
U N D E R S T A N D I N G A N D A U T O M A T I N G A L G O R I T H M DESIGN

Elaine Kanf

Schlumberger-Doll Research
Old Quarry Road

Ridgefield, Connecticut 06877-4108

A b s t r a c t

Algorithm design is a challenging intellectual activity that provides
a rich source of observation and a test domain for a theory of
problem-solving behavior. This paper describes a model of the
algorithm design process based on observations of human design.
The adaptation of that model to automation in the DESIGNER
system helps us understand human design better, and the
automation process helps validate the model. Issues discussed
include the problem spaces used for design, the loci of knowledge
and problem-solving power, and the relationship to other methods
of algorithm design and to automatic programming as a whole

I . T h e A l g o r i t h m D e s i g n T a s k

A. Design as an Intellectual Activity
Algorithm design is the process of coming up with a sketch, in a
very high level language, of a computationally feasible technique
for achieving a specified behavior. The design process combines
cleverness in problem solving, knowledge of specific algorithm
design principles, and knowledge of the subiect matter of the
algorithm (e.g. geometry, graph theory, physics). When people
design algorithms, their design repertoire includes discovery and
visual reasoning in addition to the (ideally) disciplined application
of problem-solving techniques
Human design is a rich source of ideas for a model of algorithm
design. Observing that design process and attempting capture
the basic ideas in an automated system both helps us understand
how people structure and use their knowledge about design and
also validates our observations and model The DESIGNER project
included such a study of human design and an initial version of an
automated system [15. 16, 17. 26]." The goal of the project is to
create an automatic design system that can apply existing design
principles as well as exhibit some creativity. The observations of
human design are to be incorporated, but the automatic system
should take the strengths and weaknesses of both computers and
people into account. We are not trying to model human problem-
solving behavior as an end in itself.

•This paper describes research performed while the author was at Carnegie-
Mellon University. The research was supported in part by DARPA and in part by
NSF.

•'The research described here is joint work with Allen Newell and David Steier
Many of the ideas I draw on are theirs, but the opinions expressed here are my
own

The next section of this paper (I.B) presents a sample algorithm
design problem (finding the convex hull). Section II summarizes
our observations of human designers working on that and on
other algorithms. Section III then discusses where the problem-
solving power in our model lies: in the ability to search in multiple
spaces (relying on knowledge from the domain as well as
knowledge about algorithm design), on efficiency knowledge, and
on the ability to execute partial algorithm descriptions on
examples. Finally, this model of design is compared in Section IV
with other approaches to automating algorithm design and to
automatic programming as a whole.
B. A Challenge: The Convex Hull Problem
Consider the problem ot finding a convex hull, which has
applications, for example, in algorithms for vision and graphics.
The problem is this Given a set of points in two dimensions find a
polygon whose vertices are a subset of those points that encloses
all the other given points.

Now if I drew some points on a blackboard or piece of paper, you
would probably have no trouble sketching their convex hull. (If
you need a picture to help you understand the problem, see Figure
1.) Suppose instead I asked you, or an automatic design system,
to create an algorithm suitable for (later) encoding as a computer
program in a conventional high-level language. Think of sketching
out an algorithm in the terms you would use for describing it to a
colleague or to a programmer, without worrying about the low-
level implementation details As you work on this problem,
observe your problem-solving behavior. Do you write down any
formal problem descriptions? In what language? Do you draw
pictures? Create a variety of examples or counter-examples?
Draw analogies to other algorithms? Draw on general knowledge
of algorithm design principles?

How did you convince yourself that your algorithm was correct?
Did you design it by applying correctness-preserving
transformations? Did you use geometric or other mathematical
theorems? Find proofs for conjectures? Test your algorithm on
sample data? Explain the algorithm to yourself or a friend in
words? Write pseudo-code?

How do you decide when your algorithm is complete? How do you
decide when it is good enough? What does it mean to be a good
algorithm? Do you know what the run-time or space performance
of your algorithm will be? Did you worry about what the
distribution of data would be in creating the algorithm? In
determining performance?

Now let's find out how some other people solved this problem and
see how we might design an artificial intelligence program that
could perform the same feat.

1244 E.Kant

I I . M e t h o d s f o r D e s i g n i n g A l g o r i t h m s
Since the design of complex algorithms is currently best
accomplished by human beings, observing their performance
would appear to be a profitable starting point for automating the
design process. However, since the talents of computers are not
those of people, it is reasonable to search for a different method if
the goal is total automation of design or a novel mixture of human
and machine design. I his issue is discussed in Section IV

1 he model of design presented here is based on the analysis of a
set of protocols from approximately fifteen sessions with computer
science faculty, graduate students, and undergraduates (A
methodology for protocol analysis is described elsewhere [8. 20])
Uur designers were independently given the task of creating
algorithms to find convex hulls, closest pairs (if point:, and
intersecting line segments. Several protocols have been analyzed
in great detail while the others have been gone over more lightly
and used primarily as confirming evidence.

Before summarizing the features of human design, some caveats
on the general applicability of the observations are in order (1)
We observed the design of individual algorithms whose complyitv
is due to a requirement for cleverness rather than to the
information processing overload of combining an overwhelming
number of small but straightforward parts (2) The algorithms
depend on applying an appropriate set of operations rather than
on designing a specialized data structure (3) Our study did not
include any interaction between people and design aids other
than pencil and paper or blackboard (However, no one
volunteered any feelings that a calculator, computer, or any other
automated device would have been of any help in designing their
algorithm.) (4) The design sessions we observed were on the
scale of hours rather than the months spent by research algorithm
designers. Other processes than those we observed may take
place in such long time periods

Our observations may be at least partially valid in a wider context
despite the caveats. Other researchers have studied the design
process in software engineering and have made observations
similar to ours [1,12]. Also, there is anecdotal evidence that
similar problem-solving techniques are used tn the design of
algorithms that are highly dependent on clever representations

The processes that we observed our designers draw upon include:
1 Understand the problem.
2. Select a problem to work on

3. Plan a solution around a kernel idea and
refine or elaborate the kernel structure

4. Execute the partially specified algorithm.

5 Notice and formulate any difficulties
or opportunities.

6. Verify that the structure is a solution
(i.e. meets its specifications)

7. Evaluate the solution (e g for efficiency)

After the processes in this collection are summarized the issue of
control — how the processes are ordered and evaluations within
each step — will be discussed. The explanations draw on all of
our observations and those of our colleagues who have studied
the design process in software engineering. However. I will give
illustrations primarily from the stones of two particular designers
from our study D1 and D2. who tried to solve the convex hull
problem. Each part of a story is prefaced by a the designers name

and number for future reference For example the first step of
Designer I s story is labeled [D I 1 |

A. Understand the Problem
In classical discussions of problem solving |22| one important
problem-solving process is understanding the problem, perhaps
by listing properties of the objects in question, and considering
reformulations of the problem. Some of our designers (but not D1
or D2) did draw a picture of a convex hull (or whatever) early on.
which may have led to some unverbalized observation of or
reasoning about properties of convex hulls and seemed to have
convinced them that they understood the problem.
[D6.11 D6 drew the picture shown in Figure 1.

