
T H E M E R C A T O R R E P R E S E N T A T I O N O F S P A T I A L K N O W L E D G E 

Ernest Davis 

Department of Computer Science 

Yale University 

Abs t rac t 

The M E R C A T O R program constructs a cognitive map 
from a sequence of scene descriptions. A new representation 
of two-dimensional geography was developed for this 
program. Objects are represented by sets of polygons; their 
boundaries, by sets of directed edges. The relative positions 
of objects are determined by connecting edges. A t ru th -
condit ional semantics for this representation is presented, 
its strengths and weaknesses are evaluated, and it is 
compared to other AI representations of shape and position. 

1 I n t r o d u c t i o n 
A creature that interacts intel l igently w i th the physical 

world beyond the immediate range of its senses must know 
the geography of its environment; that is, what objects are 
around i t , and where they are. It must acquire this 
knowledge from repeated sensings of its immediate 
environment as it moves through space. It must make do 
wi th knowledge that is both incomplete and inexact. 

I have developed a theory of how a two-dimensional 
cognitive map can be learned f rom a sequence of scene 
descriptions and then used. This theory has been 
implemented in a program called M E R C A T O R . In this 
paper, I discuss MEROATOR 's representation of geographic 
knowledge, called a M E R C A T O R map. [Davis 83] describes 
the theory and program in fu l l . 

The M E R C A T O R representation has the fol lowing 
strengths: 

1. V i r tua l ly any 2-dimensional shape can be 
described. 

2. Any layout of objects can be described, 
including layouts where objects overlap. 

3. Local informat ion can be precise, despite 
vagueness of global in format ion. Specifically, 
it is easy to state precisely the distance 
between the closest faces of two objects even if 
the overall sizes and shapes of the objects are 
vaguely known or unknown. 

This research has been supported by the NSF under contract 
MCS7803599, an NSF Graduate Fellowship, and an IB M Graduate 
Fellowship. 

4. Mul t ip le shape descriptions provide precise 
informat ion when needed and quickly usable 
informat ion when sufficient. A long th in object 
can be described as a one-dimensional line for 
coarse computat ions, and as a two-dimensional 
area for more precision. 

5. Operations on the map are just i f ied by a 
formal semantics. 

6. Objects which are only part ial ly known can be 
described. 

7. T ime required for informat ion retrieval grows 
only slowly, and in some cases stays constant, 
as the map grows very large. This depends on 
two properties of the map: objects are arranged 
hierarchically, and computat ion rely only on 
local data. 
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maintains a world model, reflecting the true state of the 
wor ld. The M E R C A T O R program proper maintains a data 
base, representing the robot's knowledge of geography. 
When the user issues an instruct ion for the robot to move, 
its mot ion is reflected in the world model by a motion 
simulator, and in the data base by a mot ion assimilator. 
Af ter moving, the vision simulator produces a scene 
description. This, like the data base, is expressed as a 
M E R C A T O R map. 

The scene description is assimilated into the data base in 
a two par t process. The matcher finds correspondences 
between the data base and the scene description. The 
merger adds the informat ion in the scene description into 
the data base using these correspondences. 

Final ly, retrieval programs answer user queries using 
informat ion f rom the data -base. Functions have been 
wr i t ten to determine the distance and direction between 
two objects, and to list the objects w i th in a given distance 
of a given point . 

2 M E R C A T O R maps 
Figure 2 shows a simple pastoral scene. How can we 

represent its two-dimensional geography? 

The basis elements of our representation are straight line 
segments. Other representations used pixels, generalized 
cones, reference frames, etc. However, note tha t figure 2 
apparently captures all necessary geographic in format ion, 
yet shows only the boundaries. Since the boundaries are 
one-dimensional, straight lines seem a natural choice. 
Further reasons for this choice wi l l develop later. 

Redrawing figure 2 w i th straight lines gives figure 3. The 
boundary of each object is represented by a set of edges 
connecting vertices. Thus, the boundary of the street is 
represented by the edges { edge (a,b), edge (b,c), edge (d,e), 
edge (e,f) }; the boundary of the sidewalk is { edge (d,e), 
edge (e,f)) ; etc. 

