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ABSTRACT 
This paper describes a new approach to representing 

space and time for practical reasoning. Unlike Rn, the new 
models can represent a bounded region of space using only 
finitely many cells, so they can be manipulated directly. 
Unlike Z n , they have useful notions of function continuity 
and region connectedness. Finally, the topology of space 
is allowed to depend on the situation being represented, 
accounting for sharp changes in function values and lack 
of connectedness across object boundaries. 

I INTRODUCTION 

In their daily lives, people frequently reason about the 
shapes and arrangements of objects in space. This prac
tical reasoning goes on at a variety of levels, from low-
level visual processing, through identifying objects, up 
to reasoning about how an object could be manipulated. 
A l l these types of reasoning depend on representations of 
2D and 3D space. Similarly, a representation for time is 
needed for reasoning about the relative ordering of events. 
There has been much discussion recently about the proper 
representations for time and space in fields including A I , 
computer vision and robotics, linguistics, and philosophy 
(van Benthem 1983, Dowty 1979, Allen and Hayes 1985, 
Hayes 1978a, Lee and Rosenfeld 1986). 

A reasoner wil l need to construct for himself various 
models or descriptions of the world. It is useful to dis
tinguish symbolic descriptions, such as "There is a desk 
against the wall," from concrete models of these descrip
tions, e.g. the sets of points of R3 which comprise the 
desk and the wall. Concrete models can be inferred from 
sensory input, such as camera images, or produced by the 
reasoner "in his mind's eye" from symbolic descriptions. 
Symbolic descriptions can be derived from natural lan
guage input or from parsing concrete models. 

Both symbolic descriptions and concrete models are 
useful in practical reasoning. Symbolic descriptions can 
consisely capture the relevant facts about a situation. 
This consiseness is important for remembering situations, 
identifying objects, describing situations which are too 
complicated to visualize all at once, and communicating 
in natural language. However, it is often simpler to use 
a concrete model for geometric reasoning tasks such as 
checking topological connectivity or measuring distances 
between features. Robot path planning can done us-
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ing digitized representations of space (e.g. Brooks and 
Lozano-Perez 1985). Finally, it is almost impossible to 
verify the consistency of a symbolic description except by 
exhibiting a concrete model which satisfies i t . 

In this paper, I wil l concentrate on the form of the 
concrete models. Standard models of time and space, 
such as . and , do not account for the way people 
do practical reasoning. Subsets of Rn must be manipu
lated symbolically because they typically contain infinite 
numbers of points. They cannot be directly stored by a 
reasoner. Secondly, it is difficult to represent two regions 
which are touching, because it is unclear which region con
tains the points along the common boundary of the two 
regions. The objects must overlap along the boundary, or 
the boundary points must belong to neither object, or else 
the boundary must be assigned arbitrarily to one of the 
objects (Allen 1984, Allen and Hayes 1985). 

Models based on the integers avoid these problems 
with Rn, but at the cost of having no useful notion of 
function continuity or region connectedness. Al l functions 
from the integers are continuous and no subsets of the 
integers are connected. Most integer-based models han
dle only regular arrangements of points. A good concrete 
model for practical reasoning should use a finite density 
of samples, like integer-based models, but it should allow 
irregular arrangements of samples and it should provide 
notions of region connectedness and function smoothness 
like Rn. This paper develops such a model, derived from 
work by Poston (1971). My forthcoming thesis wil l sup
ply technical details omitted in this paper, as well as al
gorithms for deriving concrete models from visual input, 
parsing concrete models into symbolic descriptions, and 
generating concrete models from symbolic descriptions. 

I I ADJACENCY SPACES 

The first task in developing a finite-resolution con
crete model is to set up the topological structure of empty 
space. Consider the set of cells in Figure 1. If the cells are 
packed against one another, they completely fill a section 
of space, the physical realization of the set of cells. If the 
cells do not fill the space, we can grow them so that they 
do fill i t . We cannot, however, assume that these cells 
are arranged in a perfectly regular pattern. The cells in 
the human retina are not. However, even for irregularly 
spaced cells, the pattern of how the cells touch one an
other completely determines the topological structure of 
the region of space that they cover. 

More specifically, the set of cells which touch at a point 
[such as A, B, C, and D), an edge (such as A and B) , or a 
lace wi l l be called an adjacency set In an N-dimenaional 
situation, the dimension of an adjacency set is (N-M) if 
its cells touch along an M-dimensional face. For example, 
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{A, B} has dimension 1. For formal convenience, there is 
an adjacency set {X} of dimension 0 for each cell X. A 
set of cells wi th adjacency sets and associated dimensions, 
wi l l be called an adjacency structure (a modified form of 
Poston's local matroid structure). A pair of cells which 
belong to some common adjacency set (not necessarily one 
wi th two elements) are called adjacent. A path from X to 
Y or connecting X and Y is a finite ordered set of cells 
X 0, such that W, and Wx+x are adjacent 
for every i A set of cells A is connected if any 
two cells in A can be connected wi th a path. 