[D3.1] D3 wondered whether using polar coordinates might not
be a useful way to think about the problem.

B. Plan and Refine Solution
Assuming that a problem specification has been understood,
design begins with a kernel idea or solution plan, quickly selected
from those known to the designer Depending on the designer's
background, the idea may vary in sophistication from generate
and test to input process output to more complex strategies such
as divide and conquer or dynamic programming. The designer
lays out the basic steps of the chosen idea and follows through
with it unless the approach proves completely inapplicable
|D1.1| D1 had the initial idea that the algorithm should be one

that generated all points in the input in some arbitrary
order and tested each to determine whether it was on the
hull. This had the potential of running in linear tim»-
(proportional to the number of input points')

|D2 1| 1)2 decided to try a divide and conquer algorithm (th*-
special torn) of divide and conquei in which the input', are
divided into subsets, the algorithm is recursively applied
to each, and the results are back together)

Winch kernel idea do you think will lead to a better algorithm?

After formulating a plan, the designer refines the basic steps of the
kernel idea. By and large, this elaboration proceeds by stepwise
refinement. The designer may lay down the major components,
effectively decomposing the problem into subparts, or may add
new inputs or assertions about details of the structure. The
refinement steps (1) may be suggested by knowledge appropriate
to the problem and task domain or (2) may be a natural result of
attempting to execute an algorithm
[D22] An example of the application of appropriate knowledge

about algorithm design principles is D2's expansion of the
notion of using a divide and conquer algorithm into the
sequence of steps: divide input point sets into
subproblems, find the convex hulls recursively, merge
subsolutions back into a convex hull

[D2.3| Furthermore, D2 recognized from previous experience
with geometric algorithms that a likely possibility for the
divide step of the divide and conquer algorithm was to
sort the points by one of the coordinates and find the
median

E.Kant 1245

However, the refinement process is hardly one of pure top-down
design.
[D1.4] Such a point-on-hull test didn't reveal itself, but another

related test did, and D1 proceeded to modify the
hypothesized algorithm to exploit the new test.

Most design falls in between having the correct knowledge and
searching. At some steps the designer knows what to do and
knows what the implications of the refinement step are; other
times, search is required.
[D2.4] D2 did not find the merge step as obvious as the divide

step. Do you?

C. Execution of Algorithms
Trial execution of algorithms is often used as a technique for
making inferences about the algorithm developed so far. We
observed two kinds of execution of partially specified algorithms
— one on concrete data (which we call test-case execution) and
the other on symbolic exemplars (which we call symbolic
execution). Both forms of trial execution help elaborate the
algorithm description by exposing difficulties and opportunities.
We found it useful to view execution as a technique for selectively
propagating constraints (which we call assertions.) by moving
them around in the order in which steps of the algorithm are
executed. This limits the reasoning that might otherwise be
necessary to find contradictions and make inferences

D. Noticing Difficulties and Opportunities
Designers notice problems both in their algorithms as described
abstractly and in pictures they draw to help them design While
executing the proposed algorithm difficulties (missing steps,
inconsistencies between parts of the algorthm may arise, leading
the designer to further refinements Thus, we say that the
designer's refinement process is difficulty driven.
[D1.5] In DVs algorithm a difficulty arose when the test

involving line segments was combined with the generator
of points and D1 had to modify the algorithm to
accommodate this.

Here one assertion propagated by the execution process (that a
point is produced by generating over the input set) contradicts
another assertion (that a line segment should be the input to the
test rather than the point it is handed).
[D1.6] D1 eventually changed the kernel idea from generate and

test to a greedy algorithm that attempted to generate the
hull points in the order they occurred on the hull polygon,
using backup to handle guessing failures.

The algorithm execution also can expose opportunities for
improvement or modification of the algorithm.
[D2.5] After working on a sample problem, D2 realized that the

merge step would be easier if the two subsolutions shared
a common point and went back and modified the divide
step to ensure that that would happen.

Most people draw example figures during algorithm design. The
examples are used initially for understanding the problem, and for
reasoning about the task domain (using visual reasoning in the
geometric domain) as well to help try out the partially developed
algorithms in test-case execution. Often, the designers notice
things about the sample figures that they were not looking for
When what the designers notice turns out to be useful in
developing their algorithm, we say that they have made a
discovery.
[D1.7] In looking at Figure 3 D1 realized that if a line segment

had points on both sides of it. that segment could not be
on the convex hull D1 was executing an algorithm with a
test for points being on the hull or not; the line segment in
the figure was recording the fact that the points A and B
had been generated so far

[D2.6] D2 created Figure 4 in attempting to find a merge step by
considering all segments between vertices of the two
hulls and testing which were in the merged hull. D2 knew
that this brute force search would be too expensive, but
had no other ideas. The picture reminded D2 of another
unrelated algorithm (the traveling sales representative) in
which a shorter path replaced two adjacent segments.
D2 then applied a similar idea to the merge step,
replacing segments ad and d-e by segment a.e (D2's
picture was not actually labeled). The generalization D2
made was that convex angles in the merged hulls were to
be replaced by a segment connecting the two end points.

Figure 4. D2 s discovery of a merge operation

Do you have enough information yet to guess the algorithms?
(The discoveries are described in more detail in cite(Kant82b).)

Some other observations the designers made would have allowed
only small optimizations.
[D1.8] D1 noticed that points are always on the same side of the

(directed) line segments of the hull.

1246 E.Kant

While discovery is not a voluntary process that can be planned as
a design step, it does arise from the process of making
observations. The discoveries in our study all occurred when the
designer was looking at a sample figure created for one reason
and recognized a geometric property, or key step from another
algorithm, that would solve an outstanding goal. That goal was
not the one the designer was currently worrying about (finding a
test for a point being on the hull, finding a way to tell if a segment
was on the merged hull), but it was usually not completely
unrelated (finding a segment test rather than a point test: finding a
different type of merge step) Thus, discovery could be
characterized as serendipidously satisfied goals
Both key observations in the problem domain and knowledge of
design principles are usually necessary for clever design Most
algorithms published in papers, or given as exam problems have at
least one good observation or trick that is novel at the time of the
design otherwise we would probably say the algorithm is
"obvious" or is "just" a brute force algorithm. Each of the trick:,
must be stumbled upon as a discovery unless it is already -\nown
to the designer Good tricks are eventually refined into principles
but everything is a trick the first time each designer encounters it

Although there is an element of chance in the discoveries there is
no lack of readiness on the part of the designer The designer can
be prepared both with immediate goals to exploit the observations
and with a good understanding of design principles to fit the
discovery into an overall algorithm. I he more experienced and
disciplined the designers, the better prepared they are for the
discovery An "experienced" designer is one with knowledge not
only about algorithm design but also about problem domains.
Domain knowledge can be derived either from past attempts at the
problem or from experience with similar algorithms and domains
(or different domains but the ability to reformulate problems in
terms of other domains).

