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A B S T R A C T 

Globally coherent behavior is the holy grail of dis­
tributed problem solving network research. Obtaining co­
herent network activity without sacrificing node autonomy 
and network flexibility places severe demands on the lo­
cal control component of each node. We introduce new 
mechanisms that allow a node to compute an abstracted, 
high-level description of its local state which it then uses to 
formulate multi-step plans. Not only do these mechanisms 
significantly improve local problem solving performance, 
but they also enable nodes to make dynamic refinements 
to their long-term network organisation knowledge. The 
coordination decisions made by nodes are thus increasingly 
responsive to changes in network activity as problem solv-
ing progresses. We provide experimental results indicating 
that these new mechanisms improve the internal control de­
cisions of a node, reduce the communication requirements 
of the network, and improve network coherence. We be­
lieve that these mechanisms would also be useful for control 
in centralised multi-level blackboard-based problem solving 
systems. 

I . I N T R O D U C T I O N 

Achieving global coherence in cooperative distributed 
problem solving networks (DPSNs) is a major problem 
[4,13]. In a DPSN, each node is an intelligent semi-
autonomous problem solving agent that determines its own 
behavior based on its perception of network activities. 
Global coherence means that the activities of the nodes 
should appear to make sense given overall network goals. 
Nodes should avoid unnecessarily duplicating the work of 
others, sitting idle while others are swamped with work, 
or transmitting information that will not improve overall 
network performance. Because network coordination must 
be decentralised to improve reliability and responsiveness, 
the amount of global coherence in the network is dependent 
on the degree to which each node makes coherent decisions 
based on its local view of network problem solving 
activities. 
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At any given time, a node will rank its pending tasks 
based on how it believes each will improve network problem 
solving. A decision by the node to execute the top 
ranked task is therefore more or less coherent depending 
on how highly ranked the task would have been if the 
node had a completely global view of network problem 
solving. Full global coherence requires that each node have 
a complete and accurate view of the past, present, and 
intended future activities of all other nodes. If this is done 
by globally predefining a coordinated multi-agent plan at 
network creation, the network will be inflexible to changing 
problem solving situations and network characteristics. 
Alternatively, having nodes broadcast all state changes 
and future intentions is infeasible due to bandwidth 
limitations and channel delays. Therefore, we have no 
practical means to insure full global coherence. The 
functionally accurate, cooperative approach to distributed 
problem solving develops a framework in which network 
goals can be achieved with only partial global coherence 
[13]. However, since partial coherence wastes resources 
and degrades performance, we have been developing 
mechanisms which increase coherence without significant 
additional communication costs. 

Our previous work toward this end developed a 
decentralised approach to network coordination in which 
each node is guided by a high-level strategic plan for 
cooperation among the nodes in the network [3]. This 
strategic plan, represented as a network organisational 
structure, specifies in a general way the communication and 
control relationships among the nodes. The organisational 
structure increases the likelihood that nodes will be 
coherent in their behavior by predefining a limited 
range of options available to a node. Network flexibility 
is maintained by not limiting these options too tightly. 
Sophisticated local control plays a key part in this approach 
because decisions about which of these options to pursue 
must be based on short-term information about the current 
situation. 

In this paper, we describe new mechanisms that allow 
a node to refine its perception of the role it currently 
plays in the organization. This refined view is achieved 
by providing each node with the ability to reason about its 
current state of problem solving and to make predictions 
about its future actions. To accomplish this, these new 
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mechanisms allow a node to compute an abstracted, high-
level description of its local state. The node uses this 
description to formulate high-level goals and to generate 
plans to achieve them. Since each plan incorporates a 
sequence of actions, the pursuit of a specific plan allows 
the node to make reliable predictions about its actions in 
the near future. These predictions enable the node to make 
medium-term, dynamic refinements to how it views its role 
in the network organization, and it may modify its local 
processing accordingly. Furthermore, if nodes occasionally 
exchange meta-level information about these refined views 
of the organizational roles they will be playing in the near 
future, each node will have a more global view of the 
network problem solving activity, and global coherence will 
increase. 