This is acceptable for a drawing, but not for a 
representation: it does not show the interior of the objects. 
Wi thout the pond and the rock, the field would have the 
same boundary as the sidewalk; how could the program 
distinguish t h e m ! This problem is f ixed in two ways in 
figure 4. First ly, boundary edges are labelled w i th directions 
specifying the direction counter-clockwise around the 

object. Such a directed edge is called a bound. (The 
diagram shows the labell ing only for the edges around the 
street but it applies to the other boundaries as well.) Thus 
bound (e-d) is on the boundary of the street, while bound 
(d-e) is on the boundary of the field. The sidewalk has 
boundaries in both directions on each of its edges. 

Secondly, we represent the interior of the object by 

polygons. The interior of the rock is covered by the polygon 
{ polygon (n-o-p-q) }; the interior of the field by the 
polygons { polygon (y-x- l -k) , polygon (x-d-h-m-1), polygon 
(h-d-e-i), polygon (e-f-i), polygon ( f -y-k- j - i ) }; the interior of 
the sidewalk by the degenerate polygons { polygon (d-e), 
polygon (e-f) }; the interior of the tree by the single 
degenerate polygon { polygon (g) } . A complete shape 
descript ion, consisting of a set of bounds and a set of 
polygons, is called a region. 

There are, in general, many ways to break an area up 
into polygons. In figure 4 we could have added an 
addit ional edge (e-i) in the field, and broken polygon (h-d-e-
f- i) into two polygons (h-d-e-i) and (e-f- i); but we are not 



E. Davis 297 

obliged to. The system works better if the polygons are 
convex, but this is not necessary. It is not even str ict ly 
necessary that the polygons be discrete. Note that the 
f ield, being mul t ip ly connected, cannot be described by a 
single polygon. The road could, in principle, be covered 
with a single polygon, but it is split into two convex 
polygons, for ease of computat ion. 

These polygons may require edges and vertices not on the 
object boundary. These edges fall into two classes. Internal 
edges lie inside a known object, like edge (e-i) and edge (d-
h). Knowledge edges del imit the known extent of the object, 
like edge (a-d) and edge (x-y). It is unknown whether or not 
the road extends past a-d. The same distinction applies to 
vertices. Vertices like vertex (f) are called knowledge 
bounds, since it is unknown whether the sidewalk extends 
past i t . A single edge may serve different functions for 
different objects; it may be a boundary edge of one and a 
knowledge edge of another. 

The next question is how to express dimensions and 
relative positions of objects. The easiest method would be 
to assign coordinates to each of the vertices. However, such 
precise information is usually unavailable. Al lowing 
coordinates to be accurate only wi th in tolerances does not 
help. Generally, local information is much more precise 
than long distance informat ion. If all coordinates are 
accurate to wi th in five feet, one cannot express the 
knowledge that two rocks are two feet apart, and the ten 
mile distance from the pond to the next village must be 
known accurately to wi th in ten feet. 

The diagram itself suggests the solution: local dimensions 
are recorded in terms of the lengths and orientations of 
edges connecting the vertices. Lengths and orientations are 
not specified precisely. Rather, we specify ranges in which 
they lie: the length of a-b is between 5.0 and 6.3; its 
orientation is between -10 and 10 degrees. We use a fixed 
scale and a fixed direction for measuring orientation. (See 
Section 5). 

There is no alternative to using ranges; even if we 
represent these quantities as real numbers, we have to 
interpret them as ranges, if our system is to tolerate 
inaccuracy. This is part icularly clear in a system which 
performs recognition. If I record the length of a given wall 
as 12.4 feet, and I see a wal l which I judge to be 11.9 feet, 
can I say they are the same, and the discrepancy is simply 
the inaccuracy of the measurement! Probably. If I judge 
that the wall I see is 12.3 feet long, almost certainly they 
are the same; if I judge that it is 6 feet long, almost 
certainly they are different. Kventually, I must make a 
bil iary judgement as to whether they are the same, and, 
when I do, this wi l l define an impl ic i t range of seen values 
which are accepted. It is simpler to use ranges from the 
beginning; to record in memory that the wall is 12.4 
+ /- 1.2 and to have vision report that it is 11.9 + / - 0.7. 
Ranges are better than point values interpreted as ranges 
because true ranges allow specification of both value and 
tolerance. An upper and lower bound are equivalent to a 
value and a tolerance. Since the former is easier to compute 
w i th , we wi l l use it henceforth. Such a range is called a 
fuzz range; a quant i ty bounded by a fuzz range is a fuzzy 
quantity. (Fuzziness is not an at t r ibute of the quant i ty , 
which is presumably real-valued; it is an at t r ibute of our 

knowledge). 

