THE MERCATOR REPRESENTATION OF SPATIAL KNOWLEDGE

Ernest Davis

Department of Computer Science

Yale University

Abstract

The MERCATOR program constructs a cognitive map
from a sequence of scene descriptions. A new representation
of two-dimensional geography was developed for this
program. Objects are represented by sets of polygons; their
boundaries, by sets of directed edges. The relative positions
of objects are determined by connecting edges. A truth-
conditional semantics for this representation is presented,
its strengths and weaknesses are evaluated, and it is
compared to other Al representations of shape and position.

1 Introduction

A creature that interacts intelligently with the physical
world beyond the immediate range of its senses must know
the geography of its environment; that is, what objects are
around it, and where they are. It must acquire this
knowledge from repeated sensings of its immediate
environment as it moves through space. It must make do
with knowledge that is both incomplete and inexact.

| have developed a theory of how a two-dimensional
cognitive map can be learned from a sequence of scene
descriptions and then used. This theory has been
implemented in a program called MERCATOR. In this
paper, | discuss MEROATOR's representation of geographic
knowledge, called a MERCATOR map. [Davis 83] describes
the theory and program in full.

The MERCATOR representation has the following
strengths:

1. Virtually any 2-dimensional shape can be
described.

2. Any layout of objects can be described,
including layouts where objects overlap.

3. Local information can be precise, despite
vagueness of global information. Specifically,
it is easy to state precisely the distance
between the closest faces of two objects even if
the overall sizes and shapes of the objects are
vaguely known or unknown.

This research has been supported by the NSF under contract
MCS7803599, an NSF Graduate Fellowship, and an IBM Graduate
Fellowship.

4. Multiple shape descriptions provide precise
information when needed and quickly usable
information when sufficient. A long thin object
can be described as a one-dimensional line for
coarse computations, and as a two-dimensional
area for more precision.

5. Operations on the map are justified by a
formal semantics.

6. Objects which are only partially known can be
described.

7. Time required for information retrieval grows
only slowly, and in some cases stays constant,
as the map grows very large. This depends on
two properties of the map: objects are arranged
hierarchically, and computation rely only on

local data.
SIMULATOR

[¥ision | /World) ¢.- _[Motion | Motion

ISimulator] Model| _ .|Simulator| [ Instruc-
: | | tion
U
MERCATOR propar \L

_______ | IMotion |

Corres-
pondances

User
Queries

I
L _lMatehar] cgnitive. {Assimilator|
[ P I Map et [
! .

i

|

IRetrioveri
| I DO (. | [ |
| Assimiletor |
| . | User

Ansuers

The Structure of MERCATOR
Figure 1

Figure 1 shows the structure of MERCATOR.The
program carries oul the geographic reasoning of a simulated
robot wandering a simulated world. The world simulator



296 E. Davis

maintains a world model, reflecting the true state of the
world. The MERCATOR program proper maintains a data
base, representing the robot's knowledge of geography.
When the user issues an instruction for the robot to move,
its motion is reflected in the world model by a motion
simulator, and in the data base by a motion assimilator.
After moving, the vision simulator produces a scene
description. This, like the data base, is expressed as a
MERCATOR map.

The scene description is assimilated into the data base in
a two part process. The matcher finds correspondences
between the data base and the scene description. The
merger adds the information in the scene description into
the data base using these correspondences.

Finally, retrieval programs answer user queries using
information from the data -base. Functions have been
written to determine the distance and direction between
two objects, and to list the objects within a given distance
of a given point.

2 MERCATOR maps
Figure 2 shows a simple pastoral scene. How can we
represent its two-dimensional geography?

Field
D == Bridge
Rock
sTrea
Sidewalk
Read

A Pastoral Scene
Figure 2

The basis elements of our representation are straight line
segments.  Other representations used pixels, generalized
cones, reference frames, etc. However, note that figure 2
apparently captures all necessary geographic information,
yet shows only the boundaries. Since the boundaries are
one-dimensional, straight lines seem a natural choice.
Further reasons for this choice will develop later.

Redrawing figure 2 with straight lines gives figure 3. The
boundary of each object is represented by a set of edges
connecting vertices. Thus, the boundary of the street is
represented by the edges { edge (a,b), edge (b,c), edge (d,e),
edge (e,f) }; the boundary of the sidewalk is { edge (d,e),
edge (e,f)); etc.

