
SYMBOLIC EXECUTION IN ALGORITHM DESIGN 

David Steier and Elaine Kant1 

Department of Computer Science 
Carnegie-Mellon University 

Pittsburgh, Pennsylvania 15213 

A Introduction 
Our studies of how people design algorithms [14,15] reveal that 

symbolic execution is one of the principal design methods used in 
the absence of specific knowledge,3 and we believe that symbolic 
execution will play an equally important role in the automatic 
design of algorithms. When specific design knowledge indicating 
what to do next is available, it should of course be followed. In its 
absence, however, executing an incomplete design allows an 
assessment of the consequences of the current set of design 
decisions to help decide on a next step. This execution may be 
either on specific data such as {point E, point B}, on abstract 
symbols such as "point-set," or on combinations of specific and 
abstract objects. By symbolic execution we mean the process of 
describing outputs in terms of inputs that are primarily abstract 
rather than concrete symbols. However, a continuous range of 
evaluation from wholly symbolic to wholly concrete falls under this 
heading, and all variants make contributions to the design 
process. When all items are concrete data values, we refer to the 
evaluation process as test-case execution. 

1 Elaine Kant is currently at Schlumberger-Doll Research, Old Quarry Road, 
Ridgefield , CT 06877. 

2This research was supported in part by the Defense Advanced Research 
Projects Agency (DOD). ARPA Order No. 3597, monitored by the Air Force 
Avionics Laboratory under Contract F33615-81 -K-1539, and in part by the National 
Science Foundation under Grant DCR-8412139. The views and conclusions 
contained in this document are those of the authors and should not be interpreted 
as representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency, the National Science Foundation, or the U.S. 
Government. 

3Our studies are supported by additional research on the human design of 
computer systems [1]. 

Symbolic execution, also called symbolic evaluation, has been 
studied as an independent software engineering tool for use after 
a program is written, but until recently little work has extended and 
integrated it into tho problem solving processes in design.4 In this 
paper, we focus on symbolic execution in design by describing 
our model of algorithm design, a system that implements that 
model, and illustrate the use of symbolic execution in a detailed 
example. 

Most of the early research on symbolic execution focused on 
execution or evaluation of complete programs to aid in testing, 
debugging, and verifying conventional languages. Some more 
recent work considers evaluating, analyzing, and explaining 
higher level specification languages This related work is 
discussed in Section E Since our primary interest is automating 
algorithm design, we operated independently of these efforts, 
although similar concepts appear in our system. We developed a 
model of algorithm design based on the analysis of some fifteen 
protocols of subjects designing geometric algorithms. The model 
underlies the implementation of an automatic algorithm design 
system we call DESIGNER [16]. Symbolic execution in this model 
shares a number of concerns with traditional symbolic execution: 
serving as an inexpensive test process that effectively executes 
multiple inputs simultaneously; creating symbolic representations 
of outputs as functions on inputs (useful for generating invariants 
and formally verifying programs or algorithms); describing the 
conditions for following each path to detect non-executable 
segments and to define subdomains of the input; indicating 
coverage of concrete test data and helping to generate additional 
tests. We are concerned also with symbolically executing 
procedures efficiently (not by macro substitution). The features of 
DESIGNER that differ from most other systems and modify symbolic 
execution for design purposes are: 

1. DESIGNER executes incomplete algorithms in a data-
flow language rather than requiring a full program in a 
procedural language. 

2. Failures in symbolic execution lead to the posting of 
difficulties. Other problem-solving processes in the 
system use this information to correct errors in the 
design automatically. 

3. The data objects in DESIGNER may be arbitrarily 
complex structures (e.g. geometrical objects or sets). 
In contrast, most symbolic interpreters allow only 
variables subject to conjunctions of numerical 
constraints, which are inadequate to represent many 
algorithms. (However, there is no guarantee that 

The execution of program plans on concrete data for debugging during design 
was however suggested a decade ago[24] The execution of plans in problem 
solving, which har, been more heavily researched, for example (9], is also related. 

Abstract 



226 D. Steier and E. Kant 

these more complex structures can be reasoned 
about satisfactorily in all cases.) 

