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ABSTRACT 

Scientific discovery is a complex process, and in this paper we 
consider three of its many facets - discovering laws of 
qualitative structure, finding quantitative relations between 
variables, and formulating sfructural models of reactions. We 
describe three discovery systems - GLAUBER, BACON, and 
DALTON - thr.t address these three aspects of the scientific 
process. GLAUBER forms classes of objects based on 
regularities in qualitative data, and states abstract laws in terms 
of these classes. BACON includes heuristics for finding 
numerical laws, for postulating intrinsic properties, and for 
noting common divisors. DALTON formulates molecular models 
that account for observed reactions, taking advantage of 
theoretical assumptions to direct its search if they are available. 
We show how each of the programs is capable of rediscovering 
laws or models that were found in the early days of chemistry. 
Finally, we consider some possble interactions between these 
systems, and the need for an integrated theory of discovery. 

INTRODUCTION: THE DIVERSITY OF DISCOVERY 

Scientific discovery is a process through which we acquire 
knowledge about the world This knowledge takes many forms, 
ranging from empirical regularities to structural models, and 
from qualitative relations to numerical laws. The diversity of 
scientific knowledge is accompanied by a diversity of processes 
for generating that knowledge. For instance, one would expect 
that quite different forms of reasoning led to the discovery of the 
ideal gas law, to the classification of organisms, and to the 
formulation of the atomic hypothesis. 

Given the diversity of scientific discovery, two basic questions 
present themselves. First, what are the various types of scientific 
knowledge and the processes that lead to them? Second, how do 
these forms of reasoning interact to enable science as a whole to 
advance? In this paper we provide a response to the first of these 
questions in the form of three Al systems that address different 
aspects of the discovery process. One of these programs 
focuses on finding laws of qualitative structure, another is 
concerned with discovering quantitative relations between 
variables, and the third deals with the formulation of simple 
structural models. Below we discuss each of the systems and its 
application to some of facet of the history of chemistry. We will 
reserve our comments on the second question - how these 
systems might interact - until after we have described the 
systems themselves. 
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DISCOVERING QUALITATIVE LAWS 

By the 17th and 13th Centuries, chemists had made 
considerable progress in classifying substances on the basis of 
observable properties. For example, the class of acids had been 
defined in terms of its members' sour taste, their changing the 
color of organic dyes, dissolving metals, and so forth. 
Exceptions to these characteristics occurred, but sufficient 
regularity was present to make acid a useful concept. Along with 
acids, other classes such as metals, alkalis, and salts had been 
formulated in terms of similar properties. In addition to basing 
classes on properties of individual substances, the early 
chemists also noted relations between substances. Thus, they 
formulated the qualitative law "acids combine with alkalis to form 
salts", later generalizing this by replacing alkalis with the more 
abstract notion of a base. 

GLAUBER: A Qua l i t a t i ve D i scove ry S y s t e m 

In order to better understand the processes through which 
such laws were found, we constructed a qualitative discovery 
system. We have named the program GLAUBER, after the 17th 
Century chemist who played an important role in developing the 
theory of acids and bases. GLAUBER inputs qualitative facts, 
such as "hydrochloric acid tastes sour" and "hydrochloric acid 
combines with sodium hydroxide to form sodium chlor ide", and 
produces two forms of output: a set of abstract classes, such as 
acids, alkalis, and salts, along with their members; and a set of 
laws, such as "acids taste sour" and "acids react with alkalis to 
form salts", stated in terms of these classes. 

We should say a few words about GLAUBER'S representation 
of data, since it has implications for the system's discovery 
methods. Facts are represented using a simple frame-like 
structure, consisting of a predicate followed by a number of 
attribute-value pairs. The facts mentioned above are represented 
by the propositions (HAS-QUALITY OBJECT (HYDROCHLORIC-ACID) 

TASTE (SOUR)) and (REACTS INPUTS (HYDROCHLORIC ACID SODIUM-
HYDROXIDE) OUTPUTS (SODIUM-CHLORIDE)) . In the second 
expression the predicate is REACTS, the two attributes are INPUTS 
and OUTPUTS, and their respective values are (HYDROCHLORIC-
ACID SODIUM-HYDROXIDE) and (SODIUM-CHLORIDE). In this 
example, the INPUTS attribute has two values, which represent 
the two substances that combine in the reaction. GLAUBER 
knows that the order of these values is not significant. 

