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ABSTRACT 

This paper presents an evidential approach to 
knowledge representation and inference wherein the 
principle of maximum entropy is applied to deal with 
uncertainty and incompleteness. It focuses on a restricted 
representation language - similar in expressive power to 
semantic network formalisms, and develops a formal 
theory of evidential inheritance within this language. The 
theory applies to a limited, but we think interesting, class 
of inheritance problems including those that involve 
exceptions and multiple inheritance hierarchies. The 
language and the accompanying evidential inference 
structure provide a natural treatment of defaults and 
conflicting information. The evidence combination rule 
proposed in this paper is incremental, commutative and 
associative and hence, shares most of the attractive 
features of the Dempster-Shafer evidence combination 
rule. Furthermore, it is demonstrably better than the 
Dempster-Shafer rule in the context of the problems 
addressed in this paper. The resulting theory can be 
implemented as a highly parallel (connectionist) network 
made up of active elements that can solve inheritance 
problems in time proportional to the depth of the 
conceptual hierarchy. 

I. Introduction 

The computational cost of gathering, processing and 
storing information about a complex and constantly 
changing environment makes it impossible to maintain 
complete knowledge. However, the need to act on 
available information compels an agent to make decisions 
(inferences) based on incomplete knowledge. This 
underlines the importance of formalizing inference 
structures that can deal with incompleteness and 
uncertainty, as is well recognized in Al [Do, Fo, HM, Jo, 
Lei, MD, McD, Mo, Ni, Re]. 

This paper presents an evidential approach based on 
the principle of maximum entropy to deal with incomplete 
knowledge. Evidential reasoning permits the association of 
numeric quantities with assertions to indicate their degree 
of belief and has long been used in expert system design 
[Po, Sho, DHN]. This paper demonstrates that it is 
possible to adopt an evidential approach in solving some 
well known problems in knowledge representation. It 
focuses on a restricted representation language - similar in 
expressive power to semantic network formalisms, and 
develops a formal theory of evidential inheritance within 
this language. The resulting theory has an efficient parallel 
implementation. 

One reason for considering an evidential formulation 
instead of a traditional approach such as Default Logic 
[Re], is that the latter is not suitable for reasoning about 
relative likelihoods and in particular it handles conflicting 
information inadequately. It makes the implicit 
assumption that all default rules have the same 
"significance" or "import." From this assumption it 
follows that // two or more rules have conflicting 
consequences then either the use of one rule should preclude 
the use of the other rules, or no conclusions should be drawn 
based on these rules. This is not always desirable. We 
illustrate the point with the help of an example. 

Given the following world knowledge: 

Quakers tend to be pacifists. - Si-
Republicans tend to be non-pacifists. - S2-
Dick is a quaker and a republican. - S3-

suppose we need to draw conclusions about Dick's 
pacifism. 

A system based on Default Logic [ER] would 
arbitrarily choose between one of two possible extensions 
and respond with an answer that lies in the chosen 
extension. The choice of extension would depend on 
which of the two default rules - "Quakers tend to be 
pacifists" (dr-l) and "Republicans tend to be non-
pacifists" (dr-2)< is selected first by the inference 
algorithm. For example, if the default rule dr-2 happens to 
be selected first, the system would infer that "Dick is a 
non-pacifist". Once this inference is made, dr-1 would no 
longer be justifiable with reference to Dick and hence 
would not play any role in drawing conclusions about 
Dick. The case where dr-l is selected first is entirely 
analogous. In either case, the conclusion drawn would 
depend on only one of the two rules and in turn on an ad 
hoc order of rule application. 

Our intuitions about the knowledge in the quaker 
example suggest that in drawing conclusions about Dick, 
both statements SI and S2 are relevant and hence, both 
must affect the final conclusion. In general, the final 
conclusion should reflect the combined effect of all the 
relevant information. Furthermore, the statements SI and 
S2 need not have the same import. For instance, an agent 
may believe that the tendency of Quakers to be pacifists 
outweights the tendency of Republicans to be non-pacifists 
and an epistemologically adequate formalism should be 
capable of expressing such differences. 
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A way to formalize these distinctions is to treat 
statements like S1 and S2 as evidential assertions and to 
associate a numeric quantity with each assertion to 
indicate its evidential import If one could assign meaning 
to these numbers and explain how they may be extracted 
from world knowledge and also specify a formal calculus 
for computing the combined effect of evidential assertions, 
then one would be able to handle situations such as the 
quaker example more satisfactorily. Deciding whether 
Dick is a pacifist or a non-pacifist need not be based on 
arbitrary choices, but instead, be resolved by a formally 
specified theory of evidential reasoning. 

One may handle interactions between default rules by 
enumerating the possible cases of interactions and 
specifying the correct inference in each case [RC]. 
However, having a formal calculus for computing the 
effects of interactions between default rules in a justifiable 
manner seems more desirable to us than having to 
explicitly list the outcome of every possible interaction. 

