
Using Par t ia l Global Plans to Coordinate D is t r i bu ted Prob lem Solvers 

Edmund H. Durfee and V ic to r R. Lesser 
Department of Computer and Information Science 

University of Massachusetts 
Amherst, Massachusetts 01003 

Abs t rac t 

Communicating problem solvers can cooperate in var­
ious ways, such as negotiating over task assignments, 
exchanging partial solutions to converge on global re­
sults, and planning interactions that help each other 
perform their tasks better. We introduce a new 
framework that supports different styles of cooper­
ation by using partial global plana to specify effective, 
coordinated actions for groups of problem solvers. 
In this framework, problem solvers summarise their 
local plans into node-plant that they selectively ex­
change to dynamically model network activity and 
to develop partial global plans. However, because 
network and problem characteristics can change and 
communication channels have delays and limited ca­
pacity, problem solvers' models and partial global 
plans may be incomplete, out-of-date, and inconsis­
tent. Our mechanisms allow problem solvers to agree 
on consistent partial global plans when possible, and 
to locally form partial global plans that lead to sat­
isfactory cooperation even in rapidly changing envi­
ronments where complete agreement is impossible. In 
this paper, we describe the mechanisms, knowledge 
representations, and algorithms that we have devel­
oped for generating and maintaining partial global 
plans in a distributed system. We use experiments 
to illustrate how these mechanisms improve and pro­
mote cooperation in a variety of styles. 

I . I n t roduc t ion 

Communicating problem solvers can pool their resources 
and expertise, work in parallel on different parts of a prob-
lem to solve it faster, avoid harmful interactions such 
as resource conflicts or working at cross-purposes, and 
promote helpful interactions such as moving information 
to where it is most needed or tasks to where they can 
best be performed. The style in which the problem solv­
ing node$ should cooperate depends on problem domain 

This research was sponsored, in part, by the National Science 
Foundation under Grant MCS-8306327, by the National Science 
Foundation under Support and Maintenance Grant DCR-8318776, 
by the National Science Foundation under CER Grant DCR-8500332, 
and by the Defense Advanced Research Projects Agency (DOD), 
monitored by the Office of Naval Research under Contract NR049-
041. Edmund Durfee was also supported by an IBM Graduate 
Fellowship. 

and environmental characteristics, and there are a vari­
ety of styles for which different mechanisms have been 
developed. Sometimes the nodes channel all of their in­
formation to coordinating nodes that generate and dis­
tribute multi-agent plans [Cammarata et a/., 1983, Corkil l, 
1979, Georgeff, 1983, Konolige, 1984, Steeb et a/., 1986]. 
When communication is very expensive, however, nodes 
should work relatively independently and selectively ex­
change their local solutions to converge on global solu­
tions in a functionally-accurate/cooperative (FA/C) man­
ner [Corkil l, 1983, Lesser and Corkil l , 1981]. Alternatively, 
they may negotiate in small groups to contract out tasks 
in the network [Davis and Smith, 1983, Smith, 1980]. 

The trouble wi th having different mechanisms for each 
style of cooperation is that some distributed problem solv­
ing situations call for several styles simultaneously. For ex­
ample, consider a vehicle monitoring problem where nodes 
track vehicles moving through an area monitored by acous­
tic sensors. A sample problem situation (Figure 1) has four 
problem solving nodes, each connected to a different sensor 
(node i to sensor i) that supplies it with signal informa­
tion at discrete times. A node tries to combine signals into 
tracks, which we represent as di-dj whered, is data for the 
track's first sensed time and dj is data for its last. When 
all the data is present, then from a local perspective: node 
1 plans to develop two tracks 2 plans 
for one track I but because its sensor is faulty it 
wi l l need much time to filter out noisy data; 3 plans for 
one track and 4 has no local plans. From a global 
perspective: node 1 should first work on track d4-di2 since 
it has more global significance (joining the tracks of 2 and 
3), and also should quickly generate and send a predictive 
result (like the short track ds-d9 which borders on node 
2's view) to help 2 disambiguate its noisy data; 2 should 
expect this predictive information; 3 should take responsi­
bi l i ty for the data that both it and 1 sense since 1 
has more data to process; and 4 should take on some tasks, 
either by getting data from other nodes, or by acting as 
network coordinator, or both. The nodes therefore need to 
negotiate about task assignments, exchange partial results 
to converge on global solutions, and plan interactions that 
wi l l help each other perform their tasks better. 

