COMPLETENESS OF THE NEGATION AS FAILURE RULE

Joxan Jaffar*, Jean-Louis Lassez' and John Lloyd

* Dept. of Computer Science, Monash University, Clayton, Victoria.
Dept. of Computer Science, University of Melbourne, Parkville, Victoria.

ABSTRACT

Let P be a Horn clause logic program and
comp(p) be its completion in the sense of Clark.
Clark gave a justification for the negation as
failure rule by showing that if a ground atom A
is in the finite failure set of P, then ~A is a
logical consequence of comp(P), that is, the
negation as failure rule is sound. We prove here
that the converse also holds, that is, the

negation as failure rule is complete.

| INTRODUCTION

If P is a Horn clause logic program, then
we can use P to deduce "positive" information.
In other words, if A is a ground atom, then the
interpreter, by wusing SLD-resolution, can
attempt to prove that A is indeed a logical
consequence of P. However, we cannot deduce
"negative" information using SLD-resolution. To
be precise, we cannot prove that ~A is a logical
consequence of P. The reason is that P{U) s
satisfiable, having the Herbrand base as a

model.

To remedy this defect, logic programming
interpreters are usually augmented by the
negation as failure rule. This rule states that
if A is in the finite failure set of P, then -A

holds. Thus we interpret the failure of the

This research was partially supported by a grant

from the Australian Computer Research Board.

attempt to prove A as a "proof" that ~A holds.
Rules very similar to the negation as failure
rule have previously been widely wused in
artificial intelligence systems (for example,

PLANNER, various non-monotonic logics).

While the negation as failure rule is
intuitively appealing, it is preferable to find
some firm theoretical foundation for it. In
particular, we would like ~A to be a logical
consequence of something connected with P.
Clark [2] showed that the "something" is the
completion of P, denoted by comp(p), which is
essentially P together with the only-if halves
of each of its clauses, plus some axioms to
constrain the equality predicate. Clark showed
that if A is in the finite failure set of P,
then -A is a logical consequence of corap(P).
This amounts to a soundness proof of the
negation as failure rule. (We note that Clark
proves this result for a more general class of
logic programs, ones where literals in a clause
body may be negated. For this class, the

converse of his result is false).

In this paper, we give the corresponding
completeness proof of the rule, that is, we show
that if ~A is a logical consequence of comp(p),
then A is in the finite failure set of P.

In the next section, we discuss what is
currently known about finite failure and put our
theorem into that context. In the last section,

we give the proof of the theorem.

I1 PINITE PAILURE AND THE COMPLETION OF A PROGEAM

Throughout this paper, P denctes a Horn
clause logic program and B{P) the Herbrand base
of P. A denotes an arbltrary element of B(P).

We make the usual identification betwesn
Herbrand interpretations for P and subdbsets of
s(r) ([1],[51). hus, for any

interpretation, the correaponding subaset of the

Herbrand

Herbrand base is the set of all ground atoms
which are trus in the interpretation. The met
of all Herbrand interpretations of P is a
complete lattice under the partial order of set
inclusion. We defins the usual mapping TP fron
the lattice of Herbrand interpretations +to
itself =ma follows. Let I Tbe a Herbrand
interpretation. Then
TP(I)-{AGB(P) P AG=B,, ..
of & clause in P and B,,....,8 €1}

.,Bn 1s a ground instance

TP is clearly monotonic. As in [1], we define
Totw to be AT(B()).
n=0

Hext we define the finite failure set of P.
The ususl defisition of fimite failure ([1],[2])
is given in terms of finitely failed SLD trees.
A general definition of finlte failure,
independent of any implementation, is given in
[4] and we adopt the same definition here.

Definition ¥F,, the set of atoms in B(P}
which are finitely failed by depth d, is defined

as fallows:

{a) AePr, if ALTL(B(P)).

{b) AGFFG, for 4»0, 1if for each clause
A'G—-B.i serer By in P and for each subatitution
9 such that A=A'9® and B9,...,B 0 are
ground, thers sxists k such that 15k¢{un amnd

BOCTP, .

Dafinition The finite fallure met ¥F of P
is definad as follows: A®PFF if there exiate d
such that .\E!'Pd.

Hext we give the more usual definition of
finite failure.

Definition The SLD finite failure zet of P

J. Jaffar et al. 501

is the set of all ACB(p) for which there exists
a finitely failed SLD tree which has <-A at the
root.