Al l vertices must be directly or indirectly connected by 
edges. In figure 4, the rock and the tree are sti l l 
disconnected from the other objects, so more edges must be 
drawn. The rock is naturally connected to the pond by 
edges from vertex h to vertices o and p. Generally, edges 
should connect nearby vertices because their relative 
position is more fixed and because it simplifies search 
procedures. 

The tree is more problematical. Assume that the distance 
from the tree to the road is known fair ly precisely 
-- between 10 and 15 feet -- but the position of the tree 
along the road is unknown. One cannot express this state 
of knowledge wi th edges which connect vertex g to the 
vertices of figure 4. The indeterminacy of g's parallel 
coordinate means that both the angle and the distance of 
the edge from d to g or from e to g are very fuzzy; but that 
would leave g's distance from the line d-e also 
indeterminate. 

The solution is to use two edges, connected at an 
imaginary vertex X. The edge d-X coincides w i th the edge 
d-c and has a fuzzy length; the edge X-g is perpendicular to 
d-X, and has a more precise length. This arrangement of 
two edges is common and important enough to be defined 
as a separate data structure. It is called a joint from g to d 
along d-e, and has three fuzzy quantit ies: perpendicular 
length, from g to X; parallel length, from X to d; and 
parallel or ientat ion, from X to d. The parallel orientation is 
always either parallel or anti-parallel to the orientation of 
the associated edge. (See figures 5 and 6) 
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Edge lengths and orientations are less convenient than 
coordinates for calculations, but tolerable. The distance 
and direction from point a to point i in figure 4 is 
calculated from the lengths and orientations of the 
connecting edges a-d, d-h, h-i. Other quantit ies can 
likewise be calculated from the measures of connecting 
edges. 

Many objects do not have straight line borders. 
Therefore, these representations are only approximations. It 
is important to define how they are approximations, and to 
be able to state how inaccurate a given approximation is. 
The measure of the inaccuracy of a region is its grain-size, 
which is an upper bound on the distance from any point in 
the region to a point in the object. The smaller the grain-
size, the better the approximat ion. Also, every bound in a 
region has a grain-size which, roughly speaking, is an upper 
bound on the distance from the bound to the corresponding 
part of the boundary. (See figure 7). A more precise 
def ini t ion is given in Section 3. 

whether two clumps cau refer to the same object. 
Therefore, we describe objects in terms of slot-fi l ler pairs. 
For example a clump described as ((IS-A BRIDGE) 
( M A T E R I A L WOOD) ) can match wi th one described ((IS-A 
BRIDGE) ( S T A T E DECREPIT) ) but not w i th ((IS-A 
ROAD) ( M A T E R I A L ASPHALT) ) . 

Sometimes it is useful to have several regions for a given 
object. For instance, it might be useful to have a region 
which showed the sidewalk as an object w i th thickness, or a 
region wi th more detail on the pond, in addit ion to the 
simpler regions of figure 5, which are better for quick, 
inaccurate calculations. We therefore separate the 
representation of the object as a whole from individual 
regions. The overall representation of the object is called a 
clump; it contains all the regions of the object, plus 
descriptions of the properties of the object, and the 
relations between the regions. 

The description of non-geographic properties of objects is 
not part of our theory, and is presumably domain-
dependent. Its only funct ion in M E R G A T O R is determining 
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Different regions for a c lump can be related to one 
another in three ways. First ly, different regions may share 
one or more edges; in figure 8, the two regions share edge 
(A, B). Secondly, vertices of different edges may be 
connected by edges or jo ints. In figure 8, there is edge 
(K,D) , (edge 11,0), a jo in t f rom i to c along c-d, etc. 

