
and their interrelationships. Concepts consist of
roles (parts of the concept) and structural descrip-
tions (relationships between the parts). The
essence of the KLONE methodology is the ability to
build up knowledge by generalisation and speciali-
zation. For example, once we have defined course
with roles instructor and students, we can spe-
cialise it to the subtype service course which
results in specialising, in turn, student and
teacher fillers of those roles. One could, of
course, go in the other direction, and first
define service course and then course. Differentia-
tion is another type of specialisation. First we
define Instructor and then differentiate it into
two subroles: lab instructor and lecturer.

In this section we will attempt to separate
out the KLONE methodology from its implementation
by showing how we can apply the methodology to the
design of ADTs. In some ways, we can view KLONE
as a user's interface to the design of ADTs where
KLONE is the source language and ADTs are the
target language of some translator.

The interrelationships we are concerned with
here are

1. Subordination between concepts such that
one concept is a subconcept (or super-
concept) of another.

2. Individuation of a concept by another.

For example, the concept Babe Ruth is an
individual concept from the set repre-
sented by the generic concept baseball
star.

3. Restriction on the type of object that

can fill a role of another.
4. Differentiation of a role into subroles.
5. Satisfaction, or the relation between a

role of a generic concept and one of its
Individual concepts such that the
filling of one is the same as filling
of the other. For example, a toll may
require 50 cents, but this requirement
may be satisfied, Instead, by 3 quarts
of chop suey.

The arcs have the following interpretation —
arcs of the form A superc £ indicate that B is
superconcept of A, arcs of~the form A ind * Indicate
that A Is an individual concept of generic B, arcs
of the for A V/IR B indicate that the filler of role
A must be ol type~B, arcs of the form A satisfies
B Indicate that role A satisfies role B, arcs of
the form A diff B indicate that A is a eubrole of
B, and, finally, arcs of the form A role B indicate
that B is a role of A.
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Consider the KLONE description in Figure 4-1
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Figure 4-1: KLONE description®

Now let's define some of the ADTs that cor-
respond to the above KLONE description. Starting
with course, we see that it has roles instructor
*nd students, and that instructor is differentiated
into roles lab instructor and lecturer. Now to
define a corresponding ADT for course, we need to
know how to construct it. That is, what parts
come together to form a course. These parts are,
of course, the different roles. Therefore, one
way to define the ADT course is as:

data course — mkcourse(teacher!teacher!
list student)
where one teacher is the lab instructor and the
other is the lecturer. Roles also indicate that
we need corresponding operations which access and
update them.

The differentiation links indicate that we
need operations which allow you to select out only
those teachers which are lecturers and those which
are lab instructors. One way to differentiate
between these objects is to type them (or in this
case subtype them). We can define instructor as:

{21) data instructor == micinat(lab_instructor)
++ mkinat (lecturer)

(22) data lab_instructor == mklab(teacher)

(23) data lecturar == uklec(teacher)

which says that instructors are either lab in-
structors or lecturers.

The above definition may appear odd, since
the fact that instructors consist of teachers is
specified twice, once in the definition of lab

instructors snd once in the definition of lecturer,
rather than specifying it only once in the defini-
tion of instructor and letting "inheritance" pass
#Note that this network would only let a ngle
graduate student be s teaching aasistant. Ithough
clearly contrived, this allowed us to include a

satifaction link without over complicating the net-
work.



it down. The problem is that the data definition
not only specifies knowledge at the conceptual
level, but, at the Implementation level, specifies
how to construct it. For which, like any function
in any programming language, we need to know what
its parameters are and their order. This informa-
tion, although necessary at some level, is proba-
bly not necessary at the level in which the user
Interacts with the system; this gives another
reason for needing some interface, whether or not
it is KLONE. Now we can change the definition of
course appropriately.

(24)data course
mkcourse(instructor#instructor//list student)
The KLONE description above actually implies a
different definition, because courses (in our very
limited description) consist only of service
courses. Therefore, the ADT should be defined as:

(25)data course == mkcourse(service_course)
(26)data service_course
mkcourse(teaching_assistant#

teachlng_assistantant# freshman)

Of course, the operations on course can still be
applied to service course, because the system will
automatically coerce a service course into a
course* For example, assume we have an operation
to select out the lecturer from a course, declared
as:

get_lecturer: course-->instructor
When it is applied to an object of type service
course it will return an instructor who is a
lecturer who is, in turn, a teaching assistant.

Nothing has to be added to handle restriction
links if the value of the restricted role is just
a subtype of the value of the unrestricted role.
If not, all that has to be done is for additional
clauses to be added to the definition of the
operations corresponding to the role. A similar
situation occurs for satisfaction links.

The additional clauses to implement a satis-
faction link define a mapping between objects of
one role and objects of another. Given operations
that select the id[ from a teacher and the student
id from a graduate student, declared as:

get-id: teacher-->employees
get-student-id: graduate_student-->
social_security#

We can then add the following clause to define the
mapping from the role student id to id:
get-id(grad) <m ss#toempO(get-student-id(grad))

where grad Is a graduate student which is coerced
% teacher before being applied to get-id and
ssfltoempd* is a function which changes social
security numbers to employee numbers.
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ADTs also come with their own methodology for
building up knowledge which allows existing types
to be combined and enriched to produce new types
([Goguen, Thatcher and Wagner, 1977, and Nouranl,
1980]). Although this methodology is not as
specific and directed as the KLONE methodology, it
is Important, because it guarantees that the new
types are well-defined if the old ones were.

We have tried to show that the methodology
provided by KLONE can be accommodated by using
ADTs and therefore one can view KLONE simply as an
interface to such an ADT system. This has the
advantage that we can decouple the concerns of the
methodology from its implementation.

VvV SUVMARY AND CONCLUSIONS

In this paper we have tried to demonstrate
the usefulness of developing a system for know-
ledge representation that is based on a foundation
of ADTs and logic. This foundation is strong
enough to allow other systems supporting various
formalisms for knowledge representation to be
built upon it.

The advantages of this approach are many,
including: easing the problem of implementing a
system by providing a base, allowing several
formalisms to be supported by one system, and,
finally, providing a common language with which to
compare representations in the different formal-
isms.

To demonstrate the usefulness of our appro-
ach, we have shown that two competing formalisms
(Frames and Semantic Networks) can be supported by
a system such as we propose, and that our founda-
tion is consistent with a methodology for adding
to a knowledge base which is already in use.

Several objects and situations have been
modelled in a system designed along the proposed
lines of this paper and run in our extended PROLOG.
These include, a blocks world, a company world,
and the largest one; an ATN and a lexicon for that
ATN (following [Woods, 1979]).
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