4 DESIGNER represents the results of multiple execution 
paths as disjunctions of conditionals on a single 
object rathei than requiring the user to specify the 
execution path(s) 

5. Execution is controlled by assertions and rules rather 
than by a fixed interpreter, so it can be customized to 
serve a variety of design goals. 

6. Multiple options in symbolic execution address a 
variety of design goals such as determining the run 
time of an algorithm, checking for consistency 
between adjacent steps in a design, and verifying that 
an algorithm produces the desired output. 

An initial implementation of symbolic execution embodying most 
of the principles described in this paper is operational in 
DESIGNER. Algorithms are represented as collections of object 
instantiations in a object-based system with a few simple forms of 
inheritance; symbolic execution operators are implemented in 
LISP; and symbolic execution control rules are written In the 
production-system language OPSS [10]. This implementation has 
symbolically executed algorithms in several task domains 
including geometric algorithms (such as finding the convex hull of 
a set of points), set operations, and numeric algorithms (such as 
Fibonacci and recursive factorial). Work continues on enlarging 
the set of geometric algorithms that can be represented and 
executed. 

B The Design Model 
In refining our model, we have concentrated on the following 

areas: definition of a dataflow representation for partial algorithm 
descriptions, implementation of operators for altering and 
executing the descriptions, collection of algorithm design 
heuristics in a number of task domains, specification of a 
subsystem for reasoning with visual images in geometric algorithm 
design, and development of a problem solving architecture for 
handling non-hierarchical goals effectively. Descriptions of this 
work have been published previously or will appear in future 
reports, so only the details needed to understand the role of 
symbolic execution are presented here. 

One driving force in this research is the formulation of the 
problem spaces [18] in which the algorithm design activity takes 
place. This requires a precise definition of the representations for 
algorithm design and of the operations used to manipulate these 
representations. It also requires definition of the problem spaces 
for the task domains (not discussed in this paper). 

The major algorithm problem spaces are design and execution. 
The spaces share the same basic representation, but address 
different types of problems and make use of different operators. 
In the design space, the states are partial descriptions of 
algorithms. The current design state is elaborated by the 
application of design operators (that edit algorithm descriptions) 
until a satisfactory specification is obtained (satisfactory is defined 
dynamically by the design rules). The algorithm modification 
process is guided by rules that describe what operators to apply to 
change the partial algorithm description; the rules have conditions 
that determine their applicability to the current state. If the search 
control knowledge is not sufficient to select a design operator, the 
problem solver sets up a subgoal to obtain this knowledge. The 
subgoal is usually satisfied by problem solving in another space, 
often the execution space. 

Execution is an information-gathering strategy that executes the 
current description of the algorithm on symbolic or actual data 
objects to expose problems or opportunities for refinement. In the 
execution space, the partial description of an algorithm is fixed, 
and the data objects change in structure and position to yield the 
different states. If execution on symbolic data doesn't produce 
enough information for further refinement, or if a concrete 
validation of the algorithm is desired, then a concrete example is 
generated, actual data items are substituted for the symbols. 
Symbolic execution is preferable to test-case execution in many 
cases. For example, it amasses more complete information for 
verification, and it may be better to use a description such as 
"integer less than 10" than actually to pick one, when the system 
is looking for a counter example or example and doesn't have all 
the constraints on an object yet. However, symbolic execution 
can be more expensive if considerable expression simplification is 
required. Furthermore, discoveries caused by the combination of 
unexpected assertions and previous experience are more likely to 
result from working with concrete examples than from abstract 
reasoning based on the results of symbolic execution. 

C Representing Algorithms for Design and Execution 
We have developed a language called AL (Algorithm Language) 

for representing algorithms during the design process.6 Some key 
features of this representation, which distinguish it from similar 
representations (such as the plan calculus of the Programmer's 
Apprentice [19, 26, 20]), are its data-flow character, the fact that 
control flow can be defined implicitly by data-flow links rather than 
control-flow links (with a few exceptions), and the small number of 
initial built-in processes. Also, in the Programmer's Apprentice, all 
loops must be expressed as recursive calls, while in AL they can 
be expressed iteratively. In AL. the spectrum of description levels, 
from kernel ideas to fully refined algorithms, is easily represented. 
A consequence of this representation is that concern with the 
representation of data objects is largely absent initially (except in 
algorithms that rely on special data structures) in favor of 
elaboration of the processes manipulating data objects. 