E. Verifying Correctness
Our designers determined whether their algorithms were correct
primarily by testing them on specific examples and observing
whether there were any difficulties. Symbolic execution car) in
fact be made to do the job of full formal verification. To do this,
the algorithm is executed on symbolic objects and all assertions
are propagated to determine whether the results of the algorithm
(and its subparts) match the specifications. If a specification
includes performance constraints, then verification must also
include an evaluation (see Section IIF) to determine whether the
solution is efficient enough (in time or space complexity)
according to the expectations

During the initial algorithm design, the designers ignored "details"
such as base cases or initialisations, boundary conditions
degenerate inputs or unresolved notes to themselves, but they
were more careful about this if they were attempting to determine
if the algorithm was complete or correct.
[D1 9) When D1 was asked for an algorithm summary during a

pause, the response was that it wasn't an algorithm yet
because the ca.se of the first point not being on the hull
had not yet been tested

The heuristic is to get an algorithm for the general case first then
worry later about modifying it to take the exceptions into account
Although some methodologies claim to eliminate the concern with
special cases (tor example. [11]) they require that the specification
or invariant be precisely stated before design begins. This is often
difficult to accomplish. For more complex algorithms handling the
exceptions can itself require a major problem solving activity and
may yield new insights into the problem or solution.

F. Evaluating Plans, Refinements, and Solutions
The descriptions of the processes used in design did not detail
how plans, refinement steps, and overall solutions are evaluated.
Evaluation can be based on specific knowledge about the
algorithm design principles being applied or on an analysis of the
cost of the algorithm and its subparts.

If the designer has the appropriate rules about the algorithm
design principle and the domain, then the refinement process can
be smooth and top down. For instance the appropriateness of the
kernel ideas selected by the designers depends on the quality of
their knowledge of algorithm design principles One can really
observe here what expert systems researchers call domain
specific knowledge. Generate and test is usually the fall back
idea, which is sometimes very efficient (linear in the input size)
and sometimes not. After an algonthm based on a kernal
approach was sketched out, or after the approach seemed to be
failing, some designers went on to an alternative approach
[D1.10| After completing the revised algorithm for generating

segments and testing whether they were on the hull. D1
determined that the run time of the algonthm was
proportional to the cube of the number of input points
Declaring that this algonthm was only a "first shot D1
went on to consider a dynamic programming approach
and eventually to try divide and conquer

(D4 1] In another problem involving finding intersections of line
segments another designer D4. noted that there was a
straightforward approach having to do with considering
all pairs of segments, which was N squared However.
D4 felt that there ought to be some way to use sorting in
the solution to get an NlogN algorithm

When experts (people with a strong background in algorithms and
m the subiect matter of the problem) design, they consider a
variety of alternative refinements, select the best (remembering
the rest for possible later use), and apply it to advance the design
with one more level of detail in the refinement process. What is
"best" is based on efficiency in the cases of algorithm design we
studied, but is based on ease of implementation or modification in
other cases. In expert design, the breadth first process tends to
be followed for all aspects of the design at a given level, with
interactions between the different parts of the design predicted
and taken into account

In contrast, if the designer's only idea is naive (use sorting
somehow), then the technique of executing hypothesized
algorithm parts is more likely to be followed in a depth first search
from which the designer may never successfully return (The idea
may not have been wrong, but the designer may not have had the
knowledge to carry it through.) Fxperts as well as novices are
prone to a satisficing style of design when they are under pressure
and don't have time for more exploratory design Of course they
are better at it since they have more experience, can make better
predictions, and guess right more often

Even when performance constraints are not explicitly specified
the designer often evaluates an algorithm or algorithm stop's
performance relative to other alternatives or to known or
estimated lower bounds. Extreme cases of inputs may be tested
to estimate worst case performance. Complexity analysis may be
earned out in parallel with execution and verification by more
experienced designers, or may be an explicit subtask of a
conscious evaluation.
[D2.7] After discovering the way to merge by removing convex

angles, D2 estimated the run time of the divide and
conquer algorithm by arguing that even for the worst
possible input, the merge time was linear in the number of
points on the two subhulls and therefore the overall run
time was acceptable.

E.Kant 1247

Figure 5. A worst case input for divide and conquer

D2's final algorithm had a prepass step to sort all the points
according to their X coordinate. The basic algorithm was to divide
the input through the point closest to the median, recursively find
the convex hulls of the two resulting point sets, and merge the
solutions back together by eliminating concave angles (starting
from the shared point) 1 The base case is that two or three point
input sets can be made into convex hulls immediately.

G. Control Issues
The design processes described in the preceding sections do not
always run to completion and do not take place in any fixed order
Evaluations within each step, as described above, may cause the
designer to terminate one approach and go on to another The
ordering of the design processes (including when they begin and
end) seems to arise naturally out of the mechanism of trial
execution.

Selecting a problem to work on is a natural consequence of the
problems exposed by symbolic and test-case execution The
character of the elaboration process appears to be an progressive
deepening that takes each of the constructs in the algorithm a
little further, sometimes backing up to higher levels to keep the
overall picture in mind However, the development of the different
parts of the algorithm is not always even. If one aspect of the
algorithm is a potential problem (i.e., other parts of the design
depend on it and the outcome is uncertain), then it is more likely to
be expanded to ensure that the algorithm as a whole is feasible. If
it has an obvious solution or refinement and the implications of
that decision seem well understood, at least at the current level of
detail, it is not considered further. (Of course the assumptions
may be wrong.) New components of the design are refined in the
order they are executed, subject to the two previous
considerations.

Verification and complexity analysis also seem to be achieved in
part by propagating assertions during execution. Thus, other
processes that contribute to control fit in nicely with this basic
mechanism and can occur at the same time.

In short, design processes are applied as appropriate. Control is
not a special source of intelligence. It comes out of responding to
the data and out of the problems and opportunities arising during
execution.