Instead of developing a hybrid system that uses differ­
ent mechanisms for different styles of cooperation, we have 
constructed a unified framework that supports all these 
styles through the use of partial global plana that specify 
how sets of nodes wi l l act and interact. Each basic style 

Durfee and Leaser 875 



ety of ways. In the next section, we briefly review how 
the problem solvers in our experimental domain plan their 
local activities. In section 3, we describe the implemented 
mechanisms for integrating local plans into partial global 
plans, covering such issues as how and where local plans are 
sent, which nodes develop partial global plans, what infor­
mation about partial global plans is exchanged, and what 
happens if nodes have incomplete, obsolete, or inconsistent 
partial global plans. In Section 4, we use experimental re-
sults to evaluate the ability of the mechanisms to improve 
coordination and allow different styles of cooperation, and 
we discuss how network and problem characteristics affect 
how (and whether) nodes develop consistent views. Fi­
nally, we summarize our approach in Section 5, citing its 
strengths, weaknesses, and remaining open problems. 

I I . D i s t r i bu ted Vehicle 
Mon i t o r i ng 

The four overlapping sensors detect signal data at discrete 
sensed times (the dots with associated times). Sensor.2 is 
faulty and not only generates signal data at the correct 
frequencies but also detects noisy signals at spurious fre­
quencies 

Figure 1: Four-Sensor Configuration with Sensed Data. 

of cooperation can be viewed as using partial global plans 
in some way. In the multi-agent planning style, the partial 
global plan is the multi-agent plan, while in the contract­
ing style each contract is a partial global plan involving a 
pair of nodes. The FA/C style has an general, implicit par­
tial global plan (in the form of an organizational structure) 
that predisposes nodes to exchange and integrate informa­
t ion. Within our new framework, nodes always use partial 
global plans to coordinate their behavior as best they can, 
and their style of cooperation depends on how they form, 
exchange, manipulate, and react to partial global plans. 
This framework lets nodes converge on common plans for 
network activity in a stable environment (where their plans 
do not change because of new data, failed actions, or un­
expected effects of their actions). However, when network, 
data, and problem solving characteristics change and when 
communication channels have delay and limited capacity, 
the framework allows nodes to locally respond to new sit­
uations and to cooperate effectively even when they have 
inconsistent partial global plans. 

Our approach to coordination emphasizes sophisti­
cated local control: a problem solver uses its current 
local view of network activities to control its own ac­
tions. Therefore, although problem solvers selectively ex­
change information about local plans and partial global 
plans, each may use this information differently and asyn­
chronously. Coordination is part of each problem solver's 
control activities and is interleaved with problem solving. 
This paper describes how this view of coordination through 
partial global plans has been implemented and shows how 
the new mechanisms allow nodes to coordinate in a vari-

The Distributed Vehicle Monitoring Testbed (DVMT) sim­
ulates a network of vehicle monitoring nodes, where each 
node is responsible for a portion of the sensed area and 
where the nodes develop partial tracks in parallel and ex­
change these to converge on a complete map of vehicle 
movements [Lesser and Corkil l , 1983). A node applies sig­
nal processing knowledge to correlate the data, attempting 
to recognize and eliminate errorful sensor data as it inte­
grates the correct data into an answer map. Each problem 
solving node has a blackboard-based architecture [Erman 
et al., 1980], wi th knowledge sources (KSs) and blackboard 
levels of abstraction appropriate for vehicle monitoring. 

Each node has a planner that uses an abstract view 
of the problem solving state to plan sequences of actions 
for resolving uncertainty about the potential solutions to 
develop and for developing them [Durfee and Lesser, 1986, 
Durfee and Lesser, 1987]. The abstract view is built by 
clustering related data into a hierarchy of abstractions, 
and it allows the planner to recognize long-term problem 
solving goals (to track some type of vehicle through a par­
ticular region). In the sample situation (Figure 1), for 
example, node 1 develops an abstract view indicating that 
two vehicles may have passed through its area and roughly 
where they were at each sensed time. The planner devel­
ops a plan to form a track satisfying each goal: it sketches 
out its long-term activities (the order it wil l process data); 
it builds predictions about how long each of these activi­
ties wil l take and about their likely results; and it details 
a sequence of short-term actions to process the next data. 
The planner adds detailed actions to the plan incremen­
tally because how (and whether) it processes subsequent 
data can depend on the results of earlier actions and on 
unexpected changes to its data. Thus, the node interleaves 
plan execution wi th plan generation, monitoring, and re-
pair so that it can respond to unexpected situations. Node 
1's plan to form track d'1~d'5, for example, eventually fails 
because the KSs that know about allowed vehicle move­
ments do not give credibility to hypotheses involving such 
sharp zigzagging. 

