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ABSTRACT 

In this paper we describe a production system model of 
children's development on the balance scale task. Starting with 
a set of rules that makes random predictions, the system iearns 
from its errors and improves as it gains experience. The 
transition mechanism is a discrimination process that searches 
for differences between cases in which correct predictions are 
made and cases in which errors are made The stages through 
which the system progresses are very similar to those observed 
in children, so the model provides an explanation of the 
observed developmental trends Since the system has no notion 
of torque, it never acquires the ability to completely predict the 
balance scale's behavior; however, it is able to learn heuristically 
useful rules despite its incomplete representation of the 
environment, much as children do. 

INTRODUCTION 

One of the most challenging areas facing Cognitive Science is 
that of cognitive development. Although the child enters the 
world in a nearly helpless state, within a decade he can 
manipulate objects, reason abstractly, and communicate with 
others, and he has acquired a host of other skills too numerous 
to mention. If we ever hope to understand the nature (and 
nurture) of the human information processing system, the 
developmental processes that lead to these diverse abilities must 
be understood. For a long period, research on cognitive 
development was almost entirely experimental, but in recent 
years efforts have been made to explain developmental trends in 
computational terms. 

Production systems have become a popular framework for 
modeling behavior at different stages, since their modularity 
allows the statement of successive models that differ by only one 
or two condition-action rules. For example, Baylor, Gascon, 
Lemoyne, and Pother [1] have constructed production system 
models of children at various stages on Piaget's weight seriation 
task, and Young [2] has devised similar models for the related 
length seriation task. However, this work has focused on 
modeling behavior at a given stage, rather than explaining the 
transition between stages. In this paper we present a process 
model of development in one domain - the balance scale task. 
Below we describe the task, along with some earlier work in the 
area. After this, we discuss our model of the transition process 
and its implications. 

THE BALANCE SCALE TASK 

The balance scale task is commonly employed in the study of 
cognitive development, having first been used by Piaget [3]. In 
this task, the child is presented with a two arm balance, having 
several pegs spaced evenly along each arm. Small disks of 
equal weight are placed on the pegs (only one peg on each side 

has weights), and the child is asked to predict the direction in 
which the scale will move when released. The standard method 
for correctly making this prediction involves the notion of torque. 
The number of weights on a peg is multiplied by that peg's 
distance from the center. If one side has the greater product, 
that side will go down; if the products are equal, the scale will 
remain balanced. Lacking knowledge of this rule, children and 
even some adults have difficulty in making the correct 
predictions However, it is clear that performance improves with 
age, and this trend requires an explanation. 

Klahr and Siegler [A] have studied children's behavior in this 
domain. They found evidence for the existence of four basic 
stages, and successfully modeled each stage as a simple 
production system. For ex-ample, children in Stage 1 focused 
only on weight information in making predictions. The authors 
explained this behavior with a simple two rule model. The first 
rule applied if one side had more weights, and predicted that 
side would go down. The second rule piedicted that the scale 
would balance if the weights were the same. Later stages were 
modeled by the addition of new rules for making predictions. The 
second stage model included a rule that focused on distances if 
the weights were equal; in such cases, it predicted that the side 
with greater distances would go down The Stage 3 model 
included a rule for selecting a side randomly when weight and 
distance cues were in conflict, as well a rule for dealing with 
cases in which the cues agreed. The model of the final stage 
incorporated rules for computing toique and basing the decision 
on the result of this calculation. 

Several other studies have examined children's behavior in 
this domain as well. However, we have chosen to locus on Klahr 
and Siegler's work. Although their models were very simple, 
they accounted for much of the variance observed in children's 
behavior on the balance scale task. Moreover, the model of 
each successive stage differed from the previous one by the 
inclusion of only one or two new rules. Thus, although the 
authors proposed no theory of the developmental process itself, 
their model laid the necessary groundwork for an analysis in 
terms of learning mechanisms. Now let us turn to a revised stage 
model that takes us another step closer to an explanation of the 
transition process. 

Figure 1 summarizes our revised model of successive stages 
on the balance scale task. The condition action rules are 
paraphrased in English for the sake of clarity; the term - side 
represents a variable that can match against either the left or 
right side of the scale. In addition to the first three stages 
modeled by Klahr and Siegler, we have included an initial 
random stage. Taken together, the first pair of productions 
(BALANCE-1 and DOWN-1) randomly predict that one of the two 
sides will go down, or that the sides are balanced. Klahr and 
Siegler found no evidence for this stage, presumably because 
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their subjects had moved beyond the random strategy at an 
earlier age. When the second pair of rules (BALANCE 2 and 
DOWN 2) is added to the first pair the resulting system behaves 
exactly as Klahr and Siegler's model of Stage 1, provided the 
new rules take precedence over the first pair. Upon adding the 
third pair of productions (BALANCE 3 and DOWN-3), we have a 
model of Stage 2 behavior, provided that both of these rules take 
precedence over BALANCE-2. Finally, when the productions 
DOWN-4 and DOWNS are inserted (and mask DOWN-2), we 
have a model of Klahr and Siegler's third stage. 

The revised model is in many respects very similar to Klahr 
and Siegler's model, but there is one major difference: rules 
occurring in Inter stages arc always discriminant versions of 
rules that have occurred in an earlier stage. In other words, for 
every rule s, there exists some rule g in a previous stage with the 
same actions as s and a subset of s's conditions While this 
feature was true of some of Klahr and Siegler's rules, it was by 
no means true of them all. This characteristic of the revised 
stage model suggests a mechanism to account for the transition 
between these stages, which we discuss in the following section. 