Now in [1] the following theorem is proved
(a much shorter proof of this result is given in
[5]): A ia in the SLD finite failure set if and
only if AE T }ui. However, it ia easy to show
that FF - B(P)\T ui [4] and thus this result of
[I] can be considered as a form of soundness and
completeness for an SLD implementation of finite
failure. However, this is not quite
satisfactory: SLD finite failure only guarantees
the existence of one finitely failed SLD tree -
others may be infinite. The problem is to
identify exactly those computation rules which
guarantee to find a finitely failed SLD tree, if

one exists at all.

Definition A computation rule is a rule

which selects the atom to be expanded in the
current goal. A computation rule is fair if for
every atom B in a derivation using this rule,
either (some further instantiated version of) B
is selected within a finite number of steps or
(some further instantiated version of) B ia in a
A fair SLD tree is an SLD tree
obtained via a fair computation rule.

failed goal.

Then in [4] the following result is proved:
AEFF iff, for every fair computation rule, the
corresponding SLD tree with <—A at the root is
finitely failed. Furthermore, the desirable
strong form of completeness is obtained: all
fair SLD trees are equivalent in the sense that

if any one is finitely failed, all are.
Summarizing the results so far, we have:

Proposition 2.1 The following are
equivalent:

(a) A is in the finite failure set.

(b) AE Tp|m.

(c) There exists an SLD tree with <-A at the
root which is finitely failed.

(d) Every fair SLD tree with <-A at the root is

finitely failed.

502 J. Jaffar et al.

Naxt we give Clark's definition of the
completion of a program. Let
1:;(':.',...,t,:l](—-]?.1 ""'Bn ba & clauas in & program
P. Wa will require a new predicate =, whoge
{intendad

ralation., The firat atep 1a to tranaform the

interpretation is the equality

given clauze into
P(x1 perer de{xymt AL Alx =t JAB AL AR,

whers x1 se-n,X_ Are variables not appearing in

the clausa. nThan, if Fyorees¥q are the

variablea of the original clause, we transform

thia into

px e e)63y Ty (=8 A Alemty)

}\81 Al /‘\Bm)

Now auppose this tranaformation is made for

each clause which has the predicate p in the

head. Then we obtain k21 transformed clauges of

the form

plx . o002) 4B,

E T
wheres each Ei has the general form
3y,...375 (=t) A Alrg=s JAB AL ABY).
The completed definition of p is then the

formula

¥x oWxg (plxg v)68 V. VE)

Howaver, if a predicate q in P does not
appear in the head of any claume, the completed
definition of q ia

Vx1 P '-q(:1 ,..._,xn).

To prove his result, Clark needsd the

following equallty axiom schemam:

1. cfd, for all pairs c,d of dimtinct constants.
2. f(x1 re-ixy)be{yy,...,¥,), for all pairs f,g
of distinct functionms.
3. (5 fr)V oV (xfy)

f(x1 RERYS 31216 TATPRS N
for sach function f.
4. £(X pens 1t)fc, for each oconstant ¢ and
fuaction f.
5. t[x]fx, for each non-variabls term t[x]
gontalning x.
6. x=x.

T. (:‘-31)/\...A(xn-yn)—>
f(-’ﬁ-----xn)'f(y.lv---»yn)-
for each function f.
8. (x 2y JA--Alx =y >
(B(xy 1o 2) 0Ly 1mee7),
for aach predicate p.

Definition The completion of P, denoted

comp(P), is the collection of the completed
definitions for each predicate in P and the

above equality axiom schemas.
The result of this paper is as follows:

Theorem If -A. is a logical consequence of
comp(p), then' A is in the finite failure set of
P.

Using this theorem, proposition 2.1 and
Clark's theorem, we obtain the following result:

Theorem A is in the finite failure set of

P iff ~A is a logical consequence of comp(p).

Il PROOE O£ THE THEOREM

This section contains a proof of our
theorem. In fact, we prove the contrapositive of
the result. Thus we assume that A is not in the
finite failure set of P and prove that
comp(p)U{A(has a model. Unfortunately, we
cannot restrict attention to Herbrand models.

It is easy to construct examples where A is not
in the finite failure set and yet comp(P)U (A)
has no Herbrand model. Indeed, this is the main
difficulty of the proof - to find the right kind

of model.

The first task is to generalize the mapping
T, introduced earlier. Let D be a fixed domain
of interpretation for P and assume some fixed
assignment of constants in P to elements of D
and functions in P to functions on D. With all
this fixed, we can now obtain a variety of
interpretations for P by varying the assignments
of the predicates of P. In fact, as for Herbrand
interpretations, each such interpretation can be

identified with some subset of "atoms" (where

the predicate of each "atom" is in P and each
argumant is in D). We simply make p(d1,...,dn)
true precisely when p(d,,...,dn) is in thia

aubaet.