876 REASONING 



To coordinate nodes whose plans may change at any 
time, we could force nodes to pursue their plans no matter 
what happens: nodes that commit to plans are much more 
predictable [Fikes, 1982). Unfortunately, they are also un­
responsive to changing circumstances. But nodes with the 
flexibility to respond to unexpected situations risk disrupt­
ing coordination when they take unpredictable actions that 
can lead them into interfering with each other or ignoring 
important tasks because they falsely assume other nodes 
are doing them. What we need are mechanisms that al­
low nodes to exchange useful information about their views 
and to use whatever local information they have to find the 
best balance between predictability and responsiveness. 

I I I . Implementation 

To model each other and modify their local plans based on 
their perceived opportunities for cooperation, nodes must 
integrate and reason about large amounts of information. 
Implementing the concept of coordination through partial 
global plans is thus a difficult task, and this section de­
scribes important issues and algorithms we have identified. 

A. Ne twork Models 

To locally plan actions that help overall network problem 
solving, a node needs a dynamic model of network activ­
ity (Figure 2). The node has local plans based on its own 
knowledge and local view (from the clusters of its abstrac­
tion hierarchy). For example, node 1 in Figure 1 wil l have 
two local plans, and the one to form the track is 
outlined in Figure 2. The node's planner summarizes each 
of its local plans into a node-plan that specifies the goals 
of the plan, the long-term order of the planned activities, 
and an estimate of how long each activity will take (based 
on the time costs of the plan's past and current activi­
ties). The planner uses this information to generate the 
node-plan's activity-map: a series of activities, where each 
activity has a predicted starting time, ending time, and 
result track. The node-plan for node l's local plan to form 
track for example, is outlined in Figure 2. Since 
node-plans have much less detailed information than local 
plans and do not point to local data structures, nodes can 
cheaply exchange them and can reason about each other's 
node-plans as they can their own. Thus, nodes can commu­
nicate node-plans to build up models of each other [Corkill, 
1979, Georgeff, 1984, Konolige, 1984]. 

A node's planner scans the model of the network to 
recognise partial-global-goals (PGGs). A PGG is global in 
the sense that it may (but does not necessarily) encom­
pass the local goals of several nodes, and is partial in that 
only part of the network might participate in it. The plan­
ner identifies PGGs by comparing local goals and using 
simplified knowledge (in this domain, about allowable ve­
hicle movements) to determine whether they are part of 
a larger goal (tracking the same vehicle). For each PGG, 
the planner forms a partial-global-plan (PGP) that repre­
sents the concurrent activities and intentions of all of the 

The network model of node 1 from Figure 1 it graphically 
depicted along with simplified views of the data structures. 
A local p lan has pointers to local data clusters, a goal 
track (a region for each sensed time) and vehicle types, 
the long-term order for processing data (data for sensed 
time t, then j, etc) and the estimated cost for each (time-
cost pairs), and finally the specific KSs to process the next 
data. A node-plan has the local plan's goals and long-
term information, and has an activity-map (each activity 
has a start-time, end-time, and result-track). A P G P 
points to participating plans, combines their goals, inter­
leaves their node-plans' activity-maps, and has a solution-
construction-graph and communication predictions (for 
example, node 3 forms forms 

Figure 2: An Example of a Node's Network Model. 

Durfee and Lesser 877 



nodes that are working in parallel on different parts of the 
same problem (to potentially solve it faster). For example, 
the PGP to generate the overall track (Figure 1) 
by combining the plans of nodes 1, 2, and 3 is outlined in 
Figure 2. The planner interleaves the participating node-
plans' activity-maps to recognize the relative t iming of the 
nodes' activities and to discover how activities might be re­
ordered to avoid harmful interactions (such as performing 
redundant activities) and to promote helpful interactions 
(such as providing predictive information sooner). 

Given a suitably ordered set of activities for the par­
ticipating nodes, the planner uses this view of how nodes 
wil l act to develop expectations about how they wil l in­
teract. It estimates when a node wil l complete a group of 
activities that together form a sharable result, and forms a 
aolution-construction-graph that indicates how and where 
results should be integrated. For example, in the situa­
tion of Figure 1, node and node l's track 

may be combined at node 1 to form track 
(Figure 2). The planner uses its network model to assign 
integration tasks to nodes with available computation re­
sources or suitable expertise. Thus, while the activity-map 
provides details about how each node wil l form its own re­
sults, the solution-construction-graph provides a high-level 
view of how the nodes are pooling resources and working 
together. This view of node interactions helps nodes avoid 
wasting communication resources because they can better 
identify important communication actions (to send track 

from node 3 to node 1 as in Figure 2, for example). 