A MODEL OF THE TRANSITION PROCESS 

The increasing specificity of the rules in successive stages 
suggests that they might be learned through a process of 
discrimination. Such a learning mechanism would be called 
when the performance system made an error, in an attempt to 
determine the conditions under which a prediction should be 
made. Potentially useful conditions can be found by comparing 
the situation in which a rule applied incorrectly to the last 
situation in which that same rule applied correctly. If some 
difference is found between the good and bad instances of the 
rule, then a variant of the rule is created that contains that 
difference as one or more new conditions. Because of its new 
conditions, the variant rule will fail to match against the 

undesired case, but will still match in the desired situation. 
Similar discrimination learning schemes have been explored by 
other researchers [b. 6], so our contribution lies not so much in 
developing this approach to learning, as in showing how this 
approach can be used to explain developmental trends on the 
balance scale task. The details of the discrimination method 
have been described at greater length by Langley [7]. 

We have constructed a discrimination based model of 
development on the balance scale task that acquires the rules 
presented in Figure 1. The model does not consist of the 
discrimination mechanism alone. It is also given the rules 
BALANCE-1 and DOWN 1, which provide the initial behavior 
upon which learning is based. In addition, the system contains a 
rule for comparing the sides of the balance scale on dimensions 
like weight and distance so that discrimination can discover 
conditions referring to their relative values Finally, the model 
includes one rule for storing credit with the responsible rule 
when a correct prediction is made, and another similar 
production for evoking the discrimination process when an 
incorrect prediction is made. 

For the system to improve on the balance scale task, the rules 
acquired in Stage 1 must be preferred over the initial random 
rules, and the Stage ? and Stage 3 rules must he preferred over 
the Stage 1 rules. To achieve this, a rule is weakened whenever 
it makes an incorrect prediction, and a variant is strengthened 
whenever it is releamed. When they are first created, variants are 
weaker than their parent rules, and they must be learned a 
number of times before they begin to alter behavior. This 
approach has worked well on the balance scale task, and 
appears to be a generally useful technique for directing search 
through the space of possible rules. 
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The program was presented with problems selected randomly 
from seven basic problem typos. These included problems in 
which only the weights differed, in which only the distances 
differed, in which both weights and distances were equal, in 
which the two cues agreed, and three types of problems in which 
weight and distance cues conflicted. Figure 2 summarizes the 
model's errors as a function of time (in units of 10 trials). Since 
the system begins with the two random rules BALANCE-1 and 
DOWN 1 and there are three basic predictions from which to 
choose (left down, balance, and right down), one would expect 
•bout 33 percent of the initial predictions to be correct, and this 

is approximately what we find. By trial 100, the system has 
learned (and sufficiently strengthened) the Stage 2 and Stage 3 
rules, so that it makes correct predictions on all but the three 
conflict problems, giving a success rate of approximately 60 
percent. In the case of conflict problems, the model's 
representation of the environment (consisting only of information 
about relative weights and distances) is incapable of even 
stating the torque rule that would correctly predict results in a 
consistent manner. In other words, the programs representation 
of the problem is inherently incomplete. However, the 
discrimination process is sufficiently robust to learn useful rules 
despite this limitation, and the system arrives at a set of rules that 
make correct predictions much of the time, just as children do 
before they are taught the torque rule. 

This brings an important feature of discrimination learning to 
light it allows one to learn useful rules even if one's 
representation is ultimately inadequate. Since our system has 
no notion of torque, it can never fully understand the balance 
scale task, yet it does learn rules that lead to correct predictions 
in many cases Since one can never guarantee that a 
representation is optimal, this is a powerful feature that would be 
advaniageous to any learning system. In addition to being 
interesting from an Al perspective, the ability to learn useful rules 
despite incomplete representations is a prerequisite for 
modeling human behavior on the current task, since children 
apparently do just that. 

Although the model can never master the conflict problems, 
its behavior in these cases is revealing. When an error is made 
on a conflict problem, the system may construct variant rules, 
but it will be unable to discover any conditions which will make 
consistently correct predictions. Thus, these rules will 
continually be weakened and then strengthened, and the 
system's preference on conflict problems will oscillate between 
them. This effect is very similar to behavior that Klahr and 
Siegler observed in one of their subjects, who seemed to switch 
back and forth between weight and distance cues whenever the 
use of one led to an incorrect prediction on a conflict problem. It 
is noteworthy that this oscillation was not intentionally built into 
the model, but arises purely as a byproduc t of learning through 
discrimination and strengthening. 

One detail of Klahr and Siegler's results which our transition 
model does not account for is their subjects' tendency to focus 
more on weights than on distances. In our model, at 
approximately the same time that DOWN-2 is constructed, a 
similar rule is created which includes a condition about greater 
distance instead of greater weight. While Klahr and Siegler 
found evidence for DOWN 2, they found none for the second 
rule. One can imagine introducing preferences into the model to 
focus attention on some attributes in favor of others, but unless 
one can explain where these preferences originated, they would 
provide no more explanation than labeling one dimension as 
more "salient" than another. Thus, our transition model does 
not account for every detail of Klahr and Siegler's results, but it 
does provide a plausible initial explanation of the transition 
between the observed stages. 

CONCLUSION 

In this paper we described a model of the developmental 
process on the balance scale task. Although parts of the model 
are necessarily limited to this domain, the learning mechanisms 
were implemented in a general way. and we are convinced that 
they could be used to explain developmental trends on other 
tasks. One drawback of the model is the speed with which it 
learns. The trials shown in Figure 2 required only 32 CPU 
seconds on a POP-10 computer, while children take years to 
move from Stage 1 to Stage 3 behavior. However, the model was 
presented only with the relevant features of weight and distance, 
and if we had instead included other irrelevant information, its 
learning rate would presumably be reduced to a more 
reasonable level. Clearly, we have taken only a small step 
towards understanding the complex processes responsible for 
cognitive development, but we hope to have clarified one 
approach to studying this area. 
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