No t ing Pa t t e rns and De f i n i ng C lasses 

GLAUBER inputs a set of facts such as the above, and iterates 
through all symbols that occur as values, searching for facts that 
have the same predicate and the same value for a given attribute. 
For example, upon considering the symbol SOUR, the system 
would note that a number of chemicals - hydrochloric acid, 
nitric acid, and sulfuric acid - all have a sour taste. When such a 
regularity is discovered, GLAUBER defines a new class and 
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stores the symbols that differ in these facts as members of the 
class. In addition, the program formulates a pattern that is 
identical with these facts, but in which the differing values have 
been replaced by the class name. If we call the class formed in 
this example SOUR TASTERS, then the three substances would be 
stored as members of this class, and the associated pattern 
would be represented as (HAS QUALITY OBJECT (SOUR TASTERS) 

TASTE (SOUR)). 

Relational patterns can also be discovered. For instance, 
suppose that while focusing on sodium hydroxide, GLAUBER 
notes that this chemical combines v/ith hydrochloric acid to form 
sodium chloride, with nitric acid to form sodium nitrate, and with 
sulfuric acid to form Glauber's salt (Na2SO4 )In this situation, 
GLAUBER would create two classes. The first (let us call it 
sodium-hydroxide-reactors) contains hydrochloric acid, nitric 
acid, and sulfuric acid, while the second (sodium hydroxide-
results) contains sodium chloride, sodium nitrate, and Glauber's 
salt The associated pattern would be stated as (REACTS INPUTS 
(SODIUM HYDROXIDE SODIUM-HYDROXIDE REACTORS) OUTPUTS 
(SODIUMHYDROX IDE-RESULTS)). 

C o m b i n i n g C lasses and R e c u r s i n g to H igher Leve ls 

The early chemists noted that certain patterns tended to occur 
together, and GLAUBER achieves a similar insight. The system 
compares classes and combines those having a high percentage 
(determined by a system parameter) of elements in common. 
The new class is then compared to others so that further 
combinations can occur. For example, having generated the 
initial classes and patterns described above, GLAUBER notes 
that every member of the sour-tasting class also fits the pattern 
associated with the sodium hydroxide reacting class (and vice 
versa). As a result, the members of these two groups would be 
combined into a new class. This class would have two 
associated patterns, one involving taste and the other 
concerning reactions. The process is repeated, until eventually 
GLAUBER arrives at the three classes we know as acids, alkalis, 
and salts, each with a set of associated patterns. 

Since patterns are stated in the same manner as the initial 
facts, GLAUBER can recursively apply its abstraction methods to 
the patterns themselves. Using this strategy, the system notes 
that HCI, H N 0 3 , and H 2 S 0 4 all react with with alkalis to produce 
salts, leading it to define a new class containing these elements. 
Upon realizing that this class is identical with the class of acids 
defined earlier, it combines the two concepts, and formulates the 
general law (REACTS INPUTS (ACIDS A L K A L I S ) OUTPUTS (SALTS)) . 
Thus, GLAUBER arrives at one of the central results of the 17th 
Century chemists. When provided with additional data about 
metals and their reactions with acids, the system also defines the 
more abstract notion of base, along with the more general law 
that acids react with bases to form salts. Although the current 
version of GLAUBER treats all classes as equivalent, the 
introduction of more data will require future versions to focus 
attention on some classes (such as those occurr ing in the most 
patterns) in favor of others. 

DISCOVERING QUANTITATIVE L A W S 

Around the turn of the 10th century, three fundamental 
discoveries were made concerning quantities of substances 
forming chemical compounds. The first of these was Proust's 
(1799) law of constant proport ions, which states that the weight 
ratio of constituent elements is constant for a given compound. 
The second advance was Dalton's (1804) formulation of the law 
of multiple proportions. This law asserts that when two elements 
combine to form several different compounds, the ratios of their 

combining weights are always small integer multiples of one 
another. The third was Gay Lussac's (1009) discovery of the law 
of combining volumes, which states that gases combine in small 
integer ratios by volume. These three discoveries provided the 
foundation for a quantitative theory of chemical reactions, and 
ultimately led to the determination of the atomic weights of the 
elements. Although the work of Dalton and Gay-Lussac was at 
least partially motivated by the atomic hypothesis, we shall see 
that data-driven methods are sufficiently powerful to find these 
laws. 
F ind ing N u m e r i c a l Re la t ions in Noisy Data 