To summarize, a network model has three types of 
information: 

loca l p l a n : The representation of a plan maintained by a 
node that is pursuing the plan. Contains information 
about the plan's objective, the order of major plan 
steps, how long each is expected to take, and detailed 
actions (KSs) that have been taken or wil l be taken. 

node -p l an : The representation of a plan that nodes com­
municate about. Contains information about the 
plan's objective, the order of major plan steps, and 
how long each is expected to take. Details about 
short-term actions are not represented. 

P G P : The representation of how several nodes are work­
ing toward a larger goal. Contains information about 
the larger goal, the major plan steps that are occurring 
concurrently, and how the partial solutions formed by 
the nodes should be integrated together. 

A PGP can be formed for any number of nodes with 
compatible local goals. Init ially, a node's PGPs correspond 
only to its local plans, but, as information from other 
nodes arrives, it builds larger, more encompassing PGPs. 
Because nodes build their network models asynchronously 
and over t ime, they may be incomplete or out-of-date and 
cooperating nodes may have inconsistent PGPs. The ex­
tent and quality of a node's network model and how it is 
formed depends on the meta-level organization: the com­
munication topology, capacity, delay, and reliability; the 

coordination responsibilities of different nodes; the cred­
ibi l i ty that a node has in coordination information from 
other nodes (which determines their authority relation­
ships); and so on. The distributed problem solving network 
is therefore organized both in terms of problem solving 
responsibilities (the domain-level organization) [Corkill, 
1983, Corkil l and Lesser, 1983] and in terms of coordi­
nation responsibilities (the meta-level organization). 

We assume in this paper that the meta-level organiza­
tion is statically defined during network creation. A node 
sends its node-plans to those nodes specified in the organi­
zation, perhaps to a particular coordinator-node, or maybe 
to all other nodes so that they recognize P G P S individu­
ally (as in Figure 2 where node 1 receives node-plans from 
2 and 3 and forms its own PGPs). When it coordinates 
other nodes, a node may send them PGPs to guide their 
actions, but two nodes with equal authority may also ex­
change PGPs to negotiate about (converge on) a consistent 
view of coordination. A node that receives a node-plan or 
PGP considers the sending node's credibility when decid­
ing how (or whether) to incorporate the new information 
into its network model: it can follow a highly-rated PGP 
from a much trusted coordinator-node, but may disobey 
coordination requests if the credibility and ratings of its 
local information is superior. The meta-level organization 
therefore influences how nodes may converge on consistent 
views of network activity and how responsive they wil l be, 
allowing various levels of autocracy and democracy, obedi­
ence and insubordination. 

Although they often convey similar information, node-
plan and PGP messages serve different purposes. In some 
organizations, a node might not have authority to locally 
change a received PGP even if it believes the changes rep-
resent improvement. By sending its local view as a node-
plan, it might persuade a node with more authority to 
change the PGP, or it could persuade other low-authority 
nodes that they should all change their PGPs together (in 
a kind of "grass-roots" movement). PGP messages say how 
nodes art working together, while node-plan messages pro­
vide context for deciding how nodes might cooperate. F i ­
nally, nodes could send only some of a PGP's information 
(leaving out the planned activities of some participants) so 
that recipient nodes have insufficient context to recognize 
and suggest improvements. This enforces consistent views 
and reduces computation at recipient nodes, since they 
blindly follow the PGP and cannot explore alternatives. 

B. Group A c t i v i t y 

A PGP's activity-map interleaves the concurrent activities 
of the participating node-plans, and each activity has an 
estimation of when it begins, when it ends, what task (part 
of a track) it is working on, and what results (tracks) it 
wi l l produce. The planner scans the activity-map to find 
activities that are more useful (such as activities that form 
important results to share) or less useful (such as activities 
that unnecessarily form redundant results). Each activ­
ity is rated based on attributes such as its expected time 
costs, its expected result quality, how it wi l l be affected 