This is acceptable for a drawing, but not for a
representation: it does not show the interior of the objects.
Without the pond and the rock, the field would have the
same boundary as the sidewalk; how could the program
distinguish them! This problem is fixed in two ways in
figure 4. Firstly, boundary edges are labelled with directions
specifying the direction counter-clockwise around the

object. Such a directed edge is called a bound. (The
diagram shows the labelling only for the edges around the
street but it applies to the other boundaries as well.) Thus
bound (e-d) is on the boundary of the street, while bound
(d-e) is on the boundary of the field. The sidewalk has
boundaries in both directions on each of its edges.

Fleld

Sidewalk

a Road
\\' ~uf

A Rectified Pastoral Scene

Figure 3
Xm- - _ .
-~ T == - .
1 - T
1 ~ ’
' ~ s
r "~ s
I Ve
4

Scene with Polygons and Bound
Arrowhead next to object name
shows directiocn of bound.
Figure 4
Secondly, we represent the interior of the object by

polygons. The interior of the rock is covered by the polygon
{ polygon (n-o-p-q) }; the interior of the field by the
polygons { polygon (y-x-l-k), polygon (x-d-h-m-1), polygon
(h-d-e-i), polygon (e-f-i), polygon (f-y-k-j-i) }; the interior of
the sidewalk by the degenerate polygons { polygon (d-e),
polygon (e-f) }; the interior of the tree by the single
degenerate polygon { polygon (g)}. A complete shape
description, consisting of a set of bounds and a set of
polygons, is called a region.

There are, in general, many ways to break an area up
into polygons. In figure 4 we could have added an
additional edge (e-i) in the field, and broken polygon (h-d-e-
f-i) into two polygons (h-d-e-i) and (e-f-i); but we are not



obliged to. The system works better if the polygons are
convex, but this is not necessary. It is not even strictly
necessary that the polygons be discrete. Note that the
field, being multiply connected, cannot be described by a
single polygon. The road could, in principle, be covered
with a single polygon, but it is split into two convex
polygons, for ease of computation.

These polygons may require edges and vertices not on the
object boundary. These edges fall into two classes. Internal
edges lie inside a known object, like edge (e-i) and edge (d-
h). Knowledge edges delimit the known extent of the object,
like edge (a-d) and edge (x-y). It is unknown whether or not
the road extends past a-d. The same distinction applies to
vertices. Vertices like vertex (f) are called knowledge
bounds, since it is unknown whether the sidewalk extends
past it. A single edge may serve different functions for
different objects; it may be a boundary edge of one and a
knowledge edge of another.

The next question is how to express dimensions and
relative positions of objects. The easiest method would be
to assign coordinates to each of the vertices. However, such
precise information is usually unavailable. Allowing
coordinates to be accurate only within tolerances does not
help. Generally, local information is much more precise
than long distance information. If all coordinates are
accurate to within five feet, one cannot express the
knowledge that two rocks are two feet apart, and the ten
mile distance from the pond to the next village must be
known accurately to within ten feet.

The diagram itself suggests the solution: local dimensions
are recorded in terms of the lengths and orientations of
edges connecting the vertices. Lengths and orientations are
not specified precisely. Rather, we specify ranges in which
they lie: the length of a-b is between 5.0 and 6.3; its
orientation is between -10 and 10 degrees. We use a fixed
scale and a fixed direction for measuring orientation. (See
Section 5).

There is no alternative to using ranges; even if we
represent these quantities as real numbers, we have to
interpret them as ranges, if our system is to tolerate
inaccuracy. This is particularly clear in a system which
performs recognition. If | record the length of a given wall
as 12.4 feet, and | see a wall which | judge to be 11.9 feet,
can | say they are the same, and the discrepancy is simply
the inaccuracy of the measurement! Probably. If | judge

that the wall | see is 12.3 feet long, almost certainly they
are the same; if | judge that it is 6 feet long, almost
certainly they are different. Kventually, | must make a

biliary judgement as to whether they are the same, and,
when | do, this will define an implicit range of seen values
which are accepted. It is simpler to use ranges from the
beginning; to record in memory that the wall is 124
+/- 12 and to have vision report that it is 11.9 +/- 0.7.
Ranges are better than point values interpreted as ranges
because true ranges allow specification of both value and
tolerance. An upper and lower bound are equivalent to a
value and a tolerance. Since the former is easier to compute
with, we will use it henceforth. Such a range is called a
fuzz range; a quantity bounded by a fuzz range is a fuzzy
quantity.  (Fuzziness is not an attribute of the quantity,
which is presumably real-valued; it is an attribute of our

E. Davis 297

knowledge).