Recently, Touretzky [To], has suggested a non-
evidential theory of inheritance based on the principle of 
inferential distance ordering which states that: if A inherits 
P from B, and ~P from C, then " i f A has an inheritance 
path via B to C and not vice versa, then conclude P; if A 
has an inheritance path via C to B and not vice versa, then 
conclude ~P; otherwise report an ambiguity." In effect, 
his formalism treats all rules at the same inferential 
distance as having the same import and this forces him to 
report an ambiguity in situations such as the quaker 
example. 

Rich [Ri], has proposed that default reasoning be 
treated as likelihood reasoning. However, she does not 
offer a formal theory of evidential reasoning; she 
concludes "... the introduction of likelihoods poses new 
questions such as how to best assign (certainty factors) 
when there are conflicts ... these questions ... should be 
addressed." 

This paper specifies a formal theory of evidential 
reasoning with respect to a restricted representation 
language. The theory can handle a limited, but we think 
interesting, class of multiple inheritance situations, 
including those that involve exceptions and multiple 
inheritance (analogous to multiple extensions). The theory 
may be realized in terms of a highly parallel network that 
can solve inheritance problems in time proportional to the 
depth of the conceptual hierarchy. 

Section 2 specifies the representation language, section 
3 derives the evidence combination rule and discusses its 
relation to the Dempster-Shafer evidence theory [Sha, 
GLF, Ba, Gil, Section 4 develops the theory of evidential 
inheritance and section S discusses related issues. 

2 Representation language 

We will be dealing with the problem of evidential 
reasoning in the context of a restricted knowledge 
representation language that is similar to semantic network 
formalisms such as [Fa, Br, BW] and may be viewed as an 
evidential extension of inheritance hierarchies with 
exceptions [ERJ. An outline of the language follows. 
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3. A theory of evidence 

In its simplest form, the problem of evidential 
reasoning may be stated as a decision problem illustrated 
by the following example: 

Suppose an agent is required to choose between 
APPLE(x) (to be read as "x is an apple") and GRAPE(x) 
given that RED(x) A N D SWEET(x). HOW should he make the 
choice on the basis of his knowledge that consists of the 
values of: 

E(APPLE(x) | RED(x))*, E(GRAPE(x) | RED(x)), 

E(APPLE(x) | SWEET(x)) and E(GRAPE(x) | SWEET(x)). 

where E(A|B) means "the evidence provided by B to A" 

In solving decision problems such as the one above, a 
theory of evidential reasoning should strive to ascertain the 
following: 
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"Given the state of the agent's knowledge i.e., taking 
into account what the agent knows, which choice is most 
probably correct". 

The theory developed below is based on the notion of 
maximum entropy, a notion that is fundamentally related 
to information theory and statistical mechanics, [Jal, Ja2, 
Ch]. 

3.1 Problem formulation 

Given the knowledge in section 2.1, a rational agent 
would have no difficulty in guessing the most probable 
identity of an object given one of its property values. For 
example, he would guess that a red object is probably an 
apple because there are 60 instances of red apples as 
against 5 of red grapes. 

Our goal is to suggest how a rational agent should 
decide the most probable identity of an object given a 
description specifying multiple property values such as 
"red and sweet". 

The information about apples and grapes in section 2.1 
may be expressed in the form of matrices as shown in 
figure 3. The rows of the two matrices correspond to the 
different values of the property has-taste while the 
columns correspond to the different values of the property 
has-color. The numbers at the end of each row (column) 
represent the number of instances of the concept that have 
the appropriate value of taste (color). 

given by the number of distinct values the property may 
have. The #A<P,V>s appear as marginals or the sums of 
hyper-rows and hyper-columns. 

The internal matrix elements may be used to specify 
the number of instances of the concept that have the 
appropriate combination of property values. For instance, 
the top left element of the APPLE (GRAPE) matrix in figure 
3 indicates the number of instances of apples (grapes) that 
are both red in color and sweet in taste. 

To guess the identity of a red and sweet object would 
be trivial if the agent knew the internal matrix elements. 
He could simply compare the top left elements of the two 
matrices in figure 3 and choose the concept that has the 
higher value. 

However, if the agent does not know the internal matrix 
elements the best that he can do is find the most probable 
estimates of these on the basis of the available information 
and use the estimates to reason about the world In the 
remainder of this section we show how the most probable 
estimate may be found. 

3.2 Computing the most probable configuration 

The general 2-dimensional case, may be represented as 
shown in figure 4. 