In developing AL, we tried to identify a set of algorithmic objects 
that correspond closely to the conceptual building blocks our 
subjects use. We call such blocks components. Components are 
connected by links between ports (for input or output) of the 
components. A few basic component types are assumed, and the 
processing of a component may be modified by assertions on the 
component. New components may also be defined at any time in 
terms of other components and assertions. Our assertional 
language is a variant of first-order predicate calculus that can 
express the state of computations over time. A collection of 
components, links, ports, and assertions grouped together forms a 
network called a configuration. Configurations are the partial 
algorithm descriptions. 

This framework is not the basis for a "pure" data-flow 
representation. Our goal is to use objects that occur naturally as 
algorithmic steps, not a minimal set of primitive components. To 
avoid proliferation of object types, a design idea is initially 
represented as a component of approximately the right type with 
descriptive assertions. As design proceeds, any component 

5The level of detail in AL approximates that which people use to describe 
algorithms to one another. We do not claim that AL is an exact cognitive model for 
human algorithm design, only that the character of the language Is useful for 
automated design. 



D. Steier and E. Kant 227 

representing a complex process that does not correspond directly 
to a single primitive action may be refined into a complete 
configuration called a refinement configuration. This ability to 
refine components into sub-configurations along with the ability to 
define new concepts by adding assertions to simpler concepts 
provides a natural abstraction mechanism in AL. 

Only a brief overview of AL'S type hierarchies of components, 
ports, links and assertions will be given here since a detailed 
language description is the subject of another report in 
preparation [22]. 

• Components: In AL, active process components 
represent steps in algorithms: algorithms are generic 
procedures to be refined; applies create new data 
based on their inputs; selects extract an element from 
an input collection; recursive-calls apply a process 
recursively; tests conditionally alter the data flow; 
compares report the relationship between two items 
and generators produce individual items from a 
collection in any specified order. Another type of 
component is the memory, which holds a 
representation of an object or collection. 
Generators cause certain components to be 
repeatedly executed. As the algorithm design 
proceeds, it may be necessary to represent this 
repeated computation explicitly, which we do with a 
loop box We classify the computation in a loop into 
separate configurations by function, the initialization, 
the loop-body, the repetition and the termination. All 
parts of a loop-box are optional (although the 
absence of an essential part may lead to a 
semantically incorrect design) During refinement, it 
is expected that some of the paits will be empty. 

• Ports. Input ports and output ports represent data 
inputs and outputs of components, while signal ports 
serve control functions on specific component types, 
such as resetting a generator. 

• Links: Links usually connect components or 
configurations at the same level of the hierarchy. 
Special kinds of links, vertical-input links and 
vertical-output links, connect components to their 
refinement subconfigurations. 

• Assertions: Assertions are classified in AL by the 
domain of the operations they describe, for example 
numerical assertions and geometrical assertions. 
When used in a data-flow configuration, each 
assertion instance is assigned a role in accordance 
with its use. Roles relevant to symbolic execution are 
operational assertion, to specify how a component's 
output is derived from its inputs; description, to 
describe a data item; precondition and postcondition, 
to assert that certain conditions hold before and after 
the execution of a component; and complexity, to 
state time or space required for the execution of a 
component. Other assertions specify constraints on 
the order of execution the algorithm's components. 
Some of these assertions are predefined as being 
relevant to execution of all instances of a given type; 
for example, all selects must have a composite object 
as one of their Inputs. Other assertions are added 
during the design phase to specific component 
instances; for example, a particular generator 
produces elements from its input collection in 

increasing order, a particular test places its input 
numerical item on the true-exit port if the value of the 
item is greater than one. 

Configurations are executed (in the execution problem spaces) 
on items. Items are data objects that are passed between 
components and stored on links. Items have associated domains, 
such as geometry and arithmetic. Several items may be grouped 
together into a collection (which correspond to mathematical sets 
or sequences). Items may represent concrete objects or symbolic 
objects. 