We have explored the process of quantitative discovery 
through BACON.6, the sixth in a line of programs named after Sir 
Francis Bacon. Given a set of independent variables. BACON.6 
varies one of them, looking for relations between that term and 
some dependent variable. Once a functional relation has been 
found, the parameters in that function are given the status of 
dependent terms at a higher level of description. When the 
system varies the next independent term, it looks for a relation 
between that variable and the new higher level terms. This 
process continues, with BACON.6 recursing to higher levels of 
description, until all the independent terms have been 
incorporated into a complex quantitative relationship We will not 
discuss this process in any great detail, since it has been 
described for earlier versions of BACON [ 1 , 2]. 

Unlike previous versions, BACON.6 is capable of dealing with 
significant amounts of noise in its data. The program uses a 
differencing technique to find the best polynomial function for 
relating two terms. However, it also considers polynomial 
relations between functions of these terms, so that relations such 
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as y = ax2 + bx + c, and sin(y) -- alog(x) + b can be found. 
The differencing method accepts any relation that accounts for 
more than a user specified percentage of the variance in the 
data. When this requirement for explained variance is high, 
BACON.6 behaves much like its predecessors: if the data are 
noise-free, it generates only a single hypothesis; however, if the 
data are noisy, it fails to find any relation at all. In contrast, when 
the setting is low, the system tends to generate a number of 
alternate hypotheses, whether the data are noisy or not. 

In cases where a number of competing hypotheses have been 
generated, BACON.6 must have some way to order these 
hypotheses. In addition to the explained variance, the system 
takes into account the complexity of each law, measuring this by 
the number of terms that make up the polynomial expression. 
The user can specify the exact role played by the two criteria, but 
in our experiments with the system, we have found that the ratio 
of explained-variance to complexity gives good results. Once the 
score for each hypothesis has been calculated, a threshold 
score is computed, and only those laws exceeding the threshold 
are retained. BACON.6 also takes the generality of each law into 
account. For example, if two laws are found to describe the 
relation between y and z when x = 7.0, but one of these laws 
does not fit well when x = 2.0, then that law will be rejected. In 
this way, the system ensures that only hypotheses holding 
across a broad range of data are retained. 

I n t r i n s i c P r o p e r t i e s and C o m m o n D iv i so rs 

While the above heuristics are useful for discovering relations 
between numerical terms, they cannot be used to relate nominal 
of symbolic independent terms to numeric dependent variables, 
and this is precisely the situation in which the early chemists 
found themselves. For instance, the independent terms in 
Proust's, Dalton's, and Gay-Lussac's chemical experiments were 
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the elements or compounds involved, while the dependent terms 
were numerical measures such as weight or volume. In such 
cases, BACON.6 defines intrinsic properties that take on numeric 
values, and associates these properties with the nominal terms. 

Given control over the substances entering and resulting from 
a reaction, as well as the weight of the first substance that is 
used, the system gathers the data in Table 1. Upon varying the 
amount of oxygen used to form nitric oxide (NO), the program 
discovers that the two weights w1 and w2 are linearly related 
with a slope of 1.14 and a zero intercept. Upon varying the output 
of the reaction, BACON.6 examines the weight relations for the 
compound nitrous oxide (N20). In this case, the law is also 
linear, but the slope has changed to 0.57. A similar result is 
obtained for nitrogen dioxide, and in this case the slope is 2.28. 

Table 1. Determining the combining weights for reactions. 

The slopes that BACON.6 finds in these experiments are 
closely related to the weight ratios found by Proust. Having 
found these ratios, the program defines an intrinsic property (say 
p) whose values are associated with the three nominal values 
under which they occur. Thus, the value of p for the triple 
nitrogen/oxygen/nitric oxide would be set to 1.14, the value for 
nitrogen/oxygen/nitrous oxide would be 0.57. and the value for 
nitrogen/oxygen/nitrogen dioxide would be 2.28. As stated, 
these intrinsic values simply store an already known fact. 
However, they can be retrieved in future experiments involving 
the same chemicals, and used to make predictions or to discover 
new empirical laws. 