We have implemented and empirically evaluated our 
ideas using the Distributed Vehicle Monitoring Test bed. 
The next section outlines the relevant aspects of the 
test bed, describes how our mechanisms were incorporated, 
and discusses experimental results indicating improvement 
in local problem solving ability. We then study how these 
mechanisms can be used to improve network coherence, and 
present results indicating their utility. Finally, we relate our 
work to other research in distributed problem solving and 
discuss the implications of the preliminary research we have 
outlined, along with the directions we will be pursuing in 
the future. 

n . INCREASING T H E SOPHISTICATION O F 
A P R O B L E M SOLVING NODE 

The distributed vehicle monitoring test bed (DVMT) 
is a flexible and fully-instrumented research tool for the 
evaluation of distributed network designs and coordination 
policies [14]. The DVMT simulates a network of 
problem solving nodes attempting to identify, locate 
and track patterns of vehicles moving through a two-
dimensional space using signals detected by acoustic sensors. 
Each problem solving node is an architecturally-complete 
Hearsay-n system with knowledge sources and levels 
of abstraction appropriate for this task. The basic 
Hearsay-II architecture has been extended to include more 
sophisticated local control [2], knowledge sources (KSs) 
for communicating hypotheses and goals among nodes, 
and data structures called interest areas that specify 
the organisational role of a node [3]. These interest 
area specifications are used by the local node control 
in deciding what problem-solving and communication 
knowledge sources should be instantiated and how these 
knowledge source instantiations (KSIs) should be rated for 
possible execution. 

In this section, we introduce further modifications to 
this architecture by providing a node with the capability 
to generate and reason with a more complete view of 
its past, present, and future activities. Although nodes 
generally tend to methodically perform sequences of related 
actions, they are unable to represent and reason about such 
sequences. For example, given a highly rated hypothesis, 
a node typically executes a sequence of KSIs that drive up 

low level data to extend the hypothesis. However, the entire 
sequence of KSIs is never on the queue at once. We have 
therefore developed a structure, called a plan, to explicitly 
represent a KSI sequence. 

A. Blackboards, Plans, and Node Activi t ies 

Each plan represents a desire to achieve a high-level goal 
by performing a sequence of activities. To identify plans, 
the node needs to recognize these high-level goals. Inferring 
high-level goals based on pending KSIs is an inappropriate 
strategy; it is like attempting to guess a chess opponents 
strategy after seeing a single move. Furthermore, the 
hypothesis and goal blackboards provide information at 
too detailed a level to infer these high-level goals. What 
is required is a structure similar to the blackboards 
that groups related hypotheses and goals into a single 
structure. We have developed a preliminary version of this 
structure which we call the abstracted blackboard, a multi­
level structure reminiscent of the focus-of-control database 
first used in the Hearsay-II speech understanding system 
[7]. Our implementation of the abstracted blackboard 
is incomplete because it does not adequately incorporate 
the information from the goal blackboard. However, for 
the type of processing done in the DVMT, hypothesis 
abstraction is usually effective. 

Hypotheses with similar level, time, and region 
characteristics are grouped together on the abstracted 
blackboard. This grouping acts as a smoothing operator, 
obscuring details about individual hypothesis interactions 
so that broader, long-term interactions between areas of the 
solution space can be discerned. By transforming the data 
blackboard into the abstracted blackboard, we explicitly 
generate a state representation that is uniquely appropriate 
for planning at a higher level of abstraction. We believe 
that the significant success of our modified architecture 
can largely be attributed to having such a representation, 
and expect that the control components in other multi-level 
blackboard-based problem solving systems might similarly 
find such representations useful [0j. 

In our preliminary implementation, the abstracted 
blackboard takes the form of a two-dimensional array, with 
level and time indices. Each hypothesis has associated 
with it a sequence of time-locations which indicates where 
the hypothesized vehicle was at various times. When a 
hypothesis is created, it is incorporated into the abstracted 
blackboard by stepping through this sequence of time-
locations and modifying the appropriate level-time entries 
in the abstracted blackboard. Each level-time entry 
contains some number of regions, and if the location 
associated with the specific time can be included in one 
of these regions (perhaps by enlarging the region within 
certain bounds), the hypothesis is associated with that 
region. Otherwise, a new region is formed for the 
hypothesis. 