An example of a configuration representing a partially refined 
convex hull algorithm6 is given in Figure 1. The specification 
given to the subject is to find the convex hull of a set of input 
points where a convex hull is defined as either a polygon made up 
of a subset of the input points that encloses all the input points or 
the set of points on that polygon. This ability to view the output as 
either a set of points or a polygon turns out to be important during 
the design. The Inside predicate that defines enclosure is defined 
in the geometry space (it assumes that a point on the boundary of 
a polygon is inside the polygon) It is not necessary for the 
discovery that Inside be defined by logical assertions as long as 
there is a domain space operator to recognize examples of 
enclosure. The assertion is written as follows: 

In the diagrams below this relation will be abbreviated to 
Convex-hullOutput, Input). 

The configuration of Figure 1 represents an intermediate state in 
an initial attempt to get a working algorithm without using 
sophisticated design principles. The derivation is similar to one 
followed in a protocol that we have studied closely. The kernel 
schema follows the transfer paradigm as described by Barstow 
[2] in which the points in the input set are generated by the 
producer and built into an output set by the consumer. During the 
previous part of the design (not described here) this kernel 
schema was refined into a loop. In the graphic representation of 
our language, all configurations belonging to the same loop are 
enclosed in the same loop-box in a special format: initialization at 
the left side, termination at the right side, and repetition along the 
bottom. On each iteration of the loop, the algorithm arbitrarily 
selects a point (in select S1) from the set of input points that have 
not yet considered (stored in memory M1), adds the point to the 
set of points found to be on the hull so far (stored in memory M2), 
and then tests if the expanded set could be included in the hull (in 
test T1). If the test returns false, then the point just added is 
selected (in select S2) and deleted from M2. Symbolic execution 
of the kernel schema led to an expectation (recorded as an 
assertion) of an algorithm linear in the number of input points. 
The linear expectation arises because the producer is expected to 
be executed at most once for each input point to produce all the 

The convex hull algorithm discovered by this subject is not s particularly 
efficient one. Many other convex hull algorithms have been developed, and the 
problem can be solved in N Iog N time. 



228 D. Steier and E. Kant 

points on the hull. The refinement has not yet been symbolically 
executed to analyze its run time, so the fact that this expectation is 
not fulfilled has not yet been discovered. We will continue this 
example in the next section. 

D Symbolic Execution in DESIGNER 
One way to view the design process in our model is to consider 

each modification of a design as the imposition of a new 
constraint on the behavior of the algorithm. To usefully guide 
refinement, the constraints imposed by altering one part of the 
configuration must be propagated since typically refinement of 
algorithms is strongly locally driven. The propagation of a 
constraint imposed by one part of an algorithm serves to focus 
attention on potential problems in development of other parts of 
the algorithm and to bring together new combinations of facts that 
may lead to additional opportunities. This selective propagation of 
configuration-derived constraints is driven by execution. 

Symbolic execution manipulates assertions on symbolic items 
that arrive on the input ports of a component to produce 
appropriate assertions on items on the output ports. The 
assertions on the output items describe the results of applying 
operations defined by the component and its operational 
assertions to the input items. Symbolic execution continually 
evaluates assertions and compares the results against expected 
values determined locally by the component being executed. If an 
expectation is violated, then a difficulty is posted to notify the rest 
of the system of the inconsistency. Knowledge of the 
inconsistency combined with search-control knowledge in the 
design space should guide the problem solver in selection of the 
next operator to apply. This process allows detection of 
interactions between components in a uniform and efficient 
manner. A more detailed description of the symbolic execution 
process may be found in another paper [23]. 

Here, we show how symbolic execution can be used to integrate 
a test predicate discovered in the domain space (geometry) into 
the current design and to notice that the algorithm is not linear, as 
was originally expected. Details of the discovery of the test 
predicate have been described elsewhere [15], and so will not be 
repeated here. The original goal was to find a test to determine if 
a point is on the hull, but the discovered predicate tests if a 
segment is not on the hull (a segment is not on the convex hull of a 
set of points if there are not points on both sides of the line 
segment). Therefore the system must modify the design to make 
use of the predicate. As a first approximation, the test is initially 
represented as an assertion on test T1. 