Proust's insight about combining weights laid the groundwork 
for Dalton's law of multiple proportions, and BACON.6 includes a 
heuristic which lets it discover just such a relation in the data 
from Table 1. This heuristic operates whenever the system is 
about to define a new intrinsic property, examining the values of 
the new property to see if they (or their inverses) have a common 
divisor. In this case, BACON would note that 1.14, 0.57, and 2.28 
have the common divisor 0.57, and would replace these intrinsic 
values with their corresponding integers 2, 1, and 4. Later, if 
other common divisors were found for other pairs of elements, 
the program would define a higher level intrinsic property based 
on these divisors, and associate them with thoso pairs of 
elements. Thus, the common divisor 0.57 would be associated 
with the nitrogen/oxygen pair, the divisor 1.33 with carbon and 
oxygen, and so on. These relations are formally equivalent to 
Dalton's law of multiple proportions. BACON takes a similar path 
in discovering Gay-Lussac's common divisors for combining 
volumes, and has even arrived at the correct relative atomic 
weights of hydrogen, oxygen, and nitrogen from similar data. In 
summary, BACON'S mechanisms account for many of the 
quantitative laws found by chemists in the early 19th Century. 

FORMULATING STRUCTURAL MODELS 

Although Dalton's atomic hypothesis was readily accepted by 
many chemists, its application to specific reactions was far from 
clear. Dalton inferred the structure of various compounds using 
his rule of greatest simplicity, along with the assumption that all 
elements were monatomic. This led him to conclude that a 
molecule of water was composed of a single hydrogen atom and 
a single oxygen atom. In contrast, Avogadro (1811) employed 
Gay-Lussacs data on combining volumes and the assumption 
that equal volumes of gas contained equal numbers of particles. 
Using this information, he inferred diatomic models for hydrogen 
and oxygen and a different structure for water. 
Searching the Space of Structural Models 

In order to understand the process by which chemists 
constructed structural models of chemical reactions, we have 
implemented a third discovery system - DALTON - that 
focuses on this issue. The system knows that two quantities are 
important for any model of reaction - the number of molecules 
of each substance that takes part, and the number of particles in 
each molecule. Suppose the system is told that hydrogen reacts 
with oxygen to form water, and is asked to construct a molecular 
model of this process. In this case, the program must determine 
the number of hydrogen, oxygen, and water molecules, and the 
internal structure of each type of molecule. The system operates 
by starting with a model in which no commitments are made, and 
successively refines this model as it proceeds. 

Starting with a model of the form ( H O - > W), DALTON first 
considers the number of hydrogen molecules involved. Lacking 
any theoretical bias, the system assumes the simplest choice of a 
single hydrogen molecule. If this choice later causes difficulty, 
the model-builder can back up and try another path. Similar 
initial choices are made for oxygen and water. This is 
represented by the proposition ((H) (O) -> (W)), in which each 
molecule is enclosed in parentheses. Now DALTON must 
determine the internal structure of each type of molecule, and it 
assumes for both hydrogen and oxygen a single elementary 
particle (say h and o), giving the model ((h) (o) ->* (W)). At this 
point, the program invokes the theoretical assumption that the 
total number of particles in any reaction is conserved. This gives 
the final model ((h) (o) -* (h o)), which is equivalent to that 
originally formulated by the human Dalton. In this case, the 
program has arrived at an acceptable solution without needing 
to backtrack. 

Altering the Search Process 

In the above run, the system had no theoretical biases other 
than a belief in conservation of particles and a desire to 
construct as simple a model as possible. However, if we give 
DALTON some additional information about the water reaction, 
its behavior changes significantly.'Avogadro believed that the 
combining volumes which Gay-Lussac observed were related to 
the number of molecules involved in the reaction. Given this 
assumption (and knowledge of the combining volumes), our 
program instead postulates two molecules of hydrogen and 
water, while retaining the assumption of one oxygen molecule, 
giving the partially specified model ((H) (H) (O) -> (W) (W)). 

At this point the system considers the internal structure of the 
hydrogen and oxygen molecules, and initially assumes both to 
be monatomic. However, for the resulting model, ((h) (h) (o) -> 
(W) (W)), there exists no decomposition of water in terms of h 
and o that satisfies the conservation assumption, so the program 
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backs up and considers another alternative. At this point 
DALTON hypothesizes the oxygen molecule as composed of two 
particles, and since this satisfies conservation, a final model is 
constructed: ((h) (h) (o o) -+ (h o) (h o)). While this model differs 
from the modern day one, it is consistent with Guy-Lussac's data 
and encounters difficulty only when other reactions are 
considered. For example, when the ammonia reaction is 
encountered, DALTON must revise its monatomic assumption for 
hydrogen, and arrives at the correct water model: ((h h) (h h) (o 
o) -> (h h o) (h h o)). 