Az before, we can make a complete lattice
cut of the set of all such intarpretations under
the partial crder of set inclusion. We also
define a mapping, agasin dencted by TP' from this
lattice to 1tself as feollows. Let T be auch an
interpretation. Then
Tp(1) = lp(d1,...,dn) : B4By,...,B is a clause
in P and there ia some asaignment of the
varigblea in the clauzse to elements of D
such that with this assignment B is
pla,,....d) and {B,,...8,} ¢ I

It is easy to see that TP is monctonic.

The follawing proposition, whase proof is
straightforward, is a major tool we employ in

the proof of our theorem.

Proposition 3.1 Let [be an interpretation
of P, let the predicate = be assigned the
identity relaticn on the domain of I and supposs
the equality axioms | to 8 are satlsfied, Then I
is a fixpoint of Tp implies that I, together
with = assigned the identity relation, is a
model for comp(P).

The damain D of our model, which we shall
define later, will be a quotient of the set T ef
firat order terma of P. We define T following
Huet [3]. Let X, .3,.2(,000 5,902 0 00000
conatitute a denumerable set of variables ¥,
whers x,¥,z,... a&re the variables appearing iz
P. Let P denote the set of functions and
constants in P. The met T is deflined ae the
free F-algebra generated by V, that is, a term
in P is either & varjable in ¥ or a constant in
¥ or is of the fora r(t1,....tn}, for some n-ary
functien fEF and some terme t, €T, 1<i{n. Ve
shall use the symbols s,%t,u and ¥, poasibly
indexed, to dencte terma.

Lat l. denote the sst of all finlte l1llstm
of positive integars, A the empiy list and .

J. Jaffar et al. 503

the usual cons operator. Two lists i and } are

independent if neither one is a prefix of the

cther. Tor any tET, we define the set of

cccurrences of t, OCC(t)QN‘, and, for any

follows:

fa) If t is a variable or a constant, then (i)
occ(t)={A} and (11) t/A=t.

{v) It t-f(t1,...,tn}. then (i) oco(t)={Al |f
f3.k ¢ 15i$n and kCOCC(t.j)} and (ii) &/ A=t
and t/j.k-tj/k, for all j.k®ogc({t).

Next, for any s,t®2T and iMOCC(s), we

by t, s[iét], as follov;-: _____
{a) s[Ac=t]at,
(n) {‘(a‘,....sn)[j.kﬂ—t]-f(s‘....,sj[ké-t],...,sn)

Te cobtain our quotient of T, we now define

certain binary relations upen T.

Definition A rewrite X is of the form
»
<i,x,t>, whera iCN , x&V and t€T. I} defines a

mapping from T into iteelf: given any a€T,
a<i,x,t> = [sfie-t], if 1e0CC(s) and s/i=x
{ 8, otherwisa.
Two¢ rewrites <{i,x,s> and <j,y,t>, where x and ¥y
are not necessarily distinet, are independent if
1 and J are independant. A rowrite X 1ia
superflacus for a ters t 1f tX=i,

While & rewrite may closely resemble o
aubatitntion, 1t isa important to note that a
rewrite may alter at most gne inatance of any
variablea in any term., We shall use the symabols X
and Y, possibly indexed, to denote rewrites.

Dafiniticn Having fized a met B of rewritaes
on P,
(a) 8<,t if n im the emallest integer X O such
that sx1x2...xn-t. for some Xi ER, 1gisn.
8¢t 1f 3mn20 such that 8,5
(b) s t if n is the smallest integer 2 O such
that ux1...xk-s and uY1...Ym-t, for some
uf?®, k+m=n and xi.rjen, 141k, 1<jgm.
stt 1f 3020 such that s] ¢.

{e) sfnt 1f n is the smallest integer 2 O such

504 J. Jaffar et al.

that sx1...xk-tY1-..Im. for aoma k+m=n ani
xi,rj eR, 1<igk, 14j¢m.
s¥t if 3nP0 such that a#nt.

The following proposition is easily

varified.

Proposition 3.2
ta) Por any two distinct functions f and g and
for any segquence of arguments u and ¥
appropriate to £ and g, rasp., we hava
~(e(atre(¥)).

b} Por any n-ary function f, f{s1,...,sn) #m
£lt,,---0t) iff, for all i such that
1¢ign, We have si*miti’ where

R LT

172
‘e) If X and Y are independent, then tXY=tYX.