In practical reasoning, it is necessary to represent ob
jects and situations at more than one scale of resolution, 
i.e. using different densities of sample points. When the 
reasoner constructs a coarse-scale sampling from a finer-
scale sampling, this can be done so that the coarse-scale 
cells are a subset of the fine-scale cells. In this case, the 
two adjacency structures can straightforwardly be related 
to one another. When two arbitrary samplings of the same 
object are created, e.g. when an object moves across the 
visual field, they are more easily related via a symbolic 
representation of the object. 

Each situation used in practical reasoning has an in
tended dimension, e.g. a visual image is 2D. Subsets of 
the situation should have the same dimension as the origi
nal situation and the dimension of an object should not be 
altered by changes in the number of cells used to represent 
it. Thus, a ribbon one cell wide in a 2D situation is 2D. 
In such cases, the dimension of an adjacency set can be 
larger than or equal to the number of points in the set and 
the dimension of the adjacency set may be a range 
of non-negative integers, rather than just a single integer. 
For example, a one-cell subset of a 2D adjacency structure 
has a single adjacency set wi th dimensions 

In order to be well-behaved, adjacency structures must 
meet some additional formal conditions. If X is an adja
cency set wi th dimensions and the adjacency set y) 
with dimensions [c, d] is a proper subset of X, then d 
If there is no adjacency set W distinct from X and y wi th 

Dimension 0 is restricted 
to singleton adjacency sets and dimension 1 to sets of no 
more than two elements. Since sampling should be at a 
finite resolution, a cell can belong to only finitely many 
adjacency sets and each adjacency set can contain only a 
finite number of cells. I also require that it be possible to 
embed in RN the set of cells adjacent to any cell in an N-
dimensional adjacency structure. Under these conditions, 
the adjacency structures are topologically equivalent to a 
subclass of regular cell complexes (Munkres 1984) which 
are also manifolds. Each cell of the adjacency space corre-

sponds to a vertex in the cell complex. The cell complex 
is a deformation retract of the physical realization of the 
adjacency space. Thus the adjacency structure, unlike 
the pairwise adjacencies (Lee and Rosenfeld 1986), com
pletely determines the topological structure of the space 
in the usual mathematical sense. 

I l l FUNCTION SMOOTHNESS 

Many algorithms in practical reasoning, such as inter
pretation of motion sequences, surface reconstruction, and 
reasoning about the behavior of physical objects, depend 
on the assumption that functions are "smooth." The idea 
behind function smoothness is that the value of a property 
should not change "too fast" as one moves through space 
or time. For there are a number of mathematical 
definitions corresponding to this intuitive concept, includ
ing continuity, smoothness, and bounded derivatives. The 
definition of function smoothness for adjacency spaces de
pends not only on the adjacency structure, but also on 
which cells overlap, i.e. sample overlapping patches of 
space. For example, in a CCD camera, the area sampled 
by a element overlaps areas sampled by elements which are 
several elements away, because of blurring and/or diffrac
tion in the camera optics. Similar facts hold for the foveal 
area of the human visual system. This blurring before 
sampling reduces aliasing effects. In robot motion plan
ning, it is essential that adjacent cells overlap, so that 
the entire area of space is covered by the cells and small 
objects cannot disappear from the representation. 

Following Poston (1971), I call the overlap relation on 
a set of cells the fuzzy. An adjacency space wi th a fuzzy 
is called a fuzzy space. This relation is symmetric and re-
flexive, but not transitive. For a cell X in a fuzzy space, 
the fuzzy neighborhood of X is the set of cells overlapping 
X, including X itself. Each fuzzy neighborhood must be 
connected and have a finite number of cells. These def
initions can be applied both to physical spaces and to 
abstract spaces, such as light intensities, temperatures, 
and distances. Two cells which overlap represent ranges 
of values which cannot reliably be distinguished. For ex
ample, I may have trouble distinguishing IOC and 15C, or 
15C and 20C, but IOC and 20C are clearly different. 

If and y are two fuzzy spaces, such as the visual field 
and grey-scale intensities, a function / : is smooth 
if f(A) overlaps f(B) in y whenever A ana B overlap in 
X. That is, in a region of smooth change, two overlapping 
cells in the visual field must have indistinguishable (over
lapping) intensity values. If, for some overlapping A and B 
in X, f(A) and f(B) do not overlap, f has an abrupt change 
in value between A and B. This notion of smoothness de
pends on the fuzzies for the two spaces: if we extend the 
fuzzy on X so that more cells overlap, fewer functions are 
smooth. In reasoning about processes of change (Forbus 
1984), it is necessary to consider the slope of a ID func
tion. For example, if the set of cells represents time 
and T the temperature of a room, we can define 
to be . We can now consider whether 
this new tunction DT is smooth, relative to appropriate 
fuzzies. 