Operational-assertion (Test predicate) on T1: 
Points- both-sides{segment input, Input) 

Since this assertion has just been added to T1, T1 is symbolically 
executed to see if it is fully refined The first problem that is 
uncovered is that the inputs are not well defined, because the 
operational-assertion requires different input than is currently 
available First, there is only one input port, and there need to be 
two ports, so execution is suspended, and another port (we'll call 
the existing one P1 and the now one P2) is added. A link is 
attached to the new port and preconditions on inputs to the test 
are added to distinguish P1 and P2: 

Precondition on T1: 

Using execution in this manner to uncover problems is an 
important part of DESIGNER. When a configuration can not be 
successfully executed, a problem called a difficulty is posted in 
the form of a goal or subproblem to be solved (not necessarily in 
the design space) If the initial assertions are correct and the 
inference mechanism is correct and adequate, the configuration 

{ I n p u t } 

Assertions: 

Operational assertion (Selection criterion) on S1: 
Operational-assertion (Selection criterion) on S2; 
Description on Input: 
Description on Input, Output: 
Complexity on CH: 
Description on M1: 
Postcondition on M2: 
Postcondition on T1: 

Figu re 1: Fragments of a dataflow configuration for generating a sequence of hull points. 



D. Steier and E. Kant 229 

lat implements the specifications is causing the problem, so a 
ifficulty indicates that some element of the current configuration 
eeds to be altered or refined. The difficulties fall into a small 
umber of categories. Since the design rules need only cover 
lese few categories of failure, a few rules and a relatively simple 
roblem-solving architecture allow DESIGNER to make progress In 
tost cases, regardless of the task domain. 

To continue the example, when symbolic execution of T1 Is 
[tempted again, the precondition on the inputs to T1 are 
ompared to the descriptions of the input items. The clause in the 
recondition about P1 is not satisfied because the current link to 
1 does not contain the entire input, only a subset of it. There is a 
esign rule that applies to this problem: 

If a precondition is not satisfied by an input link in 
the current design, and there is another output in the 
current configuration that will satisfy this precondition, 
then detach the input link from its present source and 
connect it to the desired output. 

When this rule fires, the link feeding P1 will be detached from M2 
nd connected to Input. The other clause of the precondition is 
ill not satisfied though, since P2 is not connected to anything 
roducing a segment. The previous rule will not apply, since no 
sgment is present in the design. A new item must be created, 
hich means that a component with a useful operational-assertion 
lust be added to the configuration, but another rule does apply: 

If a precondition is not satisfied by a link attached 
to a port in the current design, but it is known that an 
apply component with an appropriate operational-
assertion can create a component with the required 
output, then add an apply to the configuration with the 
required assertion and connect its output to the port 
described by the unsatisfied pre-condition. 

In this case, the post condition required is that the output of the 
pply is a segment This knowledge is used to find the 
perational assertion for the apply by searching the domain 
knowledge base of the system for an assertion with an appropriate 
ost-condition. This search suggests a draw segment as an 
ssertion. so apply A1 is added with a draw-segment assertion 
hich takes a head point and a tail point and produces the 
egment connecting the two points. 

Operational-assertion (Apply action) on A1: 
Draw-segment {point- input, paint-input) 

In this example, since A1 has just been added, that component is 
symbolically executed to see if it is complete. Symbolic execution 
gain points out the difficulty that ports and links are missing from 
e segment-constructing component and collects information 
bout the inputs. One point that is available is the point produced 
y S1, so a link is added from S1 to A1. Unless directed otherwise, 
\e same input should not be used twice for the same component 
since that may produce only degenerate cases of the desired 
utput) so another point is needed. The description of Output 
ontains the fact that the output may be viewed as a polygon, so 
lat the process of finding a convex hull may be seen as building a 
olygon and possible polygon fragments may be constructed by 
repeated extension from the most recently added vertex, 
herefore, the other input to A1 is obtained by following the 
memory of the hull so far (M1) with a select component (S3) that 
ets the point most recently added. 

Operational-assertion (Selection criterion) on S3: 
Select- most- recently-added (polygon- input) 

Execution of S3 and A3 proceeds correctly, but M2 must now be 
changed to a component that manipulates polygon fragments by 
adding and deleting segments rather than adding or deleting from 
a point set. This is done by changing the port types and 
description assertion on M2. 