Th i rd ly , the order of the external vertices around the 
boundary is recorded in partial circular ordering (PCO). 
This is a data structure which expresses, for any three 
elements, whether they are in clockwise order, counter-
clockwise order, or unordered. It is analogous to a DAG 
which expresses, for any two elements, whether they are in 
increasing order, decreasing order, or unordered. A clump 
wi th a complete outer boundary and no inner boundaries 
w i l l have one PCO; otherwise, it will have a PCO for each 
separate section of boundary. The PCO for figure 8 is 
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A consequence of allowing mult iple regions is tha t the 
adjacency relationship becomes relative to grain-size, rather 
than pr imi t ive, as in many AI representations of position. 
At the grain-size of figure 4, for example, the road and the 
field share edges d-e and e-f, and are thus adjacent. Finer 
regions would show that they are separated by the 
sidewalk. This seems plausible in our domain. For planning 
a walk home, my house is on Lawrence Street; for walking 
the last ten feet, the sidewalk is next to the street; for 
f ix ing the sidewalk, there is a stone curb between the 
sidewalk and the street. In other domains, such as the naive 
physics of bui lding towers out of blocks, adjacency is more 
absolute. 

Final ly, a map is hierarchically arranged by containment, 
( ' lumps point to their immediate containers and contents. 
In our example, the rock and the tree are contained in the 
field. In a small map, this makes l i t t le difference. However, 
a map of realistic size may show furni ture inside rooms 
inside buildings inside blocks inside ... (See figure 9.) We 
shall see in section 1 that such organization makes 
calculations much more efficient. The hierarchy is a DAG, 
and it is assumed that its upward branching factor is small; 
i.e. it is almost a tree. 

3 F o r m a l Semant ics 
We now formal ly define the meaning of a M E R C A T O R 

map in terms of a t ru th condit ional semantics, which gives 
necessary and sufficient conditions that the map be a val id 
description of the world. Both Hayes [Hayes 77] and 
McDermot t [McDermott 78] have argued the need for such 
interpretations in any system of representation. It is 

especially appropriate in spatial domains, where semantics 
are easy to define, and concepts relate in confusing ways. 
One might th ink that the informal description of the 
M E R C A T O R representation wi l l suffice unt i l one must 
answer specific questions. Then it is incomplete and 
ambiguous. Can the same edge represent a circular arc of 
coarse grain-size in one object and a very straight boundary 
in another? If so, how? Can we leave small objects out of a 
map? How small must they be? Since all our descriptions 
have grain-size inaccuracies, why do we need fuzz ranges? 

A formal semantics is particularly necessary in the 
matching problem, determining whether two clumps can 
represent the same object. There is no canonical 
representation of all two dimensional objects. In any 
representation scheme which can represent nearly all two 
dimensional shapes, there are shapes which can be 
represented more than one way. Typical ly, these are shapes 
which have no elegant representation in the scheme, like 
circles in the M E R C A T O R representation. Identifying two 
such shape descriptions involves more than matching 
identical structures; it requires consideration of how each 
description maps onto the object represented. The relation 
between description and object must therefore be defined. 
Two M E R C A T O R descriptions of a circular r ing can look 
entirely different. One cannot write code which compares 
the two wi thout a rigorous specification of what each has to 
do wi th the r ing. 

The semantics of M E R C A T O R maps are rigorously 
defined in [Davis 83]; we wi l l briefly sketch them here. 
First we define the microworld that M E R C A T O R maps 
represent. An object O is a closed, connected subset of R2 

(the real plane) w i th a boundary consisting of a finite 
number of disjoint simple closed curves; equivalently, it is a 
subset of R2 homeomorphic to a disk w i th finitely many 
holes. (For example, an object cannot be a figure eight.) A 
property is a function from objects to arbitrary sets. 
Typical properties are "color" w i th image set { red, blue, 
white ... }; "style" w i th image set { Gothic, Georgian, 
Bauhaus ... ); "is-a" w i th image set { robot, pond, road, 
. . . } . A M E R C A T O R map describes a set of objects w i th 
properties. 