We unow have all the topls needed for the

yoof of our

Thnegrem If A is not in the finite failure
jet of P, then comp{?)ﬂ{ﬁ} has a model.

Proof 3By the results of section 2, we have
that any fair SLD tree with root <A is not
Pinitely failed. Select any non-failed branch
3R in any such tree. Let GO-G—A,G1,G
lencte the goals in BR and let C1.Cz.
the corresponding input clausea, We aasume that

PYERE
.+ danote

the variables in P are not indexed and that the
rarlables in each C1 are renamed s¢ that each
128 index i. Thus the sequence of mgu's

}1.02,.... where Gi+ is derived from Gi and

31*1 using 91*1, ar; such that for any varlable
te8V:

) If the bindings x/a and x/t appear in {Qi},
then a=t,

b) For any saguence 5 of mgu's in iQii such

;hat xBdx, 1§ does not contain x.

In other words, for any variable €V, (a)
1tates that there is at most one binding feor x
ind (b) atates that once x has basn subatituted
'y any term £ 27, nc further substitutiona upon
; can result irn s term containing x. We shall
)ay that the subatitutions ioi} ars univocal and
igyclic because of (a) and (b), respectively.

We now define a set R of rowrites baeed on
the collection {Oi};
B = {<i,x,t> : i€¥ and the binding x/t appears

in soue Qj}.

It is emay to see that, liks the Qi's. the
rewrites in R are univocal and aeyclic. That is,
(a) If <i,x,3> and <j,r,t> are in R, then a=t.
(b) For any sequence X of rewrites in R such

that x¥{#x, =xX does not coutain x.

The main ralationahip betwesn the
substitutions {ei} and the rewrites R which we
employ 1s this: if 88=t, for any terms 3 and t

and any sequence of subatitutiona 8, then a{t.

We now show that ¢ is an equivalence
relation on T. That it 13 reflexive and
aymmetric i3 obvious. That it iz transitive
follows from the "Church-Rosser" property of {:
att tmplies aft. This is proved as follows.

Let sTm+nt. say uk,...X =s and

u!1...Yn=t, for some ufT, Procesding by
induction on m, we have

{a) Bamia: m{1. The case m=0 is obvioua. Now
then

suppoge m=1, If X, is not equal to any ¥

X
1
applications of proposition 3.2¢, s!‘...Yn-tI

1 i’
ia independent of all tha Yi and, by n

1

and we are done. Qtherwiae, 11-Y for some J

Jl
where 1¢j¢{n. By Jj-1 applications of proposition

3.2c, wa have that uY‘..-Yj - uYJY1...Y
Thua sY1...Yj_1YJ+1...Yn = t.
{b) Induction step: m>1, Let j satisfy 1<{j<m

and lat s'-ux1...xj. By tha induction

3-1

hypotheais, s'¥t, Bay 8'<v' and t<v'. (aee
Pigure 1). HNote that sfv'. Thus by again using
the inducticn hypothesis, we have that afv', say
#{v and v'{v. By the transitivity of <, we have
t<{v and ws are dons.

The transitivity of ¥ can be easily seen to
follow from the Church-Rosser property (ses
Pigure 2).

We now obtain the domain of our model hy
defining D to be T/¥, the set of all ¥
aquivalence classes on T. Hext we give the

J. Jaffar et al.

interpretation of tha functisns in P, Let [t]
dencte the ¥ equivalence class of t. For each
n-ary functicn f in P, we assign to f the

function from D° into D defined by

t
(Is,1,.-, e, 1) ~ [£lay,....s)]. that this " denotes u<t
function is wall-defined follows from

propoaition 3.2b.

We assign each constant ¢ in P to the
equivalence class [c]. Note that if s and t are
distinct ground terras, then [s]=[t]. Thus D
contains an isomorphic copy of the wusual 5

Herbrand universe. This completes the definition

induction

of the domain of the model and the assignment of hypothesis

the functions and constants. It remains to give xj+1 o g
the assignments of the predicates. For this

purpose, we are going to use the mapping T,

corresponding to this particular domain and

assignment of functions and constants.