Now M2. and T1 execute correctly, but DESIGNER notices that the 
output of the test T1 is a segment, and not a set of points as 
expected. But M2's delete-segment port requires a segment. This 
condition activates another design rule: 

When the descriptions on some item satisfy all the 
preconditions on some input port of a component, then 
add a link (if there isn't one already) from the port 
producing the item to the input port with the satisfied 
preconditions. 

So a link is added from TVs true-exit port to M2's delete-
segment port. An "optimizing" rule now applies to this situation: 

If data can flow through two different paths at one 
level of a configuration, but the paths produce 
symbolic items with equivalent descriptions, then one 
of the paths is redundant and the more complex one 
may be deleted from the configuration. 

In this case. S2 is no longer necessary, so it is removed. The 
configuration resulting from all the changes described is shown in 
Figure 2 Further design will focus on the details of the 
initialization and termination of the loop, which were not 
previously addressed in refinement of the loop-body, but we will 
not describe this here. 

Another important feature of symbolic execution is the use of the 
active goal to limit the constraints propagated during execution. 
This promotes simplicity and efficiency and also defines a simple 
criterion for deciding when execution of a configuration is 
complete. For example, if the goal is to guarantee that the 
algorithm is correct, then symbolic execution is tantamount to a 
full formal verification in the data-flow language, a complete 
propagation of all constraints. If the goal is to analyze the 
efficiency of the algorithm, then only those constraints relevant to 
the time and space usage of each component are propagated. 
Since many of the constraints in the design are often irrelevant to 
the active goal, this selectivity limits the computation necessary 
for automated design.7 However, the development of a surprising 
assertion can change the active goal or modify the type of 
information collected during symbolic execution. Unless 
interrupted by another process, execution generally proceeds by 
depth-first search of the graph formed by the configuration, 
restricted by the semantics of the data flows and bounded In depth 
when a component is sufficiently understood for present purposes 
(possibly from previous execution). Symbolic execution 
terminates when an active goal is satisfied, a difficulty is 
encountered or if nothing remains to be executed. 

The design goals satisfiable through execution include: 

• Checking the consistency of the design, including 
checking for missing inputs or specific errors such as 
data-type conflicts between components. 

• Given actual test-case data for some or all of the 
input, applying the algorithm to the data to compare 
the resulting output items to expected values. 

Other advantages of explicitly considering design goals In automated systems 
are explained in Mostow's survey of design research [17]. 



230 D. Steier and E. Kant 

• Checking that the algorithm (or component) executed 
on symbolic data satisfies its specifications as 
indicated by its preconditions and postconditions and 
those of any subcomponents. In the extreme case 
this amounts to a full verification. 

• Analyzing the time complexity of the algorithm. 
We illustrate the use of execution for time complexity analysis 

using the convex hull example. Analysis proceeds by propagating 
constraints about the number of different items that may occur on 
links that force re-execution of certain components. This is 
equivalent to determining the size of the set of items on a link as a 
function of the size of the input, when considering the set as a 
temporal abstraction of all items that may flow on the link over the 
entire computation The repetition and termination parts of loops 
are especially important to this analysis. In this example, at a later 
point in the design, it is seen that M1 is reset H times, 
corresponding to the number of points on the hull, which means 
that the worst-case run time of this piece of the algorithm is 
(H H N T), where N is the number of points in Input and 7" is the 
time to execute T1 for each segment. Since the formulation of the 
test in the domain space requires comparing the input segment to 
each point in Input, the test takes time proportional to A/, so the 
total time is (XHN2). This violates the original expectation of 
linear time. However, the existing design rules suggest no way to 
remedy this problem without a complete change of algorithm. 

Currently, the flexibility needed to satisfy these goals in symbolic 
execution is provided by allowing a variety of processing options. 
More than one option may be active at a time. Which options are 

activated depends on the reason for trying symbolic execution. 