Three functions relate the M E R C A T O R map to the real 
wor ld: REAL, COOR, and COVER. R E A L maps clumps 
onto objects. Thus R E A L (CL52) = the Empire State 
Bui lding; REAL (CL101) = my coffee table, etc. REAL 
preserves containment -- i.e. if CL1 contains CL2 , then 
REAL ( C L l ) must contain R E A L (CL2) , but the converse 
need not be true -- and it takes clumps w i th stated 
properties onto objects w i th those properties ~ i.e. if CL52 
is marked as ((IS-A BU ILD ING) ( H E I G H T VERY-HIGH)) 
then it is OK for R E A L (CL52) to be the Empire State 
Bui ld ing, and not OK for i t to be the At lant ic Ocean. 

COOR takes vertices of the map into points in the plane. 
Even if the point represents an object w i th some extent, 
like vertex g in figure 5, COOR (g) is a single point in the 
plane. COOR is extended in the natural way to take edges 
into line segments, jo ints into pairs of line segments, 
polygons of the map into planar polygons, and regions into 
unions of polygons. COOR has to satisfy the fol lowing 
conditions: 
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1. For each edge e, COOR (e) has to have length 
and orientation wi th in the fuzz ranges which 
the map specifies for e. Likewise for jo ints. 

2. For each polygon P in the map, COOR (P) 
must be a legit imate, non-self-intersecting 
polygon in the plane. 

3. For each region REG, every point in COOR 
(REG) must be no further than the grain-size 
of the interior of REG from the object 
represented by REG. 

That is, the measurements given for edges and joints are 
correct, and regions lie on top of the objects they represent. 

COVER is a fami ly of functions. COOR, as stated, maps 
directed edges onto line segments in the plane. However, we 
must n l a te boundary edges to the part of the object 
boundary that they represent. Therefore, for each directed 
edge b in the boundary of a region, we define a continuous 
funct ion COVER b from COOR (6) into the object 
boundary. OOVER^ must satisfy the fol lowing conditions: 

1. For all x in COOR (6), the distance from x to 
COVER b (x) must be less than the grain-size of 
6. 

2. If b and c are directed edges from the shell of 
region REG which meet at a vertex v, and v is 
a real bound of REG, then COVER b (COOR 
(v)) = COVER c (COOR (v)). This rules out 
situations like figure 10, which is allowed if v is 
a knowledge bound of REG. 

3. The real vertices of a c lump map into the 
boundary of the corresponding object so as to 
satisfy the PCOs of the c lump. 

The M E R C A T O R map is val id if it is possible to define 
R E A L , COOR, and COVER so as to satisfy all these 
condit ions. 

This semantics was used substantially in constructing the 
program. Almost all steps of the various algorithms can be 
just i f ied in terms of the semantics, usually as a deduction 
f rom the map(s), sometimes as a plausible inference. 

4 Fuzz and grain-size 
Having stated the semantics, we can clarify the 

dist inct ion between fuzz and grain-size. Fuzz ranges are 
purely constraints on the COOR funct ion. Thei r 
significance is unrelated to the real wor ld. They would 
mean the same in a map wi thout any clumps, and w i th 
only edges, jo ints, and vertices. They restrict the possible 
relative positions of the vertices. Grain-size describes the f i t 
of the geometry to the object. 

In practice, fuzz measures uncertainty of dimensions; 
grain-size measures uncertainty or complexity of shape. (See 
figure 11). If everything was a simple polygon, but 
dimensions were hard to determine, there would be fuzz but 
no grain-size. If all dimensions were precisely known, but 
shapes were complex and had to be simpli f ied, there would 
be grain-size but no fuzz. Grain-size is more fundamental 
than fuzz, since it becomes necessary by the mere fact of 
approximat ing shapes w i th polygons. Grain-size ran be used 
to express uncertainty in dimension or position, though at 
great loss of in format ion. Fuzzy polygons cannot represent 
a circle wi thout some grain-size inaccuracy. 