I I I . L o c a t i n g t h e P r o b l e m - S o l v i n g P o w e r
An important question to ask about any agent that exhibits
intelligent behavior is where the knowledge and problem solving
power lie. Knowing the loci of intelligence gives us some clues for
how to produce similar behavior automatically. Thus, we have

attempted to formalize the problem-solving behavior we observed
in our designers in terms of concepts that lend themselves to
automation
One common view of problem-solving behavior is that it is
basically search in a problem space, with knowledge used to limit
search Knowledge is carried by the problem spaces themselves,
in what objects and operators they have available and in the
heuristics they have for when and how to apply the operators In
this view, problem solving is a process of repeatedly changing a
context by selecting a goal to achieve, a problem space to work in
to attack that goal, a at ate within that space to work on. and an
operator (and instantiations of its arguments) to transform the
state [18]. Different types of knowledge can be identified with the
selection process for each element of the context

A. The Power of Search
In design as in most tasks requiring intelligence, both search and
knowledge are needed Search is the backup for missing
knowledge and can never be completely eliminated It can take
place at the very high level, such as searching for a kernel idea for
an algorithm or at the very low level, such as deciding how to
instantiate an operator argument. Although at any level
knowledge limits search when possible and gives clues about how
to explore the problem spaces in a reasonable way, the ability to
search is, in itself a source of power.

In design, for example, search permits the creation of algorithms
by trial and error in the absence of complete knowledge
Algorithm components can simply be hypothesized and then the
algorithm as a whole tested to see it it satisfies its specifications. If
only the objects and operators that formally specify and
manipulate algorithm descriptions are available (i.e., there is no
other model of the problem domain), then designing an algorithm
requires the use of formal definitions of the concepts used in the
problem specification and, recursively, of its subcomponents.
However, more power than this is available to human designers
and can be made available for automated design through the use
of multiple problem spaces.

B. The Power of Multiple Problem Spaces
From our observations we conclude that each designer works in
several different problem spaces during design (similar
observations are described for other tasks in [20]). The details of
the problem spaces differ from designer to designer, but there is a
remarkable consistency in the types of problem spaces used.

We observed our designers working in four spaces, two of which
are extensions of another space. The two main spaces were (1)
an algorithm design space that carries the knowledge of what is
achievable in standard computer systems and of domain
independent algorithm design principles, and (2) an application
domain space, such as one for geometric and visual reasoning
(The algorithm design space is also a domain space relative to
design as a whole) The two extension spaces have the same
obiects as the first two spaces plus additional objects and/or
different sets of operators. (3) An algorithm execution space is an
extension of the algorithm design space that has as new objects
data items that carry information in the form of assertions about
their execution history and has new operators that execute
components in the design. (4) An example generation space is an
augmentation of a task domain space in which figures are marked
as standard examples, degenerate cases, counter examples and
the like, and in which there are new operators to produce the
examples.

1248 E.Kant

The necessity for different problem spaces is a result of the
requirements of different types of knowledge. For example, what
is possible or efficient in the domain (problem space) of algorithms
for conventional digital computers is sometimes quite different
from the way people reason visually or from what can be done with
analog devices. (Consider solving the convex hull problem by
pounding nails into a board to represent the input points and then
stretching a rubber band over the nails and letting go.) The
problem spaces that express such knowledge differ in the objects
and operators included, the properties of objects or relationships
between objects, and heuristics for how to control the applications
of operators.

Having knowledge represented in a domain space as well as in an
algorithm space gives the designer the power to create algorithms
even in the absence of formal axioms about specification
concepts such as polygon containment, The problem can be
solved by generating constructs in the algorithm space and testing
the proposed algorithms on examples to see if they work. This
technique relies on the ability to generate examples to use as test
cases. Example generation depends on knowledge of the domain
space as well as knowledge of the goals in the algorithm space
(say to determine whether a typical or degenerate example is
desired) If a domain concept is not formally axiomatized, the
designer cannot do any formal symbolic reasoning such as full
verification or correctness-preserving derivation. However, by
making some conjectures about the domain and validating them
with test case execution, the designer can reason formally about
the rest of the algorithm
[D2.8] Having knowledge from the domain space of what line

segments were on the merged hull allowed D2 the hope of
finding an operation that would test where proposed
segments were correct.

For each of the problem spaces relevant to design, we can ask
what knowledge is available for recognizing when context
elements should change: how does a system recognize when
goals are satisfied or when new goals should be attempted, when
the problem space should be changed to work on the different
type of goals, what state to expand within a problem space, and
what operator to apply and how to instantiate the operator.
Examples of the different types of knowledge contained in
problem spaces will be given in Sections III.F through III.I

First, some aspects of problem-solving power that cut across
problem spaces are discussed. This power can be cast as
knowledge that allows the designer to avoid search.

C. Knowledge in Recognition
The ability to recognize objects and to recognize the applicability
of operators is a major source of power in problem solving. The
search process is not driven by an algorithm that selects context
elements in a fixed order but rather by recognition rules that
observe when some context element should change: for example,
when a goal has been satisfied or when an operator would help
change state in a desired way. The conditions for recognition can
be symbols in the algorithm design space or visual images from
the domain space. These dues can involve goals, points of view
or other objects in the problem-solving context whose inclusion as
a clue was only accidental to the formation of the recognition rule
A very large number of recognition rules may be present
However, the conditions that are monitored must be
computationally simple, involving only straightforward matching.

An example of the role of recognition is its use in discovery, a key
process in algorithm design. Discovery depends on generating
examples to work with and then noticing properties about them or
reasoning about them. The recognition processes usually take
place in the domain space, but what is noticed depends on the
goals of the problem solving (and the content of the recognition
knowledge).
Recognition is also important in example generation, which is
constrained by the goals of the problem solving (is it to be an
average case, degenerate case, initial or base value, counter
example, used by efficiency analysis, etc.), but depends on
knowledge of the domain and recognition of successful
construction of the example in terms of domain properties.
[D1.11] D1 first generated points A. C, D, and E in Figure 2 as an

initial test-case example but then noticed that the
example was degenerate since all points were on the hull
and added a fifth point (B) in the center to remedy the
difficulty. The points were not labeled at that time.

Non-symbolic recognition and processing (such as visual
reasoning) is clearly important in designing computational
geometry algorithms, but is it really important in all domains, such
as that of algebraic problem solving? At least for some people, it
is. Built in visual operators are better at some types of processing
and provide another perspective on a problem. They may suggest
approximations or fortuitously counterpose objects that would not
be related by a general symbolic reasoning process.

D. Knowledge in Execution
Trial execution in algorithm design serves the purpose of
controlling the order of the refinement process (see Section II.C)
and limiting the inferences made as well as its more common
functions of debugging and verification (see Section II.E and [6]).

The nature of creative algorithm design requires some mechanism
for inference, whether it is a full theorem prover small set of
simplification rules, or something in between. Making all possible
inferences during algorithm design would be very expensive
computationally. Execution is a way to focus attention on certain
assertions in the algorithm description space and certain parts of
pictures in the domain space so that inference and recognition
only have to take place over a smaller set. The execution
techniques limit the inferences and constraint propagations to
those most likely to be useful for the current stage of the design.
Avoiding the extensive search of theorem proving or uncontrolled
inferencing through execution is a form of knowledge about
design. This topic is discussed more thoroughly in other papers
[26], [7],

E. Knowledge in Efficiency Information
Efficiency knowledge serves as an evaluation function throughout
the algorithm design process, not just as an evaluation of
complete designs. Information about potential run time or space
use serves as a rough guideline in the selection of a kernel idea
and during refinement (D2 knew that the merge step had to be
linear to get the desired overall performance [D2.6]*) as well as
after an algorithm sketch is complete (D1 decided that cubic
performance was probably not the best possible [D1.10]).