All vertices must be directly or indirectly connected by
edges. In figure 4, the rock and the tree are still
disconnected from the other objects, so more edges must be
drawn. The rock is naturally connected to the pond by
edges from vertex h to vertices o and p. Generally, edges
should connect nearby vertices because their relative
position is more fixed and because it simplifies search
procedures.

The tree is more problematical. Assume that the distance
from the tree to the road is known fairly precisely
-- between 10 and 15 feet -- but the position of the tree
along the road is unknown. One cannot express this state
of knowledge with edges which connect vertex g to the
vertices of figure 4. The indeterminacy of g's parallel
coordinate means that both the angle and the distance of
the edge from d to g or from e to g are very fuzzy; but that
would leave g's distance from the line d-e also
indeterminate.

The solution is to use two edges, connected at an
imaginary vertex X. The edge d-X coincides with the edge
d-c and has a fuzzy length; the edge X-g is perpendicular to
d-X, and has a more precise length. This arrangement of
two edges is common and important enough to be defined
as a separate data structure. It is called a joint from g to d
along d-e, and has three fuzzy quantities: perpendicular
length, from g to X; parallel length, from X to d; and
parallel orientation, from X to d. The parallel orientation is
always either parallel or anti-parallel to the orientation of
the associated edge. (See figures 5 and 6)

: R
r

\ ~ P

-

More edges and a joint.
(Joint shown in x's)
Figure 5

Py

€My o

Orle“t

¢ 43&“‘*uu:::::n

Paray,, e

-
-
L]
-
-
1
»

Per
Peng
DI'F‘nc:cul"r

'tance
A Joink
Figure 6



298 E. Davis

Edge lengths and orientations are less convenient than
coordinates for calculations, but tolerable. The distance

and direction from point a to point i in figure 4 is
calculated from the Ilengths and orientations of the
connecting edges a-d, d-h, h-i. Other quantities can

likewise be calculated from the measures of connecting
edges.

Many objects do not have straight Iline borders.
Therefore, these representations are only approximations. It
is important to define how they are approximations, and to
be able to state how inaccurate a given approximation is.
The measure of the inaccuracy of a region is its grain-size,
which is an upper bound on the distance from any point in
the region to a point in the object. The smaller the grain-
size, the better the approximation. Also, every bound in a
region has a grain-size which, roughly speaking, is an upper
bound on the distance from the bound to the corresponding
part of the boundary. (See figure 7). A more precise
definition is given in Section 3.

Region fits Object

Bound grein-sizes indicated by arrows
Figure 7

Sometimes it is useful to have several regions for a given
object. For instance, it might be useful to have a region
which showed the sidewalk as an object with thickness, or a
region with more detail on the pond, in addition to the
simpler regions of figure 5, which are better for quick,
inaccurate calculations. We therefore separate the
representation of the object as a whole from individual
regions. The overall representation of the object is called a
clump;, it contains all the regions of the object, plus
descriptions of the properties of the object, and the
relations between the regions.

The description of non-geographic properties of objects is
not part of our theory, and is presumably domain-
dependent. Its only function in MERGATOR is determining

whether two clumps cau refer to the same object.
Therefore, we describe objects in terms of slot-filler pairs.
For example a clump described as ((IS-A BRIDGE)
(MATERIAL WOOD)) can match with one described ((IS-A
BRIDGE) (STATE DECREPIT)) but not with ((IS-A
ROAD) (MATERIAL ASPHALT)).