IV TOPOLOGICAL BOUNDARIES 

Function smoothness and region connectedness are 
very important in practical reasoning. However, at a l im
ited set of natural boundaries in a situation, such as at the 
edges of objects, functions can change abruptly and ad
jacent objects may not be, intuitively, connected. These 
locations of abrupt change are exactly the most interesting 
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parts of the situation for practical reasoning. For exam
ple, computer vision programs extract locations of abrupt 
changes in intensity and the reason using only descriptions 
of these boundaries. In analyzing processes such as heat
ing liquids, properties and rates of change of properties 
can change abruptly when processes stop or when a sub-
stance undergoes a phase transition. These locations of 
abrupt change, along wi th summaries of behavior wi th in 
regions of smooth change, can be used to predict the be-
havior of these systems (Forbus 1984). 

Not only can functions have abrupt changes in value 
at natural boundaries, but the objects to either side of the 
boundary are not perceived as connected to one another. 
For example, it is necessary to distinguish whether two 
adjacent metal bars are physically connected in order to 
determine whether one bar wil l move if one pulls on the 
other. Pieces of metal do not merge on contact, although 
other substances (e.g. water) do. Connectedness can also 
be used to " l imit causality" (Hayes 1078b). For example, 
if one can surround the situation of interest w i th bound
aries across wi th nothing of interest is likely to flow, then 
reasoning can be limited to the region thus surrounded. 
Similarly, an event can only cause another event if the two 
are connected by a sequence of events. 

Boundaries can be characterized by which types of 
functions change at them. For example, changes in light
ing are important for reading but not for motion planning. 
Two pieces of metal can be physically but not electrically 
connected. However, in a particular situation, boundaries 
relevant to different practical tasks tend to cluster. In 
other words, the world, at any fixed scale of resolution, 
exhibits natural boundaries which are separated by large 
regions wi th no sharp changes. Connectivity boundaries 
and locations of abrupt changes in function values tend to 
coincide. This suggests that these natural boundaries are 
topological boundaries in situations. The usual explana
t ion, that each function is discontinuous at a small number 
of places, fails to account for the clustering of boundaries 
ana for the connectivity facts. 

A program to detect boundaries in 2D camera images 
has been implemented, based on the model described in 
this paper. If there is a sharp change in intensity or in the 
slope of intensity between two adjacent cells, a boundary 
is marked between them. Each of the two cells is an edge 
of the region on its side of the boundary and a border of 
the region on the other side. An extended boundary cre
ates two connected sets of edge/border cells. Boundaries 
should also be marked where there is reason to suspect 
lack of physical connection. 

These pairwise boundaries define a new adjacency 
structure relative to the boundaries (rttb), in which an ad
jacency set is removed if it contains two cells separated by 
a boundary. In an N -dimensional situation, if some adja
cency set of dimension less than N is no longer a subset of 
any other adjacency set, its set of dimensions is extended 
to include N. For example, in Figure 1, if boundaries are 
added between C and F, and between E and F, the ad
jacency sets {C,F), {E,F}, and {C,E,F} are removed 
and {F} is given dimensions [0,2]. If a boundary is added 
between A and E, B and D cease to be adjacent as a side-
effect of removing the adjacency set [A,B,D,E). Thus, 
adjacency structures avoid problems raced by representa
tions based on pairwise adjacencies in adding boundaries 
where too many cells are adjacent (Lee and Rosenfeld 
1986). From these new adjacencies, we can define paths 
(r t tb) and region connectedness (r t tb) . The original fuzzy 
induces a fuzzy (rt tb) in which each fuzzy neighborhood is 
restricted so as to be connected (rttb) and these fuzzies de

fine function smoothness (r t tb). Distances between cells, 
however, do not change when Doundaries are added. 

The natural boundaries in a situation can be used to 
define regions such as those people would use in describ
ing the situation. For example, a local symmetry shape 
analysis (Brady and Asada 1984, Fleck 1985, 1986, Con-
nell 1985] picks out sets of edge cells as the borders of 
elongatea or round regions. These regions are typically 
connected relative to the boundaries which define them 
(Hayes 1978a). A region can be defined by boundaries 
which do not fully enclose i t , e.g. the sides of an elon
gated region. A boundary can separate two parts of the 
same object, e.g. two adjacent fingers on the same hand. 
Thus, regions depend on locations of natural boundaries 
and not vice versa. Pairs of regions can be related using 
analogues of James Allen's (1983,1984) interval primitives. 
For example, a region A touches a region B if A and B are 
disjoint and there are two adjacent cells a and b such that 
a is an edge of A and a border of 8, and b is an edge of 
B and a border of A. This relation corresponds to Allen's 
meets. Analogues of his other primitives can be defined 
similarly, using also an order for ID spaces. 

In doing practical reasoning, a reasoner must choose 
which boundaries are active during a particular piece of 
topological reasoning. Certain boundaries may not be rel
evant to the task at hand. It may be necessary to consider 
several different models, e.g. in deciding which of several 
electrical connections is broken. There may be more than 
one way to parse a situation. For example, the region oc
cupied by a marble inside a cup can be seen as overlapping 
the interior of the cup, or as disjoint from the free space 
inside the cup. In other words, the topology of space can 
be manipulated dynamically during reasoning. 
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