*ln the remainder of this paper, labels following descriptions of bits of
knowledge refer back to parts of the design story where they are used

E.Kant "1249

Efficiency knowledge can take many forms, including assertions
about the run time of specific operations or algorithms, assertions
about the intrinsic complexity of problems, rules for how to
analyze algorithms, and rules for setting constraints on what
performance must be reached on a subpart of an algorithm to
guarantee overall performance.
Efficiency knowledge is generally contained in the algorithm
design space In fact, some heuristics in the algorithmic problem
space depend on the cost model for the target architecture,
efficiency knowledge can be applied in selecting a plan [D1.1], in
evaluating refinements for steps of the algorithm [02 7], or in
evaluating the algorithm as a whole [D1.10].

F. The Algorithm Design Space
In algorithm design, it is sometimes difficult to come up with any
reasonably effective solution,* although some problems have
simple brute force solutions (Consider the problem of finding the
closest pair of points in a point set You can probably see a simple
algorithm for solving the problem immediately) Since algorithm
design involves searching in a space not dense in solutions, dead
ends are a serious problem, and knowledge of what design
principles and domain facts are relevant is almost a necessity (as
is the ability to reason and recognize in other spaces). Such
knowledge can help decompose the problem or select and
instantiate operators in the problem space.

Designers have variants of the algorithm design space that
depend on their assumptions about the target architecture as well
as on their overall knowledge of design principles. If the
algorithms were to be programmed on an architecture with
pipelined or distributed processing or associative retrieval, the
representations for algorithms and heuristics for how to design
might be greatly different. Some designers make (at least implicit)
assumptions about the target architecture from the beginning of
algorithm design, although it is preferable to stay independent of
the target as long as possible.

The knowledge in the algorithm description space includes facts
about mathematics, logic, arithmetic, or algorithm design
principles. The knowledge can be in the form of both object
descriptions and operators on those objects. Other knowledge
can be represented by rules about when to change the problem
solving context.

1. Objects and operators
The basic objects for describing algorithms in the algorithm
design space are components that specify basic types of
processing. These components may test whether a property
holds, generate the elements of a set one at a time, achieve an
input/output relationship, apply a domain operator, select a
subpart of a compound object, or modify a memory of objects

The algorithm components are connected by links that allow flows
of data and/or control and may be augmented with assertions
about their properties or about their relationship to other objects
or operators in any of the problem spaces. For example, a
selection criterion might be to pick the bottom left point from a set
of points New components can be defined in terms of old ones by
adding additional standard inputs or outputs or by adding
assertions, or a component can be defined as configuration of
other components.

*See Section IV.E or [2] for a comparison with the search problem in program
synthesis

The assertions associated with components may include
information about the types of data obiects expected as inputs or
outputs or other preconditions or postconditions of processing,
the ordering constraints on a generator, the criteria tor selection,
the initialization of a memory, expectations or conclusions about
the time complexity of the algorithm (component), constraints on
the order of execution of the algorithm components, notes about
the algorithm (such as it has not yet been tested for the initial point
lying inside the hull).

Since algorithms usually manipulate some sort of data, there are
also representations of the common mathematical concepts such
as numbers or symbols and of sequences or sets of other obiects
Assertions about these objects can be attached to descriptions of
the obiect type or to item-, that represent specific data

/7/e number ot cuintnnat'ons of pan:, from ,-J set o/ elements n;
{)rof)ortion;ii to N -.injured (D4 1 |
Divide rind conau<-T .■//?;.■ >.'-/f7/m.s an often have run tune of
N/ogN. [D2./\ Ol . l l |

The operators, m the algorithm description space are simple
(syntactic) editing operations that add or modify components.
links between components, and assertions I he knowledge is all
located in the rules that suggest instantiations of the type of
components to create, the specific components to link, and the
details of the assertions to be added.
2 Operator selection
Selecting an operator (and instantiating it by selecting values tor
its arguments) can be made more effective through the use of
knowledge about general algorithm design principles and about
algorithms in a particular domain of application. This knowledge
will be expressed here as rules. Other such knowledge, such as
how to handle specific problems raised during execution (the
equivalent of a difference table for means ends analysis) also
limits the amount of search necessary for operator selection.

The following set of rules about operator selection and
instantiation is merely a representative sample of the knowledge
that an algorithm designer (human or otherwise) might have (not
every designer has the same knowledge, of course) Many other
rules would add their suggestions and vetoes about what to do. If
there is no consensus about what operator to apply, the fall back
is search through the suggested possibilities.

If a component needs to be refined and its output is a subset ot
its input, refine the component to an element generate and test
algorithm. [D1 1]
If a component needs to be refined and its output is a structure
that must satisfy certain constraints, refine it to an algorithm
that builds a minimal structure and then adds units of structure
until the constraints are satisfied. [D1.6] (An instance of this rule
is suggested in [3].)
If an algorithm looks at part of the input many times to do the
same kinds of tests, try saving information rather than
recomputing, say with dynamic programming. [D1.10]

If the characteristics of subproblems produced by the divide
step of a divide and conquer algorithm are unknown, then add
the assertion that they are two equal sized subproblems
If the characteristics of subproblems produced by the divide
step ot a divide and conquer algorithm are unknown, and if the
set being divided is a set of points in two dimensions, then
refine the divide step to be a sort of the points and a division
into the points on ettrier side of the median a line through the
median. [D2.3| This has a bit ot domain specific knowledge
although it is in the algorithm space

1250 E.Kant

/f a component is missing a link to a required input, look for a
component that has an output with the same type (or having
that type as a subpart or superpart) and connect the two
components.

3. Changing state
The state in the context of a problem space changes primarily as a
direct result of the successful application of an operator that
modifies the algorithm description. If the operator application
fails, and if there were competing suggestions about what
operator to apply, then alternative operators still apply and
another will be tried In addition to either failing or succeeding, an
operator may return a difficulty or opportunity. This becomes
another goal to be worked on, perhaps in a different problem
space. After processing of the new goal is complete (which may
change the state in the algorithm description problem space), the
rules that caused the original operator to be selected may or may
not be retriggered. If they are, the operator application can be
retried.