In addition to implementing these options, we are also currently 
examining the issues related to repeated computation, since the 
presence of repeated computation in an algorithm causes 
difficulties for all current symbolic execution systems, and indeed 
for human programmers as well. The problem is due to an 
undetermined, and hence potentially infinite, number of execution 
paths to be considered. One approach that has been taken 
[4, 27] is to try to automatically derive and solve recurrence 
relations to express the behavior of loops without the need for 
repeated execution. People, on the other hand, usually recognize 
a correc* loop when a small number of test cases work, and we 
wish to capture this ability to recognize familiar patterns from the 
structure of the algorithm and from symbolic or test-case 
execution in our system. We are currently investigating an 
approach that shares some of the characteristics of temporal 
abstraction in the Programmer's Apprentice. If the number of 
iterations is not totally constrained as in symbolic execution, we 
execute each part of the loop once to check internal consistency 
and give the results to a set of rules that can recognize familiar 
configurations and results. Such rules could perform the temporal 
abstraction necessary to determine the behavior of a loop in the 
general case. 

E Related Work on Symbolic Execution 
Previous work on symbolic execution has focused primarily on 

the goals of testing (generating test data and exercising program 
paths) and verification, although debugging, understanding, 

Assertions: 

Figure 2. : Convex hull algorithm after changes (changed assertions in boldface) 



D. Steier and E. Kant 231 

explanation, and analysis also have been addressed. Here, we list 
the work in this area that is most relevant to algorithm design; a 
longer summary can be found in [23]. For a survey of the uses of 
symbolic execution for program testing specifically, see [6]. 

EFFIGY [8], SELECT [3], DISSECT [12], the EL1 evaluator 
[4] and ATTEST [5, 28] were some of the first systms to use 
symbolic execution for testing and verification Symbolic 
execution, in conjunction with other techniques, has also been 
used to analyze the run-time performance of simple programs 
[27,13] More recent work considers symbolic evaluation of 
specifications (rather than program code) to help in the 
development process: the partition analysis method [6]; KOKO 
[7], which symbolically evaluates GIST specifications and is used 
as the basis of an explanation system [25]; REASON [21], a 
component of the Programmer's Apprentice system (in addition to 
other MIT work on meta-evaluation in the context of the actors 
formalism [11, 29]). Finally, simulation, a process similar to 
symbolic execution, was identified (based on protocol analysis 
experiments) in a model of the human design process focusing on 
software systems rather than algorithms [1], 

F Discussion 
We have described a system that makes explicit the role of 

symbolic execution in the design process. We claim that 
execution has more uses than the testing and debugging 
applications described thus far; namely, that in uncovering 
opportunities for the refinement of a data-flow algorithm 
representation, execution is the principal method guiding design 
in the absence of specific knowledge. A standard set of 
difficulties combined with appropriate search control knowledge 
allows the automated selection of design operators even if the 
algorithm is incompletely described. The power and flexibility of 
this approach is being validated by our current work on writing 
derivations of complex algorithms (such as convex hull); the 
results of execution control the search in the design problem 
space. 

Acknowledgements 
We thank Allen Newell, Brian Milnes and Andrew Peterson for 

comments on earlier drafts of this paper, and Mary-Anne Wolf for 
collecting many of the protocols. All of them have contributed in 
numerous ways to the ideas in and implementation of DESIGNER. 

References 

1. Adelson, D. and Soloway, E A Model of Software Design. In 
The Nature o! Expertise. Chi, Glaser and Farr, Eds., ?, in press. 
2. Barstow. D. R. The Roles of Knowledge and Deduction in 
Algorithm Design. In Biermann, A. W. (editor). Ed., Automatic 
Program Construction Techniques, McMillan, I984, Chap. 10, pp. 
201-222. 
3. Boyer, R S., Elspas, B., Levitt, K. N. SELECT — A Formal 
System for Testing and Debugging Programs by Symbolic 
Execution. Proceedings of the International Conference on 
Software Reliability, 1975. 
4. Cheatham, T.E., Holloway, G.H., and Townley, J.A. "Symbolic 
evaluation and the analysis of programs." IEEE Transactions on 
Software Engineering SE-5, 4 (July 1979). 
5. Clarke, L.A. "A system to generate test data and symbolically 
execute programs." IEEE Transactions on Software Engineering 
SE-4t 5 (September 1976). 
6. Clarke, L. and Richardson, D. J. Symbolic Evaluation Methods 
— Implementations and Applications. In Computer Program 
Testing, Chandrasekaran, B. and Radicchi, S„ Eds., North-
Holland, 1981, pp. 65-102. 