Each level-time-region of the abstracted blackboard is 
summarized into a set of values that are derived from 
the associated hypotheses. These values include the 
maximum belief of the hypotheses in the level-time-region, 
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the number of highly believed hypotheses, the number 
of KSIs stimulated by these hypotheses that have yet to 
be invoked, the total number of hypotheses in the level-
time-region and how many uninvoked KSIs are associated 
with them, and an indication as to the other level-time-
regions that share at least one of the hypotheses. This 
information allows the situation recognizer to develop a 
higher level view of the problem solving. For example, low 
maximum belief indicates the problem solving approach in 
that area should be re-evaluated, a large number of equally 
rated hypotheses could imply that there is uncertainty that 
should be resolved, and a large number of pending KSIs 
indicates the need for making an informed and judicious 
choice as to which action to take next. Based on this higher-
level view, we can begin to form higher level goals. A goal 
might be to merge hypotheses in adjacent time-regions, to 
improve the belief of an established hypothesis, or to extend 
a highly believed hypothesis into a new region. 

The detection of these goals, and the subsequent 
generation and ranking of their respective plans, is in itself a 
complex problem solving task. Our current implementation 
is a first step toward this end, in which we only consider 
very simple but important plans. Given the abstracted 
blackboard, our planner scans down it, looking for regions 
of high belief. Having found such a stimulus region, the 
planner determines whether there is any indication that 
the data in this region can be improved (this is done by 
determining whether any corresponding lower level regions 
have higher belief than the upper level regions), and if so 
indicated, a plan is formed to achieve this improvement. 
Otherwise, a plan is generated to extend this highly rated 
region, either by merging a hypothesis in this region with a 
hypothesis in an adjacent region on the same level (if any), 
or by driving lower level data in an adjacent area up to a 
level at which it can be incorporated. If none of these plans 
can be formed, then a plan to synthesize the hypotheses in 
this highly rated region up to a higher level of abstraction 
may be formed. 

Plans in our current implementation are not yet fully 
developed, because a plan should not only involve the 
specification of an eventual goal, but also of a sequence of 
actions needed to achieve this goal. Only the next potential 
step(s) for achieving the plan are currently represented as 
a priority rated queue of KSIs. In turn, the node maintains 
a queue of plans, ordered based on their respective ratings. 
A plan rating is based on a number of factors, including the 
belief of its stimulus region, the level of its stimulus region, 
the interest in that region (specified by the interest areas), 
the ratings of its KSIs, and whether the stimulus region 
represents hypotheses generated locally or it represents 
received hypotheses (to reason more fully about potentially 
distracting information received from outside). Therefore, 
in choosing its next activity, a node will invoke the highest 
rated KSI in the highest rated plan. 

We have therefore made important modifications to the 
control structure of a node (Figure 1). As the figure 
indicates, the creation and ranking of plans requires the 
planner to integrate the influences of the long-term strategy 

of the organizational structure (the interest areas), the 
medium-term higher-level view of the current situation 
(the abstracted blackboard), and the short-term KSI input 
indicating actions that can be achieved immediately (the 
KSI queue). Hence, decisions in a plan-based node 
are more informed than those in a KSI-based node (a 
node without plans). Moreover, a plan-based node is 
no less opportunistic, because plans, unlike KSIs, are 
interruptable. If an area outside the current plan looks 
more promising, a plan to work there may temporarily 
supplant the current plan at the top of the queue. 
In addition, when plans are introduced, one can begin 
reasoning about the time invested in a particular area, and 
whether it is really in the node's best interests to leave this 
area for another. 

B. Experiments w i t h Plan-based Nodes 

We now briefly illustrate how problem solving is 
improved in a plan-based node (we shall consider multi-
node networks in the next section). Consider the sensor 
configuration and input data shown in Figure 2. The 
vehicle track has two strongly sensed areas divided by a 
weakly sensed area, while the ghost track is moderately 
sensed throughout. In the centralised case, a single node 
receives data from all four sensors. If the node makes 
only correct decisions, it can generate the solution in 40 
time units. However, the presence of moderate ghost data 
serves to distract the node. This distraction is severe if the 
node is KSI-based—the solution is found in 213 time units. 
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Although a plan-based node is also distracted, its high-
level view helps it quickly recognize that the distracting 
data will not satisfy the high-level goal which drives the 
plan. For example, the high-level goal may be to create 
a hypothesis which extends a hypothesis with three time-
locations to four time-locations. Distracting data which 
initially looks like it might satisfy this goal is developed 
until the planner, using the high-level view, recognises that 
the high-level goal will not be achieved. At this point, a 
plan to develop other data which could satisfy the high-level 
goal becomes the highest rated plan. Due to the high-level 
view and the sophistication of the planner, the time spent 
deviating from the correct solution path is reduced, and the 
plan-based node can generate the solution in 58 time units. 