4. Changing problem spaces
One of the benefits of having multiple problem spaces is the ability
to reduce search by working on the same goal in a different space.
Some examples of rules that can cause space changes are:

If a component needs to be refined, and its output is a construct
in space X, create examples of it and notice their properties. If
this rule is applied, it will cause a transfer first to the example
generation space and then to the domain space X. [D1.2]
It a configuration of components has not been shown to
achieve the specifications of the component of which it is a
refinement, then symbolically execute it. [D1.9]
if a configuration of components has not been shown to
achieve the specifications of the component it is a refinement
of, and if symbolic execution has already been tried or is known
in advance to be too complex to be informative, then execute
the configuration on a concrete example. [D1.2]

5. Goal satisfaction and creation
Recognition of when goals have been achieved, or nearly
achieved, of when to give up on a goal and declare failure, of
when to create new goals, and so on is crucial to enabling
discoveries. Strict enforcement of hierarchical subgoaling would
not allow the same flexibility and creativity. Goal change
knowledge can also serve as design heuristics. Some rules that
express this knowledge are:

// an exponential algorithm is created, try to improve it or find an
alternative unless it can be shown that the problem is itself
exponential. [D2.6]
/f all obiects added to a set have a common assertion,
hypothesize that that property holds for all elements in the set
and try to substantiate the hypothesis,
If a component is defined by assertions that are appropriate for
the level of detail currently desired (however that is
determined1), then consider the component acceptable.
If a component is not considered to be refined to an acceptable
level of detail, then create a goal to refine it.

G. The Application Domain Space
Algorithm designers need knowledge about their task domain as
well as about algorithm design in general. As an example of a
problem space describing a task domain, consider the knowledge
about geometry that can be used in solving the convex hull
problems.

Obiects that are manipulatable in the geometric domain include
points, lines, segments, angles, and polygons. Special properties
of object types or of specific objects may also be recorded. For
example, the degenerate case of the object type polygon could be
a point or line-segment, and a triangle would be the boundary
case. For a specific geometric object, properties would include
being convex or being above or below a line.

The operators in the geometric domain include accomplishing
such functions as drawing a line segment between two points and
recognizing that a polygon is convex.

Any symbolic descriptions of the objects in a figure and assertions
about the objects or their relationships are available to the other
spaces. For example, in the algorithm space, assertions may
serve as test predicates, comparison or ordering relationships, or
criteria for extraction from compound object. Operators are
available for execution, say to build a polygon in the example
generation space or as an operator applied by a component in the
algorithm space that can be run during test-case execution, but
their internal workings are not available.

The domain space also includes recognition knowledge,
expressed here in the form of rules, that if applied to a figure in the
current focus of attention may cause recognition and/or the
construction of a new object just as an operator application might.
For example,

If two line segments share a common endpoint. perceive the
figure defined by that pair of segments as an angle. [D2.6]

H. The Execution Space
The problem space in which execution occurs is an augmentation
of the algorithm description space. It uses the object type item to
represent the data processed by the algorithm that flow over the
links between components. The items can represent either
specific objects from the domain space (point A) or symbolic
objects ("a point"). Items can be augmented by properties that
are known to be true of them at a given point in the algorithm
execution history — that a point is known to be on or off the hull or
that it is the one most recently added to a memory.

The operators in this space control the sequencing of component
execution and carry out component execution. If assertions
needed to carry out the operators are missing, a difficulty is
returned and a new goal to handle the difficulty is created.

Some instances of rules that suggest new goals to work on are:
If the input for test-case execution is uninstantiated, set up a
goal to get an example input. This will cause a transfer to the
example generation space. A particular point set would be an
example for the convex hull problem. [D1.3]
If test-case execution shows that applying some operation will
make progress toward a solution of the problem but not solve it
completely, try modifying the description in the algorithm
design space to apply the operation repeatedly (inside a loop).

I. The Example Generation Space
The example generation space is also an augmentation of another
space, the domain space. Objects must be augmented by
properties that describe their typical instances, degenerate
instances, boundary cases, and so on, if such information is not
already present in the domain space. For instance, sequences
consisting of repeated copies of the same element are not typical
Some sample operators are those that add and remove elements
from examples. Some sample rules are

If creating an input to a generate-and-test algorithm ana all
elements in the input satisfy the test, then add another element
[D1.10]

E.Kant 1251

// creating an example for test case execution of an algorithm
that has not yet been checked for correctness, pick non
degenerate objects and constructors

IV. D e s i g n A u t o m a t i o n S t r a t e g i e s
This section summarizes the model of human design and
compares it to some of the other approaches suggested for fully or
partially automating algorithm design and for automatic
programming. It also discusses how the methods might be
extended to handle the problems in other contexts, such as
interactive design.

A. Summary of Human Design
Several of our designers succeeded in creating convex hull
algorithms The algorithms and key discoveries of designers D1
and D? have already been described. DVs generate and test
algorithm had a disappointing worst case run time proportional to
the cube of the number of input points But D1 would never have
been able to design the anticipated linear algorithm it can be
shown that the problem of finding a convex hull is related to the
problem of sorting, so under conventional assumptions it must be
an Nlog/V problem Eventually 01 went on to try a divide and
conquer approach that, with a little help from the experimenters
became a successful Nlog/V algorithm similar to D2's. Some other
designers successfully recreated some convex hull algorithms
that they had heard or read about but did not remember very
clearly (Many interesting convex hull algorithms have been
described in the literature [19]) Still other designers failed to find
any algorithm at all. We also gave our designers some other
problems. They were asked for algorithms to find the closed pair
of points from a given set or the intersection points of a set of
vertical and horizontal lines. Most designers quickly suggested
brute force algorithms (which have a worst case run time that is
the square of the size of the input) but were unable to find any of
the taster algorithms.

The methods observed in human design are quite varied.
Selecting and sticking with a kernel idea provides a necessary
focusing of attention, and using execution as an assertion
propagation mechanism continues that focus and avoids the
extensive search process that unlimited inference or search
through the network of all refinements would entail. Of course if
specific knowledge about the domain or algorithm design is
available, it can be used to limit search by suggesting refinements
directly. A powerful source of creativity is the use of visual
reasoning about specific examples, which paves the way for
discoveries about key concepts in algorithms. Although our
current set of studies of human designers has provided many
good ideas for a model of design, we would like to do more studies
on other types of algorithms and on even more expert algorithm
designers

In general, the designers' success was highly correlated with their
interest in and background in algorithm design Some problems
that they had stemmed from an incomplete (or totally absent)
understanding of design principles such as divide and conquer
(which is very relevant to the examples we gave). Other problems
seemed to be due to impatience with methodically following a
design strategy In some cases, the designers tried to mix aspects
of the design from two different approaches. This typically failed
when they tried to mix subparts of different types of principles but
succeeded when they tried to reuse facts or theories from the
geometric domain that were learned in an earlier design

B. Automatic Programming
Automatic programming is that ever receding goal of automating
the programming of everything the user wants with a minimal
amount of specification. Automatic programming encompasses
(1) algorithm design, (2) program synthesis, and (3) the problem of
managing complexity in programming in the large. Algorithm
design has been defined in Section I.A as the process of
producing a computationally feasible program sketch (that is
relatively complete and consistent) from a specification of what is
to be accomplished. We refer here to the hour level form of
algorithm design, not research design. This routine design often
precedes program synthesis. Program synthesis is the process of
choosing data structures and access functions to transform a
given algorithm specification into concrete code in a conventional
programming language. Like algorithm design, program synthesis
requires intelligence, especially to produce extremely efficient
code, but it probably can be achieved with more straightforward
techniques

As has been pointed out by others |2 10]. full fledged automatic
programming requires the incorporation of domain knowledge as
well as detailed coding knowledge Furthermore, programming in
the large must be supported by effective bookkeeping. There are
tew concrete results in this area, however 1 he notion of working
in multiple spaces, and in a domain space in particular, may prove
valuable in automating the entire programming process.