FIGURE 3 

In general, an agent's knowledge about a concept A 
may be represented as an n-dimensional matrix where n 

Each dimension of the matrix corresponds to 
an applicable property and the extent of a dimension is 

FIGURE 4 
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Let a configuration be a specification of all the a i js. 
Our goal is to find the most probable configuration 
indicated by the following information: 

The problem of finding the most probable 
configuration may be recast as follows: 

Consider distributing N distinct objects into a 2-
dimensional array of cells. 

Let a placement be the complete specification of the 
result of such a distribution That is, for each cell a 
placement specifies the objects that are placed in the cell. 

Let the number of objects located in the ijth cell be 
given by a j j. Then, it follows that there is a many to one 
mapping from the space of placements to the space of 
configurations. 

Let a placement be termed feasible if it satisfies the 
constraints imposed by row sums and column sums. Then: 

Given his knowledge, an agent has no basis for 
assuming that a particular feasible placement is more 
probable than some other feasible placement and the only 
rational assumption he can make is that all feasible 
placements are equally probable. 

In view of the above assumption the most probable 
configuration will be that which results from the greatest 
number of feasible placements. 

If w denotes the number of placements resulting in a 
configuration then w is given by: 

{number of ways of dividing N distinct objects into n*m 
groups of 

One may now maximize w subject to the constraints: 

in order to find the most probable configuration. 

It may be shown that for the above maximization 
problem: 

* This is in essence the principle of indifference or the 
principle of insufficient reason first stated by Bernoulli in 
1713. 

satisfies the condition of maximality. 

The above derivation involves taking the logarithm of 
w and using the Stirling's approximation to eliminate the 
factorials. The maximization is performed by setting the 
derivative of the resulting expression with respect to ay's 
to zero; the constraints being incorporated as Lagrange 
multipliers. 

The above result can be extended to higher 
dimensions. The result is analogous to the result for 2-
dimensions and is given by. 

where N equals the total number of objects, n equals the 
number of dimensions in the array, .. denote 
the sums of hyper-rows or hyper-columns and is the 

most probable number of objects in t h e c e l l of the 
array. 

The above result will be referred to as the best 
estimate rule and may be restated as follows. Based on the 
knowledge of: 

Referring back to the example about apples and 
grapes - the result derived above implies that a rational 
agent would believe that the most probable way in which 
the instances of apples and grapes could be distributed is 
given by the matrices shown in figure 5. Thus, he will 
identify a "red and sweet" object to be an apple as there 
are probably 42 apples meeting this description as against 
only 3 grapes. 
3.3 Relation to the Dempster-Shafer theory 

The Dempster-Shafer (DS) evidence theory [Sha, 
GLF, Ba], suggests an evidence combination rule that is 
currently in vogue in aritificial intelligence. One can show 
that a straight forward application of the DS rule for 
evidence combination does not produce the correct 
results - for the kinds of problems we wish to solve. It is 
shown that the DS result agrees with the best estimate rule 
if one assumes that the frequency (i.e. the prior 
probability) of all concepts is the same. 

A simple example illustrates the point. Consider the 
information about apples and grapes as given in section 
2.1. 

If one wishes to use the DS rule to decide whether a 
green and sour object is an apple or a grape one would 
essentially proceed as follows: 
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12 : 18 = 2 : 3 

One would treat each property value as a source of 
evidence. The evidence provided by green and sour will 
be: 

E(Apple | green) = 40/85, E(Grape | green) = 45/85 

E(Apple | sour) = 30/50, E(Grape | sour) = 20/50 

Applying the DS rule for evidence combination we 
get: 

E(Apple | green & sour) = (40/85)*(30/50) and 

E(Grape | green & sour) = (45/85)*(20/50) 

{The above is a simplified account of the actual steps 
using DS theory. We have focused on the essentials. In 
particular, we have not normalized the quantities because 
we are only interested in a relative measure.}. 

Comparing the evidence for Apples and Grapes we 
have 

E(Apple | green & sour): E(Grape | green & sour) equals, 

(40/85)*(30/50) : (45/85)*(20/50) = 4 : 3 

and the decision is in favor of Apple. 

However, on the basis of the given information, the 
best (most probable) estimate of the number of green and 
sour Apples is 12 and that of green and sour Grapes is 18. 
(See figure 5). Hence the appropriate ratio is: 

and the decision is in favor of Grapes! 

It is not difficult to locate the reason for this 
discrepency. Given that one is only interested in making 
comparisons, the ratio of the relative likelihood of two 
concepts A and B using the DS rule is given by: 

If one were to assume #A = #B , or in effect that all 
concepts have the same prior probability, then the DS rule 
and the best estimate rule become equivalent. 

One might suggest that by including an additional 
source that provides evidence about the prior probabilities 
of apples and grapes, one might be able to correct the DS 
result. However, an examination of Eq-I will indicate that 
the problem is more complex. In order to make the DSralio 
the same as that obtained by the best estimate result one 
will have to multiply it by the factor: 

But, introducing an evidential source to account for 
the prior probability only introduces the factor # A / # B , 
which acts in the wrong direction. 