7. Cohen, D. Symbolic Execution of the Gist Specification 
Language. Proceedings of the Eighth International Joint 
Conference on Artifical Intelligence, Karlsruhe, West Germany, 
August, 1983, pp. 457-462. 
8. Darringer, J.A., and King, J.C. "Applications of symbolic 
execution to program testing." Computer 7 7,4 (April 1978). 
9. Fikes, R., Hart, P., and Nilsson, N. "Learning and executing 
generalized robot plans." Artificial Intelligence 3 (1972), 251-288. 
10. Forgy,C.L. OPS5 User's Manual. Tech. Rept. CMU-
CS-81-135, Carnegie-Mellon University, Computer Science 
Department, July, 1981. 
11 . Hewitt, C.E. and Smith, B. "Towards a Programming 
Apprentice." IEEE Transactions on Software Engineering SE-1, 1 
(March 1975). 
1 ? Howden, W E. "Symbolic testing and the DISSECT Symbolic 
Evaluation System." IEEE Transactions on Software Engineering 
SF-3,4(July1977). 
13. Kant, E.. Efficiency in Program Synthesis. UMI Research 
Press, 1981. 
14. Kant, E. and Newell, A. Naive algorithm design techniques: a 
case study. Proceedings of the European Conference on Artificial 
Intelligence, Orsay, France, July, 1982. 
15. Kant, E. and Newell, A. "Problem solving techniques for the 
design of algorithms." Information Processing and Management 
20, 1-2 (Spring 1984). 
16. Kant, E. and Newell, A. An automatic algorithm designer: An 
initial implementation. Proceedings of AAAI-83,1983. 
17. Mostow, J "Towards Better Models of the Design Process." 
Al Magazine 6, 1 (Spring 1985). 
18. Newell, A Reasoning, Problem Solving and Decision 
Processes: The Problem Space as a fundamental Category. 
Tech. Rept. CMU CS 79 I33, Carnegie Mellon University, 
Computer Science Department, June, I979. 
19. Rich, C Inspection Methods in Programming. Tech. Rept. 
AI-TR GCM, MIT, June, 1981 (PhD thesis) 
20. Shrobe, H.E. Dependency Directed Reasoning for Complex 
Program Understanding. Tech. Rept. AI-TR-503, MIT, April, 1979. 
(PhD thesis) 
2 1 . Shrobe, H E. Explicit Control of Reasoning in the 
Pi ogrammer's Apprentice Proceedings of the Fourth Workshop 
on Automated Deduction, February, 1979. 
22. Steier, D. M. A Language for Representing and Executing 
Partial Algorithm Descriptions. Tech. Rept. in preparation, 
Carnegie-Mellon University, Computer Science Department, 1985. 
23. Steier, D. M. and Kant, E. The Role of Symbolic Execution in 
a Model of Algorithm Design. To appear in IEEE Transactions on 
Software Engineering. An abbreviated version also appears in the 
Proceedings of the Third International Workshop on Software 
Specification and Design, August, 1985. 
24. Sussman, G. J.. A Computer Model of Skill Acquisition. 
American Elsevier Publishing Company, Inc., 1975. 
25. Swartout, W. R. The GIST Behavior Explainer. Tech. Rept. 
ISI/RS-83-3, University of Southern California Information 
Sciences Institute, July, 1983. 
26. Waters, R.C. Automatic Analysis of the Logical Structure of 
Programs. Tech. Rept. AI-TR 492, MIT, December, 1978. (PhD 
thesis) 
27. Wegbreit, B. "Mechanical Program Analysis." Comm. ACM 
78,9 (September 1975). 
28. Woods, J.L.. Path Selection for Symbolic Execution Systems. 
UMI Research Press, 1982. 
29. Yonezawa, A. and Hewitt, C.E. Symbolic Evaluation Using 
Conceptual Representations For Programs With Side Effects. 
Tech. Rept. AI-TR 399, MIT, December, 1976. 