Plan-based nodes have been used in a number of other 
environments with similar results. In both the centralised 
case and the multi-node case where nodes do not exchange 
met a-level information (see next section), the increased self-
awareness afforded by the new mechanisms significantly 
improves problem solving performance. The experiments 
thus serve to emphasise the importance of sophisticated 
local control which recognises and reacts appropriately 
to various problem solving situations. We anticipate 
expanding the repetoire of situations which can be dealt 
with so that plans can be developed in more complex 
environments. 

I I I . I N C R E A S I N G T H E COHERENCE OF T H E 
P R O B L E M SOLVING N E T W O R K 

We have seen how the performance of a centralized node 
can be improved by allowing it to reason more fully as to 
the appropriate activities to perform. We now examine the 
multi-node case, where each node has a limited local view 
of network problem solving. In the previous section, we 
established that the problem solving behavior of a plan-
based node is more effective than that of a KSI-based 
node. Therefore, we can expect that a network of such 
nodes might have improved performance, not because they 
display better "teamwork* (their global knowledge does not 
increase), but rather because each is a better "player". 

These expectations were empirically verified on a 
number of environments. Environment El uses the 
configuration of Figure 2, but assigns a separate node to 
each sensor, each node being allowed to communicate with 
its neighbors. A second environment, E2, is a four-node 
environment identical to El except that the positions of 
the vehicle and ghost tracks are reversed. Note that, in 
this case, the weakly sensed vehicle data is received by 
all four nodes, and is the only data received by one of 
them. A larger sensor and data configuration consisting 
of ten sensors and eighteen sensed times was developed, 
patterned after the four sensor configuration [5]. A third 
environment, E3, consisting of ten nodes was built upon 
this configuration. 

The experimental results are given in Table 1. Note 
that, in all cases, the multi-node network composed of 
plan-based nodes is significantly better. Environment E2 
approaches optimal results because one node receives only 
the weakly sensed vehicle data, and so, will drive this 
data up earlier. In the other environments, however, work 
on this weakly sensed data is not as timely because the 
nodes prefer to work redundantly on the more highly sensed 
vehicle and ghost data in their overlapping sensed areas. 
This redundancy wastes computation time that could be 
used to develop the weak vehicle data instead—the network 
is not behaving coherently. 

By transmitting the abstracted blackboards (or portions 
thereof), nodes can reason about the past activities of their 
neighbors. Furthermore, if a node knows the current plan 
of its neighbor, it can reason about the present actions of 
its neighbor. Reasoning about the future actions of a node, 
however, is a complex problem. This reasoning involves 
considering not only the current plans in the node's queue 
and making estimations about their durations and effects, 
but also what further information the node may receive 
(from another node or from its sensor) that could affect 
its activities. A plan may have associated with it some 
estimations as to duration and probability of completion, 
or even more specific information about how its execution 
could be affected by received information. 

Our current implementation assumes that a node can 
make completely accurate short-term predictions about 
future activity based solely on the plan queue. We 
simulate this best-case scenario by allowing a node access 
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Comparison of performance in multi-node environments. Plan-
based nodes work consistently better than KSI-based nodes, 
resulting in improved performance. Meta-level communication 
can further improve performance by increasing coherence. 

Table 1: Performance of Mult i -node Networks. 

to the abstracted blackboard and plan queue of another 
node. Discussion of more realistic scenarios where nodes 
must transmit this meta-level information as they transmit 
hypotheses, and must therefore reason about relevance, 
timeliness, and completeness, can be found elsewhere [6]. 

A node may use meta-level information to avoid 
redundancy. In developing a plan, a node can determine if 
the plan represents a redundant derivation of information 
that another node has either generated (present in the 
abstracted blackboard) or is in the process of generating 
(the top plan). By avoiding redundant activity, significant 
improvements in solution generation rate can result because 
less highly rated but potentially useful activities will be 
invoked earlier (rather than redundant invocation of highly 
rated activities). Hence, the experimental results in Table 1 
indicate that network performance can be further improved 
by the exchange of meta-level information which allows 
individual nodes to make more coherent local decisions. 