Computat ional ly , fuzz is easier to deal w i th than grain-
size. In comparing two regions for possible ident i ty, for 
example, two regions wi th fuzzy edges but very fine grain-
size are identical only if corresponding sets of edges have 
overlapping fuzzes. Two shapes whose grain-size is not 
much smaller than the length of sides can be wi ld ly 
dif ferent, yet represent the same object. (See figure 12). 

Two reg ions f o r the same o b j e c t . 
The g r a i n - s i z e can be as smal l a 

F igure 12 

s t h i s : 
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5 Inadequac ies of t he rep resen ta t i on 
The most important gap in M E R C A T O R maps is tha t 

they only express the presence of an object; they cannot 
assert, expl ici t ly or impl ic i t ly , an object's absence. The 
absence of an object from a map proves nothing; maps are 
not obliged to show everything, or anything, in a part icular 
area. No map is inconsistent w i th the presence of any 
object anywhere, except that objects represented at one 
place in the map can't also be somewhere else in the map. 
Looking at a M E R C A T O R representation of your office, 
you can't say there are no rhinoceroses in the office, or even 
that there is reason to believe there aren't. (This answers 
the question posed previously how we can leave small 
objects out of a map. We can leave anything out of a map.) 

One way to fix this gap is w i th completeness statements. 
These have the form "Al l objects wi th property p larger 
than grain-size g inside region R have a corresponding 
c lump in the map." For example, "A l l buildings larger than 
0.0 in the block are shown," "A l l solid objects w i th 
diameter greater than one foot in the room are shown," 
"A l l wi ld animals in the house are shown", etc. Statements 
of this kind allow us to deduce that if there is no rhinoceros 
shown in the office, there cannot be a rhinoceros in the 
office. Such statements can be explicit in the data base, or 
impl ic i t using default inference rules. It might , for 
example, be part of the semantics of a region that all 
objects inside it larger than twice the grain-size are 
represented. We have not implemented this feature in any 
form. 

Secondly, some natural combinations of precise shape and 

imprecise dimensions cannot be expressed in a M E R C A T O R 
map. For example, there is no way to specify that a shape 
is a rectangle rather than a bizarre quadri lateral, if the 
lengths and orientations of all the edges are fuzzy. 

The correct solution is to express lengths and orientations 
in relative terms. T h a t is, length measures should be in 
terms like ' 'A -B is between 2.5 and 3.0 times as long as 
C-D" rather than "A-B is between 4.0 and 5.0 units" or 
"The direction from A to B is between 0.5 to 0.6 counter-
clockwise of the direction from C to D" rather than "The 
direction from A to B is between 1.0 and 1.2 in the absolute 
scale." Using such facts, it is easy to state that A B C D is a 
rectangle. It suffices to say: 

"A-B is equal to C-D in length and orientat ion." 
"D-A is equal to B-C in length and or ientat ion." 
"A-B is perpendicular to B-C." 

In [Davis 81] and [McDermott 80] we discuss data bases for 
such facts, (there called "size trees" and "orientat ion 
trees"), and we show that they can be maintained 
effectively. 

M E R C A T O R assumes that the robot always knows his 
absolute or ientat ion, which is a very strong assumption. In 
fact, this problem is part of the previous one. Ideally, we 
would express the orientat ion of seen edges w i th respect to 
the current orientat ion of the robot, the orientat ion of 
known edges w i th respect to previous orientations of the 
robot, and the various orientations of the robot over t ime 
would be related to one another more or less fuzzily. The 
solution alluded to above wi l l apply here too. There are 

also a less drastic solution by which the robot keeps track 
of his absolute orientat ion w i th in fuzz bounds, which he 
tightens each t ime he matches the scene description against 
the known map. 

Final ly, the range of worlds which can be represented in a 
M E R C A T O R map is l imi ted. It is l imi ted to two-
dimensions, and to to situations where things come in well 
defined chunks, w i th perceptible boundaries. It is useless for 
describing a h i l l , a Monet, or Chinatown. These 
simplif ications are not as restrictive as it might seem. The 
question is not "In what kinds of environments are these 

assumptions t rue! " — obviously very few — but "How much 
informat ion is lost in describing a scene in these terms?", 
which, for many scenes, and many purposes, may not be 
very great. 
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