C. Formal Derivation
1 he formal derivation approach has been proposed for both
algorithm design and program synthesis [25. 5. 21I. Formal
derivation methods share with the design methods described here
a refinement strategy based on a few. largely syntactic,
transformations, but differ in that the transformations preserve
correctness. It is assumed that the specifications are correct and
complete, and since the transformations require and guarantee
correctness, then the intermediate states and the result are also
correct and internally consistent. The operations of the
transformations — defining new constructs, expanding definitions
("unfolding"), noticing instances of definitions that have arisen
after rearrangement and simplification of the algorithm
constituents ("folding") — are similar to the processes that we
have noted in human design,

One way that the formal approach differs from the model of design
described here is that it requires that terms be defined by axioms
or equations and does not allow the use of terms defined only in a
domain space. Also, in the formal approach, transformations are
instantiated via axioms about the domain or algorithmic
constructs, in the model of design described here, they can be
instantiated by similar knowledge based on formal definitions, by
arbitrary selection, or by guesses based on observations of the
domain As discussed earlier, people can sometimes derive
algorithms even if they do not have formal definitions of all the
concepts. They need only have operators in the domain space that
recognize the concepts, more primitive operators in the domain
space that can construct the structures they want to recognize
and techniques for implementing the constructive operators m the
algorithm space. In contrast, the formal derivation approaches
often have problems with controlling the search process and with
creating useful auxiliary definitions — the "aha" or "eureka" steps
are often definitions inserted by human interaction. These
problems result from there being no clues in the formal approach
about how to introduce the right interesting knowledge

Another way the formal approach, with its requirement for
consistency and completeness, differs from human design is in
the handling of boundary conditions and base cases The formal

1252 E.Kant

approach requires that these be defined early on, almost the
opposite of the human approach Getting the details of the
boundary conditions right is one cause of the search problem in
formal systems — there are many ways to define these conditions,
and selecting the precise specifications or introducing
conditionals and filling out the details adds complexity.

For some people, the discipline of taking care of details with a
standard methodology releases their creativity. On the other
hand, many people find it difficult to state invariants precisely if
they must be absolutely correct. Getting the main idea of the
invariant is crucial to solving the problem, but stating it formally to
avoid such problems as fencepost errors makes it tedious and not
obviously productive. For these people, getting the details right
immediately is extremely difficult; the overhead of internalizing this
methodology is prohibitively high.

Formal derivation systems are being augmented with more
detailed knowledge about design techniques so that the search
control can be more goal oriented [9] and also with knowledge
about example generation [4]. However, this still doesn't
postpone settling all the details (having a domain space lets you
finesse formalizing them) or say where the creative definitions
come from (cross fertilization from domain spaces and other
algorithms).

D Inductive Inference
Inductive inference from examples is another technique that has
been explored, but more for the construction of small programs
than for the design of algorithms or large systems.
Unambiguously specifying the input/output behavior of algorithms
with examples is easier than so specifying the behavior of large
programs. However, the inductive approaches usually rely on
problem solving using a small set of schema, with little ability to
improvise if none of the schema match If the target language is
logical equation based language with a search mechanism built
into the interpreter, then this approach may work [24], But it is
unlikely to produce clever algorithms in conventional languages.

E. Program Synthesis by Refinement
The program synthesis problem is complementary to that of
algorithm design, although we would expect that many of the
same problem solving techniques are used The stage at which
the algorithm design process stops — when an algorithm is
"understood" — should provide an appropriate specification or
starting place for program synthesis
The standard refinement paradigm in program synthesis [13. 23J is
to apply knowledge-based rules and search over that knowledge;
no creativity is introduced The search problem is a bit different
since once an algorithm is well defined, the program synthesis
problem is usually to find a more detailed program in a standard
programming language selecting concrete data structures and
accessing operations. Usually the search space is dense in
correct solutions that vary in efficiency, reliability, modifiability.
and so on [2). Past research has investigated the control of the
search by efficiency (for example, [14]). Such control is not a
definitive solution, but many approaches have been prototyped
fairly successfully.

As in most expert systems, it is assumed that all the knowledge
about how to refine programming constructs is present in the
refinement rules. In contrast, the hypothesize and test technique
in the design model presented here allows the discovery of new
programming techniques. The price paid, of course, is that more
search at the lower levels is required, and this search is not as
easily controlled by efficiency rules.

F. Program Synthesis by Design
We hope that algorithm design research will result in aids for
program synthesis that avoid hand coding of all the refinement
rules. The initial knowledge base requirements should be
simplified considerably as a result of the more generic problem-
solving abilities such as trial execution, with its low-level means
ends analysis and search, and domain space reasoning. Putting in
more of this creativity should make the automatic programming
process more flexible and robust and may even produce better
programs

G. Interactive Tools
An interesting question to ask is. does this knowledge suggest any
other tools to aid in the design process9 Are there some
interactive tools that might help people in the design process7 Or
is there some novel mix of human and machine power that could
lead to even better design9

The conventional wisdom is that people have better insight and
machines are better at the details. Following this wisdom, the
machine could suggest the full range of possible approaches at
any one step and the person could decide which to follow,
providing the search control

We could augment this plan by observing that execution is a
powerful technique in design. Programs are good at methodically
following algorithms for execution, but people frequently see what
they expect and miss some of the problems. This would suggest
machine support for execution of designs. The execution would
expose problems and inconsistencies that people might skip over
and the people could suggest some solutions to the problem or
suggest new directions to follow.

In addition, the machine support could include a set of rules that
continuously monitor simple features of the design, providing a
check that preserves almost-correctness but does not guarantee a
complete validation. In effect, this makes the machine a sounding
board for human design, just as colleagues act as sounding
boards. People explain their ideas to colleagues so that they are
forced to look at their design from other perspectives (with
different assumptions) and go through the design one more time
in explaining it. A machine might serve the role of a colleague

Building the human/machine communication interface is the hard
part of following through with these plans. The two agents must
speak the same language and each must be able to track what the
other is doing. This may turn out to be even harder than full
automation.