A. Coherent Communication 
An important aspect of coherent network activity 

is that limited communication resources should be used 
intelligently to improve the global state of network problem 
solving. Flooding the bandwidth with partial results 
can cause both undesirable delays to important messages 
and unreasonable amounts of local processing as nodes 
incorporate the received information. On the other 
hand, if a node withholds certain partial results, network 
performance can degrade. It is therefore important that 
a node have a satisfactory view of both local and network 
problem solving in order to make coherent communication 
decisions. 

We have developed a number of communication 
strategies that use the high-level view of node and network 
activity to guide a node in making these decisions [6]. These 
strategies extend the ideas first developed by Lesser and 
Erman [12]. When deciding about sending a partial result, 
the node might consider whether it will be improving upon 
that result in the future, and if so, whether by waiting and 
sending only the better version (conserving bandwidth) it 
can still fulfill its obligation to provide partial results in a 
timely manner. Furthermore, the exchange of meta-level 
information can allow a node to make inferences about 
how a particular transmission might affect network problem 
solving, and to decide when to repeat a message if the 
effects are not seen. In experimental studies, we have 
found that simple communication strategies that flood the 
bandwidth can significantly slow down the network, and 
that these problems become much more pronounced as 
we experiment with larger networks. For example, in the 
ten-node environment above (E3), a simple communication 
strategy results in 279 hypothesis transmissions between 
nodes. A more intelligent strategy reduces this number 
to 166 without adversely affecting the solution time. 
Therefore, indications are that coherence in communication 
decisions is an important area of study, and will become 
increasingly so as our environments continue to increase in 
size. 

I V . S U M M A R Y A N D I M P L I C A T I O N S FOR 
DPSN RESEARCH 

We have discussed our experiences in increasing the 
coherent behavior of the Distributed Vehicle Monitoring 
Test bed. We modified the blackboard problem solving 
architecture of the individual nodes to enhance their ability 
to make predictions about their future activities. Network 
coherence is increased by allowing a node to refine its 
organizational role based on these predictions. Exchanging 
the predictions permits a node to refine its view of the 
organisational roles of the other nodes. 

Coherence is an integral part of distributed problem 
solving research. In contrast with others [11], we assume 
that we have only a limited number of highly sophisticated 
problem solving agents, and so, should coordinate them 
to make the most effective team possible. Because we 
assume that communication between agents is potentially 
slow and unreliable, we regard coordination that requires 
mutual agreement on contracts before action [1,4] to be 
insufficiently responsive to changing problem circumstances 
(indeed, mutual agreement might not even be possible 
[8]). To insure reliability, we cannot accept centralised 
coordination [1]. The unpredictable nature of the problem 
solving environment makes simple game theoretic models 
of agents unrealizable [15], while more complete models 
of agent beliefs [10] might require nodes to essentially 
duplicate each others reasoning. 
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Our view of distributed problem solving therefore 
stresses the importance of sophisticated local control which 
integrates object-level knowledge about the problem do­
main with meta-level knowledge about network coordina­
tion. Such control allows nodes to make rapid, intelligent 
local decisions based on changing problem characteristics 
without the overhead of conferring with each other. Coor­
dination decisions are based on a high-level organizational 
view of individual node activity, so nodes need not have 
detailed models of the object-level problem solving activ­
ity of their compatriots. Dynamic improvements to this 
organisational view may be achieved with the exchange of 
meta-level messages which briefly convey high-level coordi­
nation information. In short, the nodes initiate their own 
activities and will take advantage of any local and network 
knowledge available to form the best "team" possible within 
the constraints of their environment. 

We believe that implementation and experimentation are 
essential for learning about and understanding distributed 
problem solving. Our future plans include improving 
the representation of the state of a node, enhancing 
the mechanisms to recognise problem solving situations, 
and extending the plan structures to incorporate more 
information. Our preliminary experiments indicate 
that these developments should significantly improve the 
performance of distributed problem solving networks, and 
may also be useful in blackboard-based problem solving 
systems in general. 
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