. Multiple Regions
DPJECt is outer, cyryeq
Fine region

. line,

15 line with circle

. . 5.

anrss region s line with hatch marksg

orfecting edges ang JOints not shown ‘
Frgure 8 -

Different regions for a clump can be related to one
another in three ways. Firstly, different regions may share
one or more edges; in figure 8, the two regions share edge
(A, B). Secondly, vertices of different edges may be
connected by edges or joints. In figure 8, there is edge
(K,D), (edge 11,0), a joint from i to c along c-d, etc.

Thirdly, the order of the external vertices around the
boundary is recorded in partial circular ordering (PCO).
This is a data structure which expresses, for any three
elements, whether they are in clockwise order, counter-
clockwise order, or unordered. It is analogous to a DAG
which expresses, for any two elements, whether they are in
increasing order, decreasing order, or unordered. A clump
with a complete outer boundary and no inner boundaries
will have one PCO; otherwise, it will have a PCO for each
separate section of boundary. The PCO for figure 8 is



C~ e Do 2 E- s F
s AN T T

NGAH <L 347K 2L %M 3N-30-P7

A consequence of allowing multiple regions is that the
adjacency relationship becomes relative to grain-size, rather
than primitive, as in many Al representations of position.
At the grain-size of figure 4, for example, the road and the
field share edges d-e and e-f, and are thus adjacent. Finer
regions would show that they are separated by the
sidewalk. This seems plausible in our domain. For planning
a walk home, my house is on Lawrence Street; for walking
the last ten feet, the sidewalk is next to the street; for
fixing the sidewalk, there is a stone curb between the
sidewalk and the street. In other domains, such as the naive
physics of building towers out of blocks, adjacency is more
absolute.

Finally, a map is hierarchically arranged by containment,
('lumps point to their immediate containers and contents.
In our example, the rock and the tree are contained in the
field. In a small map, this makes little difference. However,
a map of realistic size may show furniture inside rooms
inside buildings inside blocks inside ... (See figure 9.) We
shall see in section 1 that such organization makes
calculations much more efficient. The hierarchy is a DAG,
and it is assumed that its upward branching factor is small;
i.e. it is almost a tree.

T
Tt M

o -

LSNPV

L

i, =

Her L

G‘t'ck an«*

Hierarchy of clumps
Figure 9

This representation is complex but complete. To review:
We have rlumpa, representing objects; regions which
approximate the shapes of objects at a given grain-size;
polygona, joints, edges, vertices, and PCOa.

3 Formal Semantics

We now formally define the meaning of a MERCATOR
map in terms of a truth conditional semantics, which gives
necessary and sufficient conditions that the map be a valid
description of the world. Both Hayes [Hayes 77] and
McDermott [McDermott 78] have argued the need for such
interpretations in any system of representation. It is

E. Davis 299

especially appropriate in spatial domains, where semantics
are easy to define, and concepts relate in confusing ways.
One might think that the informal description of the
MERCATOR representation will suffice until one must
answer specific questions. Then it is incomplete and
ambiguous. Can the same edge represent a circular arc of
coarse grain-size in one object and a very straight boundary
in another? If so, how? Can we leave small objects out of a
map? How small must they be? Since all our descriptions
have grain-size inaccuracies, why do we need fuzz ranges?

A formal semantics is particularly necessary in the
matching problem, determining whether two clumps can
represent the same object. There is no canonical
representation of all two dimensional objects. In any
representation scheme which can represent nearly all two
dimensional shapes, there are shapes which can be
represented more than one way. Typically, these are shapes
which have no elegant representation in the scheme, like
circles in the MERCATOR representation. Identifying two
such shape descriptions involves more than matching
identical structures; it requires consideration of how each
description maps onto the object represented. The relation
between description and object must therefore be defined.
Two MERCATOR descriptions of a circular ring can look
entirely different. One cannot write code which compares
the two without a rigorous specification of what each has to
do with the ring.

The semantics of MERCATOR maps are rigorously
defined in [Davis 83]; we will briefly sketch them here.
First we define the microworld that MERCATOR maps
represent. An object O is a closed, connected subset of R?
(the real plane) with a boundary consisting of a finite
number of disjoint simple closed curves; equivalently, it is a
subset of R? homeomorphic to a disk with finitely many
holes. (For example, an object cannot be a figure eight.) A
property is a function from objects to arbitrary sets.
Typical properties are "color" with image set { red, blue,
white ... }; "style" with image set { Gothic, Georgian,
Bauhaus ... ); "is-a" with image set { robot, pond, road,
...}.. A MERCATOR map describes a set of objects with
properties.