H. Other Design Tasks
There are a variety of other design tasks, such as engineering
design or VLSI design. Although each of these tasks has its own
unique characteristics, we may hope that some of the concepts
discussed in this paper may be relevant to these tasks.

V . C o n c l u s i o n s
The essence of the model of design presented here lies in its
informality and its use of multiple problem spaces, including
example generation and trial execution based on both the domain
space and an algorithm design space. These techniques provide
a focus of attention to limit search and enable the discovery of key
concepts. The model shares problem-solving techniques with
many of the other approaches, but rather than having a single
monolithic plan of attack, it shifts techniques depending on the
knowledge available.

E.Kant 1253

Several areas need further formalizing and testing The models of
the processes of discovery and visual reasoning must be
extended Learning and database issues should be explored
further For example, what are the appropriate organization and
retrieval techniques for large amounts of information so that key
ideas in algorithms and derivations are accessible when relevant7

Being able to learn automatically depends on appropriate
accessing and on general problem solving techniques,

The interactions between search, domain knowledge, and
programming knowledge seem important in tasks of any
appreciable difficulty, including automatic programming and the
next generation of expert systems, but several questions about
these interactions are still unresolved. For example, it is not well
understood how to determine when to stop refining at a given
level, how problem spaces are created from problems
descriptions, and so on

Understanding the design process impacts other branches of Al
I hose that include design tasks, discovery, visual reasoning, the
use of examples, and interaction between different types of
knowledge could be compared to algorithm design in their
organization of knowledge and use of problem solving
techniques. Answering the questions posed for design should
shed some light on the general issues in other domains. A side
effect of automation, the formalization of algorithm design,
analysis, and optimization principles, could also be useful in
teaching. Our observations of human design show that examples
are useful in the absence of knowledge and therefore probably
necessary to teach the knowledge, but having explicit principles is
more efficient for the designer

In summary, the model of design presented here is a good start on
understanding algorithm design. The attempt to formalize the
model lays a substantial part of the foundation for automation.

A c k n o w l e d g m e n t s

The research described here is joint work with Allen Newell and
David Steier. Mary Anne Wolf recorded and transcribed many of
the protocols. Thanks to Jon Bentley for helping to instigate these
studies I hanks are also due to the designers who participated in
the experiments for their interest and cooperation; they shall
remain anonymous for obvious reasons Programming support for
the implementation and additional input has been provided by
Brigham Bell, Lisa Covi. Billy Kim, Roland Kovacs. Deepak
Kulkarny, David Marshall. Jim Muller. Ed Pervin. Eric Schwabe.
Mark Taylor, and Ross Thompson as well as Wolf and Steier
Allen Newell, David Barstow, David Steier. and Sol Greenspan
made valuable comments on earlier versions of this paper

R e f e r e n c e s

1. Adelson, B. and Soloway, E. A Model of Software Design. In
The Nature of Expertise, Chi, Glaser and Farr, Eds.. Lawrence
Frlbaum Associates, in preparation.
2. Barstow, DR. "A Perspective on Automatic Programming "
The Al Magazine 5, 1 (Spring 1984)
3. Barstow, DR. The Roles of Knowledge and Deduction in
Algorithm Design. In Biermann. A. W. (editor). Ed., Automatic
Program Construction Techniques, McMillan, I984. Chap. 10, pp.
201 222.
4. Bibel. W. and Horning, K M. LOPS A System Based on a
Strategical Approach to Program Synthesis. Proceedings of the

International Workshop on Program Construction. France.
September, 1980,
5. Biermann, A. W. (Ed.), Automatic Program Construction
techniques. McMillan, 1984
6. Chandrasekaran. B. and Radicchi, S (Ed). Computer
Program lesting. North-Holland. 1981
7. Cohen. D A Forward Inference Engine to Aid in
Understanding Specifications Proceedings of AAAI 84. 1984.
8. Ericsson, K A. and Simon. H A "Verbal Reports as Data "
Psychological Review 37, 3 (May 1980). 215-251
9. Feather, M. S. "A System for Assisting Program
Transformation." ACM Transactions on Programming Languages
and Systems •/. 1 (1982), 1 20.
10. Green, C, Luckham, D.. Balzer, R., Cheatham. T ., and Rich,
C. Report on a Knowledge Based Software Assistant. Tech Rept
RADC-TR-83 195, Kestrel Institute, August, 1983.
11. Cries, D. I he Science of Programming. Springer-Verlag,
1981.
12. Jeffries, R., Turner. A. A., and Poison, P, G. The Processes
Involved in Designing Software. In Cognitive Skills and their
Acquisition, John R. Anderson, Ed..Lawrence Erlbaum Associates.
1981. ch.8
13. Kant. E. and Barstow, D. R. The Refinement Paradigm: The
Interaction of Coding and Efficiency Knowledge in Program
Synthesis. In Interactive Programming Environments, Barstow.
D. R., Shrobe, H, E., and Sandewall, E.. Eds.. McGraw-Hill. 1984.
pp.487 513.
14. Kant, E. Efficiency in Program Synthesis. UMI Research
Press, 1981
1 5. Kant, E and Newell, A. Naive Algorithm Design Techniques.
A Case Study Proceedings of the European Conference on
Artificial Intelligence, Orsay, France, July, 1982
16. Kant, E. and Newell, A. "Problem Solving Techniques for the
Design of Algorithms." Information Processing and Management
20, 12 (Spring 1984).
17. Kant. E. and Newell, A, An Automatic Algorithm Designer: An
Initial Implementation. Proceedings of AAAI-83, 1983.
18. Laird. J E. Universal Subgoaling. Tech. Rept. CMU-
CS 84 129, Carnegie Mellon University, Computer Science
Department, May, 1984.
19. Lee, D T., and Preparata, F. P. "Computational Geometry
A Survey " IEEE Transactions on Computers C 33, 12 (December
1984)
20. Newell. A. and Simon, H. Human Problem Solving Prentice
Hall, 1972
21. Partsch. H and Stembruggen, R. "Program Transformation
Systems." Computing Surveys 15, 3 (September 1983).
22. Polya, C. How to Solve It. Doubleday Anchor, 1957
23. Rich, C, and Shrobe, H. Initial Report on a Lisp
Programmer's Apprentice. In Interactive Programming
Environments, Barstow. D. R.. Shrobe. H. E.. and Sandewall. E
Eds., McGraw-Hill. 1984. pp. 443-463
24. Shapiro. E Y. An Algorithm that Infers Theories from Facts.
Proceedings of IJCAI 81 1981. pp 446 451
25. Smith. D R. Top Down Synthesis of Simple Divide and
Conquer Algorithms. Tech. Rept. NPS52 82 011, Naval
Postgraduate School. November. 1982.
26. Steier, D M. and Kant, E Symbolic Execution in Algorithm
Design. Proceedings of the Ninth International Joint Conference
on Artifical Intelligence, Los Angeles. CA. August, 1985