878 REASONING 



by preceding activities, and how it wil l affect later activ­
ities. The planner attempts to reorder activities to move 
more highly-rated ones earlier in the plan. For example, 
node 1 (Figure 1) has a plan to build track d4 d12 and, 
since it locally has no reason to prefer certain activities 
over others, it chose as the order­
ing (Figure 2). When the activities of nodes 2 and 3 are 
incorporated in the PGP, however, node l's activities are 
no longer equally rated: because they provide node 2 with 
predictive information, the activities for generating tracks 
neighboring node 2 are more highly rated (for example, the 
partial track , but because they may generate redun­
dant results, the activities for times 4-6 and 10-12 have 
their ratings lowered. By rating activities in alternative 
orderings, the planner determines that node l's activities 
should be reordered to 

To reduce planning overhead, the planner does not 
guarantee an optimal ordering (which would require a large 
search) but instead uses a less costly hill-climbing algo­
r i thm that generates a satisfactory ordering: it begins with 
the activity-map built from the node-plan activity-maps 
(which it expects each node to currently be following), and 
rates the activities. It then reorders the activities so that 
the most highly rated occur earlier, and then rates the ac­
tivities in this new order. Because the ratings of activities 
depend on their relative ordering, reordering them may 
reduce ratings of some activities and raise ratings of oth­
ers. The sum of the ratings before and after reordering 
are compared: if the original ordering has a higher total, 
then it is used; if the new order is better, then the process 
repeats unti l no better ordering can be found. 

The planner uses the activity-map to form the 
solution-construction-graph. It first identifies the earliest 
times that different pieces of the overall solution wil l be 
generated and at what nodes, and then determines when 
and where they should be integrated into a single an­
swer. For example, after reordering the activity-map as 
described above for the PGP to form track (Fig­
ure 1), the planner makes a solution-construction-graph 
specifying that tracks d1-dB from node 3 and d7-d11 from 
node 1 should be combined at node 1, and the result­
ing track should be combined at node 2 with that 
node's track Alternatively, in a slightly different 
network where node 4 has very good integration expertise 
(KSs), the solution-construction-graph has nodes 1, 2, and 
3 send their tracks to 4 for integration. The planner builds 
the solution-construction-graph by: finding the pair of par­
tial results that can be combined earliest (time both are 
at an integrating node plus an estimate of how long it will 
take, depending on its expertise, to combine them); adding 
the combination as a new partial result; and then repeat­
ing this process unti l a complete result is formed. This 
inexpensive, iterative algorithm generates a graph that is 
acceptable although possibly non-optimal. 

The solution-construction-graph improves communi­
cation decisions since a node has a more global view of 
where results are needed than it has with a more local 
view [Durfee tt a/., 1985b, Durfee et a/., 1987]. For exam­
ple, it knows that track should be sent from node 3 

to node 1. A node's planner can also make better local de­
cisions by identifying whether it is or is not responsible for 
a particular result, and how much time it has to generate 
that result. In situations with multiple solutions, integra­
tion responsibilities for a solution are assigned to one node 
so that others can more quickly move on to other solutions. 
Also, since two partial results cannot be integrated until 
they are both at the integrating node, the planner may 
identify cases where the node has some time to spare: it 
predicts that n time-units are needed to form and send the 
result, but that the other result wi l l not be ready for n 4-1 
time-units. Our mechanisms allow the planner to work 
on important activities for other PGPs (perhaps generat­
ing predictive information) during the other i time-units, 
treating the n + i time-units as a window in which the task 
to generate the result can be moved around [Vere, 1983]. 

C. P lanning Node Act iv i t ies 

The planner reasons about the concurrent actions of nodes 
and about their potential interactions to find the next 
problem solving action for the node to take, as shown in 
Figure 3. It first uses any received network information 
(node-plans and PGPs) to update the network model. It 
then finds the current-PGP: the PGP that specifies ac­
tivities that the node should do at this time. The local 
plan that contributes to this PGP is updated and the next 
action is found. For example, if the PGP indicates that 
the local plan should develop data in a different order, 
the plan's long-term information is changed to reflect this 
and, if necessary, detailed short-term actions are found for 
the next data to process. When it is updated, the local 
plan may become inactive—it may not yet have data in 
the area where it is expected to work—so several PGPs 
may need to be tried before one with an active plan is 
chosen and node problem solving can continue (Figure 3, 
steps 2d-f) . Finally, any highly-rated PGPs or node-plans 
that have been altered are sent to whatever other nodes 
should be informed (based on the meta-level organization). 
Sending only highly-rated information can reduce commu­
nication costs and the number of PGPs (combinations of 
node-plans), but may cause views to be inconsistent or 
important PGPs to be missed. A parameter decides how 
highly rated information must be to be sent. When more 
or less complete communication would improve planning, 
the experimenter (and in future implementations perhaps 
the node itself) may alter this parameter. 