Three functions relate the MERCATOR map to the real
world: REAL, COOR, and COVER. REAL maps clumps
onto objects. Thus REAL (CL52) = the Empire State
Building; REAL (CL101) = my coffee table, etc. REAL
preserves containment -- i.e. if CL1 contains CL2, then
REAL (CLI) must contain REAL (CL2), but the converse
need not be true -- and it takes clumps with stated
properties onto objects with those properties ~ i.e. if CL52
is marked as ((IS-A BUILDING) (HEIGHT VERY-HIGH))
then it is OK for REAL (CL52) to be the Empire State
Building, and not OK for it to be the Atlantic Ocean.

COOR takes vertices of the map into points in the plane.
Even if the point represents an object with some extent,
like vertex g in figure 5, COOR (g) is a single point in the
plane. COOR is extended in the natural way to take edges
into line segments, joints into pairs of line segments,
polygons of the map into planar polygons, and regions into
unions of polygons. COOR has to satisfy the following
conditions:



300 E. Davis

-

. For each edge e, COOR (e) has to have length
and orientation within the fuzz ranges which
the map specifies for e. Likewise for joints.

2. For each polygon P in the map, COOR (P)
must be a legitimate, non-self-intersecting
polygon in the plane.

3. For each region REG, every point in COOR
(REG) must be no further than the grain-size
of the interior of REG from the object
represented by REG.

That is, the measurements given for edges and joints are
correct, and regions lie on top of the objects they represent.

COVER is a family of functions. COOR, as stated, maps
directed edges onto line segments in the plane. However, we
must nlate boundary edges to the part of the object
boundary that they represent. Therefore, for each directed
edge b in the boundary of a region, we define a continuous
function COVER, from COOR (6) into the object
boundary. OOVER” must satisfy the following conditions:

1. For all x in COOR (6), the distance from x to
COVERy, (x) must be less than the grain-size of
6.

2. If b and c are directed edges from the shell of
region REG which meet at a vertex v, and v is
a real bound of REG, then COVER, (COOR
(v)) = COVER ; (COOR (v)). This rules out
situations like figure 10, which is allowed if v is
a knowledge bound of REG.

3. The real vertices of a clump map into the
boundary of the corresponding object so as to
satisfy the PCOs of the clump.

Region is square. Object is squiggly.
This is corsistent with the semantics
if v is » knowledge vertex.
Figura 10

The MERCATOR map is valid if it is possible to define
REAL, COOR, and COVER so as to satisfy all these
conditions.

This semantics was used substantially in constructing the
program. Almost all steps of the various algorithms can be
justified in terms of the semantics, usually as a deduction
from the map(s), sometimes as a plausible inference.

4 Fuzz and grain-size

Having stated the semantics, we can clarify the
distinction between fuzz and grain-size. Fuzz ranges are
purely constraints on the COOR function. Their
significance is unrelated to the real world. They would
mean the same in a map without any clumps, and with
only edges, joints, and vertices. They restrict the possible
relative positions of the vertices. Grain-size describes the fit
of the geometry to the object.

In practice, fuzz measures uncertainty of dimensions;
grain-size measures uncertainty or complexity of shape. (See
figure 11). If everything was a simple polygon, but
dimensions were hard to determine, there would be fuzz but
no grain-size. If all dimensions were precisely known, but
shapes were complex and had to be simplified, there would
be grain-size but no fuzz. Grain-size is more fundamental
than fuzz, since it becomes necessary by the mere fact of
approximating shapes with polygons. Grain-size ran be used
to express uncertainty in dimension or position, though at
great loss of information. Fuzzy polygons cannot represent
a circle without some grain-size inaccuracy.

00

Variation within fuzz rangel
[:::::] C : 1&?
Variarion within grain-size

Figure 11

Computationally, fuzz is easier to deal with than grain-
size. In comparing two regions for possible identity, for
example, two regions with fuzzy edges but very fine grain-
size are identical only if corresponding sets of edges have
overlapping fuzzes. Two shapes whose grain-size is not
much smaller than the length of sides can be wildly
different, yet represent the same object. (See figure 12).

Two regions for the same object.