induction

Firat, recall the branch BR in the fair SLD X ... X hypothesis

tree for «—A. We construct a set I0 ag followsa:
IO-{p([t.l],...,[tn]):p{t.l,...,tn) appears in BR}.
Hext we ahow that IO a TP([D) . Let
p([t11....,itn]) be any slement in I, such that u
p(tT,...,t } appears in some geal G,, i20. .
n 1 Figure 1.
Bocause BR is from a fair SLD tree and BR is not
failed, there erists a J20 such that
plageeinisy) = Bty e84 9 5010y
appears in the goal Gi+j and p(s1,...,an} is
the salscted atom in Gi+j' Suppose ci+j+1 takea
the forn p{ul,...,un)4—31,....3m- By the
definition of Ty,
9([“1°i+j+1]’°--'[“n°1+j+1]) e,(Iy)- Also, we
note that by the abovementioned relationship

s4t and tiu implies s+u

between subatitutions and rewrltea and our
definition of the ¥ equivalence classes,
p([t'i]"“'[tn]}
ST FRT FPOPR 7000 PR S XCIRY FHPRRRL AN)
P{[31] P 't[’n])
P([s1 91+j+1] prra 9[’11911.1*.1]‘)

= 2llugoy gy limeilug®y g 1D
0 that p([t1],...,[tn])eTP(Io). Thus 1,0

Tp(Iy). Figure 2.

The laat step 1r the definition our model
is as fpllows: uming the above result and the

505

506 J. Jaffar et al.

Knaster-Tarski theorem about fixpoints for
monotonic functions, there exists an | such that
loCl and |-Ty(l). Thus A is true in I.

We assign to m the identity relation on D.
According to proposition 3-1, it only remains to
check that equality axioms 1 to 8 are satisfied.
Axioms 6 to 3 are obviously satisfied because -
is assigned the identity relation. Axioms 1 and
4 are satisfied because every rewrite s
superfluous for constants. Axiom 2 is satisfied
by proposition 3-2a and axiom 3 by proposition
3.2b. Only axiom 5 requires some effort. We

prove this as follows.

Let 3C ¢t (sCt) dencte that 3 is a (proper)
gubterm of t. We now prove that for all k20,
aCt implies "(s{rkt). This iz clearly true for
k=0. For the induction step, we asaume that the
statement is false, that is, st _ t, say
531...Xm-t‘[1...Yn-u. where m+n2!, and obtain a8

contradiction. Let s=t/10, for aome ioﬂf\.

Caga 1: 8 is a variable, say x. Clearly, m21.
Thus X, wmust be of the form (A Lx,m and,
becauss B is acyclic, u cannot contain x. Thus
n2!., Now since £<u, thers exists some j, whera
1€j<n and Yj is of the form <i0,x,r). Note that
the laat component in this rewrites aust ceincide
with the laat compenent in X1 becauss B is
univocal. By j-1 applicaticns of proposition
%.2c, we have that tY1...Yj = tYJY1...Yj_1. Let
s'*sl1 and t‘-th. sc that a'xz...xm =
t'Y1"'!j-1YJ+1"‘Yn‘ Hoting that we have juat
shown that a'Ct' and 8 Yaunnt's
the desired contrediction of our induction
hypothesais,

wo have

Gfase 2: 3 1l not m variable. If s does pbot
contain a variable, then clearly we are finished
since all rewrites on s are superflucus. 90 we
aasume otherwise and we show that, for some term
t'Ct and some varismble x appearing in both =
and t', x*it‘, for some iSm+*a. Thia will bring
us back into came i,

We proceed by reducing the size {that is,
the number of symbola) of s, Let s be of the
form f(s1.....ad), for some d)1; by proposition
3.20, t must take a “similar" form, say
f(t1,...,td). Since sCt, we have aCtj. for
some j auch that 1¢j¢{d: thua sj Ctj and using
proposition 3,2, aj#itj, for some igmtn. We
are now finished, since if sj is m variable we
are back in case 1 and, if otherwise, we apply

the procesa again.

Thus axiom 5 1a satisfiad and the proof of
the thecrem ls finiahed.

REFERENCES

[1] Apt, K.R. and van Emden, M.H.,
"Contributions to the Theory of Logic
Programming”, JACM, 29, 3(July 1982), 341-
862.

[2] Clark, K.L., "Negation as Failure", in Logic
and Databases, H. Gallaire and J. Winker
(eds), Plenum Press, New York, 1973, 293-
322.

[3] Huet, G., "Confluent Reductions: Abstract

Properties and Applications to Term
Rewriting Systems", JACM, 27, 4(0ct. 1980),
797-821.

[4] Lassez, J-L. and Maher, M.J., "Closures and

Fairness in the Semantics of Programming

Logic", Theoretical Computer Science, to
appear.

[5] Lloyd, J.W., "Foundations of Logic
Programming”, TR 82/7, Department of

Computer Science, University of Melbourne.