When finding the current-PGP, the planner first up­
dates its set of local plans based on any new data from 
its sensors or other nodes (Figure 3, step 2a). The new 
data modifies the abstraction hierarchy, and the planner 
forms new plans for new potential solutions and modifies 
existing plans whose clustered information has changed. 
Node-plans are created for any new plans and the node-
plans of modified plans are updated. The planner then 
updates the network model using new and updated node-
plans either formed locally or received (Figure 3, step 2b). 
It updates the PGPs of any updated node-plans and uses 
new node-plans to either update existing PGPs (if com-

Durfee and Lesser 879 



A node's planner wil l: 

1. receive network information; 
2. find the next problem solving action using network model: 

(a) update local abetract view with new data; 
(b) update network model, including PGPs, using 

changed local and received information (factoring in 
credibility based on source of information); 

(c) map through the PGPs whose local plans are active, 
for each: 

i. construct the activity-map, considering other 
PGPs; 

i i . find the best reordered activity-map for the PGP; 
i i i . if permitted, update the PGP and its solution-

construction-graph ; 
iv. update the affected node-plans 

(d) find the current-PGP (this node's current activity); 
(e) find next action for node based on local plan of 

current-PGP; 
(f) if no next action (local plan inactive) then go to 2b 

(since local plans may have changed), else schedule 
the next action; 

3. transmit any new and modified network information. 

Figure 3: The Principal Planning Activities. 

patible) or to generate new PGPs (if incompatible wi th all 
current PGPs). If any PGPs have been modified or created 
(as a result of changed node-plans or reception of credible 
PGPs), the planner then checks the set of PGPs, merg­
ing together any that are now compatible and separating 
any that are no longer compatible. For example, if the 
same vehicle passes through a node's area twice, then the 
node init ial ly develops separate PGPs for the two poten­
t ial tracks. If it later receives node-plans from other nodes 
indicating that its two potential tracks are connected, then 
it merges the PGPs into a single largeT PGP. 

Once the network model is updated, the planner pro­
ceeds to find the current-PGP. It first finds the PGPs to 
consider (leaving out PGPs that have already failed to gen­
erate useful actions because their local plans are inactive) 
and orders them. It also decides what nodes to plan for— 
usually just the current node, but if this node is also to 
coordinate others it should plan for them as well. The 
planner then steps through the PGPs from highest rated 
down (Figure 3, step 2c), updating their activity-maps and 
solution-construction-graphs, unti l all the desired nodes 
are planned for or no PGPs remain. For example, when 
the nodes it should plan for do not all participate in the 
same PGPs, the planner must update multiple PGPs unti l 
a current activity is found for each node. 

When updating a PGP, the planner first generates a 
current activity-map by interleaving the activities of each 
of the participating plans (Figure 3, step 2ci). For the local 
plan, the planner uses the past and predicted steps straight 
from the plan data structure. For non-local plans, the 
planner can get the activities from two potential sources: 
from a received node-plan (if there is one) or from the 

activity-map of the PGP (it may have been received from 
a node that had the node-plan). If the planner has in­
formation from both sources, it chooses between them us­
ing the information accompanying received node-plans and 
PGPs specifying how current and credible the model of the 
plan is. If the planner has neither source, it must have re­
ceived the PGP (it could not have formed it locally without 
the node-plan) wi th the sending node intentionally hold­
ing back information so that this node could not generate 
its own (possibly better) activity-map but instead must 
blindly follow the activity-map supplied wi th the PGP. 

If it forms one, the planner checks the activity-map 
against any PGPs that it has already planned for. A node 
that participates in this PGP may also be part of a pre-
viously formed PGP, and the activity-maps are compared 
to make sure the node is not expected to do two things 
at once. When there is a conflict, the node's activities 
in this (less highly-rated) PGP are moved to future, non-
conflicting times. The planner then uses the hill-climbing 
algorithm previously described to reorder activities for bet­
ter coordination (Figure 3, step 2cii). The sum of the ac­
t iv i ty ratings for the new activity-map is multiplied by the 
node's credibility in its own plans, and this value is com­
pared wi th the value of the previous activity-map (if any).1 

If the value of the new activity-map is higher, the planner 
updates the PGP with the new activity-map (Figure 3, 
step 2ciii), forms the solution-construction-graph and com­
munication expectations, and modifies its local plans and 
their node-plans based on the better activities (Figure 3, 
step 2civ). When the activity-map is improved but the 
credibility factors (authority relationships) do not allow 
the planner to change the PGP, the planner can transmit 
the node-plans that it believes should be modified: it as­
sumes that if nodes wi th authority have the same view of 
these node-plans that it has, then those nodes wil l modify 
the PGP appropriately and the modified PGP wil l even­
tually be sent back to this node. 