The grain-size can be as small ag this:

Figure 12



5 Inadequacies of the representation

The most important gap in MERCATOR maps is that
they only express the presence of an object; they cannot
assert, explicitly or implicitly, an object's absence. The
absence of an object from a map proves nothing; maps are
not obliged to show everything, or anything, in a particular
area. No map is inconsistent with the presence of any
object anywhere, except that objects represented at one
place in the map can't also be somewhere else in the map.
Looking at a MERCATOR representation of your office,
you can't say there are no rhinoceroses in the office, or even
that there is reason to believe there aren't. (This answers
the question posed previously how we can leave small
objects out of a map. We can leave anything out of a map.)

One way to fix this gap is with completeness statements.
These have the form "All objects with property p larger
than grain-size g inside region R have a corresponding
clump in the map." For example, "All buildings larger than
0.0 in the block are shown," "All solid objects with
diameter greater than one foot in the room are shown,”
"All wild animals in the house are shown", etc. Statements
of this kind allow us to deduce that if there is no rhinoceros
shown in the office, there cannot be a rhinoceros in the
office. Such statements can be explicit in the data base, or
implicit using default inference rules. It might, for
example, be part of the semantics of a region that all
objects inside it larger than twice the grain-size are
represented. We have not implemented this feature in any
form.

Secondly, some natural combinations of precise shape and

imprecise dimensions cannot be expressed in a MERCATOR
map. For example, there is no way to specify that a shape
is a rectangle rather than a bizarre quadrilateral, if the
lengths and orientations of all the edges are fuzzy.

The correct solution is to express lengths and orientations
in relative terms. That is, length measures should be in
terms like "A-B is between 2.5 and 3.0 times as long as
C-D" rather than "A-B is between 4.0 and 5.0 units" or
"The direction from A to B is between 0.5 to 0.6 counter-
clockwise of the direction from C to D" rather than "The
direction from A to B is between 1.0 and 1.2 in the absolute
scale." Using such facts, it is easy to state that ABCD is a
rectangle. It suffices to say:

"A-B is equal to C-D in length and orientation.”
"D-A is equal to B-C in length and orientation."”
"A-B is perpendicular to B-C."

In [Davis 81] and [McDermott 80] we discuss data bases for
such facts, (there called "size trees" and "orientation
trees"), and we show that they can be maintained
effectively.

MERCATOR assumes that the robot always knows his
absolute orientation, which is a very strong assumption. In
fact, this problem is part of the previous one. ldeally, we
would express the orientation of seen edges with respect to
the current orientation of the robot, the orientation of
known edges with respect to previous orientations of the
robot, and the various orientations of the robot over time
would be related to one another more or less fuzzily. The
solution alluded to above will apply here too. There are

E. Davis 301

also a less drastic solution by which the robot keeps track
of his absolute orientation within fuzz bounds, which he
tightens each time he matches the scene description against
the known map.

Finally, the range of worlds which can be represented in a
MERCATOR map is limited. It is limited to two-
dimensions, and to to situations where things come in well
defined chunks, with perceptible boundaries. It is useless for
describing a hill, a Monet, or Chinatown. These
simplifications are not as restrictive as it might seem. The
question is not "In what kinds of environments are these

assumptions true!" — obviously very few — but "How much
information is lost in describing a scene in these terms?",
which, for many scenes, and many purposes, may not be
very great.

Acknowledgements

1 thank Drew McDermott for advising this research. | also
thank him, together with Bianca lano, Stan Letovsky, and
David Miller, for helpful criticisms of this paper.

References

1. Davis, Ernest. Organizing Spatial Knowledge. Tech.
Rept. 193, Yale University Computer Science Department,
1981.

2. Davis, Ernest. Reasoning and Acquiring Geographic
Knowledge. Ph.D. Th., Yale, 1983. |In preparation

3. Hayes, Patrick. In Defence of Logic. Proc. I.ICAIl 7,
IJCAI,1977.

4. McDermott, Drew V. "Tarskian semantics or, no
notation without denotation!" Cognitive Science 2, 3
(1978).

5. McDermott, Drew V. Spatial inferences with ground,
metric formulas on simple objects. Tech. Rept. 173, Yale
University Computer Science Department, 1980.