Since theoretical assumptions can influence DALTON's 
behavior to such a great extent, we should mention the form in 
which this information is presented. DALTON is stated as a 
production system, and in default mode it uses a few simple rules 
to formulate simpler models first, and more complicated ones as 
necessary. However, if new condit ion-action rules are added to 
the system, they take precedence over the default rules and can 
direct search down paths that might otherwise not be 
considered. Thus, one can insert a rule that would match if the 
combining volumes of substances are known, and use this 
information to determine the number of molecules used in the 
model. The conservation assumption is implemented in a similar 
fashion, so that it generates a molecular structure of a reaction's 
output that uses all particles occurr ing in the input. While the 
current version of DALTON is capable of formulating only very 
simple structural models, it does provide an initial account of this 
process, and the manner in which theoretical assumptions can 
alter the search strategy. 

D ISCUSSION 

Although we have considered only chemical discoveries in our 
examples, each of the systems we have described is stated in a 
very general fashion and there is no reason they could not be 
applied to other domains as well. This is one direction in which 
we should apply our future research efforts. However, an even 
more interesting possibility presents itself. A complete theory of 
the scientific process must not only account for different types of 
discovery; it must also explain the interactions between these 
different facets. Although we have not yet linked our three 
systems computationally, we have considered some steps 
towards creating such an integrated model of discovery. 

For example, qualitative laws generally appear earlier in the 
development of a field than do quantitative lawo. Thus, one can 
imagine a system like GLAUBER first discovering laws of 
qualitative structure, and then passing this information on to a 
BACON-like system, which would use it to determine the 
variables it should consider and the experiments it should run. 
Similarly, data-driven discovery often precedes theory-driven 
discovery. Thus, one can imagine BACON arriving at regularities 
such as Guy-Lussac's law of combining volumes, with DALTON 
employing this information to direct its search process. Of 
course, information could flow in the other direction as well. 
Once DALTON had determined the molecular structure of a pair 
of elements in one reaction, it might predict the combining 
volumes for new reactions; it could then pass these expectations 
on to BACON, where such expectations could play an important 
role in dealing with noisy data. In the field of genetics, GLAUBER 
might use data about inherited characteristics to classify 
offspring into genotypes, and DALTON might use this 
classif ication in replicating Mendel's two-trait model of heredity. 
In the other direct ion, GLAUBER might view DALTON's models 
as data, and note the dist inction between dominant and 
recessive traits. 

In addition to being interesting in their own right, such 
interactions would provide important constraints on our models 
of discovery. For instance, the current version of BACON must 
be supplied with a set of variables by the programmer, and the 
usefulness of BACON's discoveries is judged mainly by the user. 
Thus, there are very few constraints on either the system's inputs 
or its outputs. We do not feel that BACON fares any worse on 
these dimensions than other learning and discovery systems, but 
these are still issues that should be addressed. In attempting to 
construct an integrated discovery system, we expect that the 
interactions between different components will constrain the 
approaches we explore. Thus, by requiring BACON's 
expectations to come from GLAUBER or DALTON, and by 
insisting that BACON's discoveries be used by the other systems, 
we hope to account for facets of discovery that could not be 
explained by studying the various components in isolation. 

Before closing, we should say a few words about the relations 
between our our systems and earlier Al research on discovery. 
For example, the patterns generated by GLAUBER bear some 
resemblance to those produced by Brown's [3] early system, 
while its approach to classification is related to Lenat's [4] 
heuristics for mathematical discovery, and to Michalski and 
Stepp's [5] conceptual clustering strategy. However, the details 
of GLAUBER'S operation differ considerably from each of these 
programs. BACON's techniques for f inding numeric laws in the 
presence of noise are reminiscent of Gerwin's [6] early work in 
this area, though BACON can deal with more complex functions 
and employs a different curve-fitt ing method. Finally, DALTON's 
search for molecular models is similar in some ways to 
DENDRAL's [7] search for organic compounds to explain mass 
spectrographs, though the latter explored P. much larger space 
of hypotheses and required considerable knowledge of 
chemistry to direct its search through that space. Thus, while 
our discovery systems are related to earlier work in the area, they 
also differ in some important ways. Furthermore, unlike the 
earlier programs, our systems show a potential for being 
combined into a more complete, integrated theory of discovery. 
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