Once all of the PGPs have been updated and an ac­
t ion has been found for the node, the final step is to send 
out any important modified node-plans and PGPs, as de­
scribed previously (Figure 3, step 3). To make problem 
solving decisions based on the best, most up-to-date view 
of network activities, a node invokes the entire series of 
activities—from modifying the network model, to develop­
ing PGP activity-maps, to sending out new information— 
each time it needs to choose an action to take. If the node 
wants to conserve computational resources, it can do these 
activities less often at the cost of possibly making poorer 
control decisions. Because nodes are asynchronously per­
forming coordination activities and are interleaving these 
activities w i th problem solving, they must each balance 
the costs and benefits of these mechanisms. 

1A PGP has a previous activity-map if it was received or previ­
ously formed locally, and its value it the turn of its activity ratings 
multiplied by the credibility of the node that generated it. 

880 REASONING 



I V . Evaluat ion 

To evaluate the planning mechanisms, we must consider 
their ability to improve coordination, their ability to per­
mit cooperation in a variety of ways (depending on the 
organization), and their costs (computation and commu­
nication). We have implemented the mechanisms as de­
scribed in the D V M T , and here we summarize some initial 
empirical findings. This discussion concentrates on how 
well the implementation meets the goals of improving co-
ordination and allowing cooperation in a variety of styles, 
and only briefly addresses the costs of these mechanisms. 

Using the situation in Figure 1 (which was constructed 
deliberately as a challenge to coordinate), we show how the 
new mechanisms improve network problem solving by con­
sidering three degrees of partial global planning: where no 
network information is exchanged (nodes have only local 
views); where network information is exchanged so that 
nodes can rate their plans based on global significance but 
cannot change local plans based on this view; and where 
nodes can change their local plans by reordering activities. 
In all the experiments, the domain-level organization lets 
nodes exchange hypotheses so any node can potentially 
form solutions. The first meta-level organization that we 
explore is broadcast—nodes broadcast their node-plans to 
each other (with a simulated communication delay) and in­
dividually form PGPs. Although all of the data is present 
at the start of problem solving, nodes can have inconsistent 
network models because their plans change over time (for 
example, when node 2 receives predictive information from 
node 1 it reduces the predicted time needs for processing 
its data). The results of the experiments are summarized 
in Table 1, experiments E1-E3. For each experiment we 
show the amount of time the network needed to find a so­
lution (where each time unit corresponds to the execution 
of a KS) and the average plan-message traffic (node-plans 
and PGPs) in the network. The results show that the new 
mechanisms can substantially reduce the solution time at 
the cost of increasing communication (recall that a node 
currently transmits every highly-rated node-plan or PGP 
that it modifies without regard to the significance of the 
modification). We have found similar results in other prob­
lem situations. 

A broadcast organization allows inconsistencies and 
uncoordinated behavior because a node's view of its own 
plans is more up-to-date than its view of other's plans. In 
one problem situation, for example, two nodes that had 
both planned to work on the same data assumed that the 
other would work there and changed their plans. The mes­
sages about the changed plans incurred communication de­
lays, so time elapsed before the nodes recognized that the 
one of them involved in less highly-rated PGPs (as deter­
mined by their local models of network activity) should 
change its plan back again. In situations where their mod­
els are inconsistent, however, both or neither may change 
plans. A centralized meta-level organization can reduce 
such inconsistencies. In experiment nodes 1-3 send 
node-plans to 4 which in turn sends PGPs back. Nodes 1-
3 cannot locally modify the PGPs they get from 4, so that 

they are all following consistent (received) PGPs. This 
organization involves less communication than the broad­
cast but takes longer to respond to new situations (and 
to initially get multi-node PGPs to nodes 1-3) because of 
combined communication delays to and from node 4. It 
still performs fairly well because the nodes are following 
completely consistent views. This can be compared to a 
"r ing" organization (experiment E5), where a node sends 
node-plans only to its clockwise neighbor. The ring orga­
nization also uses less communication than the broadcast, 
but performs worse than either of the other organizations. 
Delays in propagating network information around the ring 
cause nodes to have inconsistent views more often and for 
longer periods of time, impairing coordination. 