3.4 Relation to Bayes's rule 

The best estimate rule is consistent with the use of 
Bayes's rule if one assumes that the properties are 
independent The maximum entropy approach simply 
determines the most probable configuration on the basis 
of all the available information. If there is nothing in the 
information to suggest a dependence or (correlation) then 
none is assumed. If additional information suggesting 
dependence is available, it is incorporated in the 
derivation of the most probable configuration as an 
additional constraint. For example, if the agent knows one 
of the matrix elements (say the number of red and sweet 
apples), then the most likely configuration is as follows: 

Without toss of generality, let the agent know that 
Then, 

However, the above computations get complex if 
many internal elements are known; the implications of this 
are discussed in section 5. 



L. Shastri and J. Feldman 471 



472 L Shastri and J. Feldman 

The condition specified in step ii is not unduly 
restrictive. An interesting conceptual organization that 
satisfies the condition is the one in which the Type 
structure defined over Tokens consists of several distinct 
taxonomies. In such an organization, each Token may 
have several parents, and hence, multiple relevant 
concepts. 

In particular, condition ii does NOT require all 
concepts in C to be organized as a tree; if this were the 
case, multiple inheritance situations would not even arise. 
Figure 6 shows an example in which the property P may 
be inherited for concepts C1 as well as C2. For instance, 
C1, D, F, H, I, and J could represent Dick, Quakers, 
Republicans, Religious groups, Poilitical groups, and 
People respectively, and P could be the property has-belief 
with values such as Pacifism, Non-pacifism, Nationalism 
etc. The question of Dick's pacifism would be resolved by 
combining evidence from the concepts "Quaker" and 
"Republican" at the reference concept "People". 

C1 C2 

FIGURE 6 

4.5 The role of numbers in the theory 

The representation language specified in section 2 
required the specification of absolute numbers. However, 
an important characterstic of the theory of inheritance 
developed above is that none of the calculations require 
the knowledge of absolute numbers. All the necessary 
numeric information is embodied in the following ratios 
each of which lies in the interval [0,1]: 
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4.6 Parallel implementation 6. Conclusion 

It is possible to encode 0 as a highly parallel 
(connectionist) network made up of active elements 
connected via weighted links. The network can perform the 
computations required to solve the inheritance problem in 
only 0 ( d ) time, where d is the length of the longest path 
in the ordering defined on The weights on links 
encode the ratios discussed above. 

An interesting property of the parallel implementation 
is that the weights on links can be computed on the basis 
of purely local information. Thus, the weight on a link 
from node A to node B, is a function of the activities of 
nodes A and B alone. 

For a description of the parallel implementation see 
[Shas]; the connectionist paradigm is described in [FBJ. An 
earlier parallel implementation, along with some 
extensions of this work is described in [SF]. 

5. Discussion 

This paper has developed an evidential framework 
based on the principle of maximum entropy and has 
applied it to' the problem of inheritance. The evidential 
treatment solves the problem of exceptions and a class of 
multiple inheritance problems. By combining information 
from multiple ancestors in a formally justifiable manner, it 
allows the result to be based on relevant information, and 
not just on an arbitrarily chosen subset of information. 
(Recall the quaker example in section 1). 

The formalism presented here has an efficient parallel 
implementation (section 4.6), though the results apply only 
to a restricted representation language. We believe that 
work in AI on representation and inference should not 
ignore the issue of tractability (a.k.a. performance, 
effeciency). A formalism that has limited expressiveness 
but that is computationally tractable seems at least as 
relevant to AI as one that is extremely expressive but 
hopelessly intractable [Le2]. We feel that our formalism 
lies at a significant point on a metaphorical "curve" that 
might describe the tradeoff between expressiveness and 
tractability. 

This formulation demonstrates that as long as the 
knowledge about concepts and their property values is in 
the form of _, there exists an efficient way of 
util izing this knowledge. In section 3.4 we saw how a 
" l imi ted" amount of knowledge outside this form could be 
incorporated. However, the computations soon become too 
complex. This suggests that the goal of a concept 
formation (learning) mechanism should be to create 
concepts - and the ensuing Type structure, such that most 
of the distribution information may be expressed in terms 
of #C<P,V>'s of existing concepts. 

The evidential formulation is extendable to the 
recognition problem (given a description consisting of 
property value pairs, f ind the concept that is best indicated 
by the description). The extension is described in [Shas]. 

This paper demonstrates that certain problems in 
knowledge representation and reasoning have elegant 
solutions within an evidential framework. We hope that 
this work provides a point of contact between researchers 
who adopt various non-monotonic logics and researchers 
who adopt an evidential approach to deal with partial and 
uncertain knowledge. We further hope that this will lead 
to a greater interaction between the two groups. 
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