Our experiments indicate, not surprisingly, that the 
quality of coordination depends substantially on how con­
sistent the different nodes' network models are. Inconsis­
tencies can have many causes such as communication de­
lays and inaccurate estimates of when various pieces of the 
solution wi l l be formed. When estimates are inaccurate, 
the communication and integration decisions may need to 
be modified and the changed plans communicated. So long 
as updated information is exchanged, nodes can in time 
recover from unexpected situations and once again coor­
dinate their activities. The planner also can develop a 
more forgiving PGP by enlarging the duration estimates 
for activities, and thus providing some leeway in predicted 
interactions. The resulting PGP is less likely to need al­
teration, but also may have less crisp interactions between 
nodes. The balance between forming PGPs that anticipate 
incorrect predictions versus using communication to up­
date PGPs depends on the communication resources and 
performance requirements. 

Developing and maintaining PGPs involves computa­
tion and communication overhead. PGPs substantially re-
duced the number of KS executions needed to solve our 
complex experimental situations, but, for simpler cases 
where nodes have l i t t le uncertainty about how to coor­
dinate, the new mechanisms may introduce unnecessary 
overhead. The tradeoffs in improving problem solving at 

Durfee and Lesser 881 



the cost of increased planning overhead in a single node 
have been studied [Durfee and Lesser, 1986], but the evalu­
ation becomes much more complex in a distributed system 
(Durfee et a/., 1985a] because of issues such as communi-
cation/computation tradeoffs, reliability, maintenance of 
consistent views, and assignment of planning responsibili­
ties. For example, a broadcast is more costly than a cen­
tralised organization in both communication and compu­
tation (since each node forms similar PGPs) but can be 
much more responsive and reliable (since the network does 
not depend on a single coordinator). 

Prescribing appropriate meta-level organizations and 
styles of cooperation for generic problem situations de­
pends on the evaluation criteria considered, and is beyond 
the scope of this paper. What is important, however, is 
that our framework lets us explore different styles of coop­
eration using one set of mechanisms. We can have nodes 
pass around node-plans and plan for themselves, or send 
node-plans to a node that plans for everyone, in which 
case we can even force them to sit idle waiting for these 
PGPs by having them give no credibility to their locally 
developed PGPs. Or we could let nodes exchange PGPs so 
that they negotiate on a consistent global view by adopt­
ing the most highly-rated version of a PGP. Nodes can 
also use node-plans and PGPs to form contracts. A node 
wi th a particular task can generate a PGP activity-map 
that has the task being performed in the future at some 
remote nodes.2 The PGP is sent to these nodes which 
locally develop node-plans representing these potential fu­
ture tasks. These node-plans are modified and rerated to 
reflect the node's view of its own activities; for example, if 
it may form an activity-map for the node-plan indicating 
that the received tasks could not be performed unti l much 
later in the future. The nodes return these node-plans to 
the original node, which adopts the best one and follows it 
by sending task information (data) to the chosen node. In 
essence, one node requests bids for a cooperative plan and 
each of the others bids on how it expects it could cooper­
ate. The node that likes the interaction most (or dislikes it 
least) is awarded the task. Moreover, because the returned 
node-plan conveys information about how the task fits into 
the bidding node's more global view, the originating node 
could use the node-plans it gets back to recognize that the 
task is unimportant and should not be awarded at all. 

Depending on its relative credibility in received ver­
sus locally generated PGPs, a node could respond to an 
important local development by breaking its contract or 
disobeying a superior. The PGP-based framework for co-
ordination permits different degrees of commitment for the 
various styles of cooperation. The nodes can be organized 
as predictable team-players or as locally responsive skep­
tics. In fact, a node with authority could elicit activity it 
desires from other nodes by misrepresenting itself or the 
network—changing its node-plans or PGPs based on some 

' The node's planner thus not only reorders activities but also 
finds possible reassignments that move computational load from a 
bottleneck node to nodes that are not participating in highly-rated 
PGPs. Making such reassignments is a complex problem for which 
we as yet have only primitive mechanisms. 

local goal of how it wants the network to behave regard­
less of network goals. Our framework therefore not only 
allows nodes wi th common goals to work as a better team, 
but also lets nodes wi th competing goals satisfy their own 
goals by misrepresentation ("lying") and exerting author­
ity ("threats") [Rosenschein and Genesereth, 1985]. 

V. Conclusion 

A node in a distributed problem solving network must not 
only solve problems in its task domain but must also plan 
its activities to coordinate wi th others. However, planning 
is only important insofar as it improves domain problem 
solving: nodes should only plan as much or as little as they 
need to (or are able to) depending on the problem and net­
work characteristics. The approach that we have described 
is therefore not strictly a distributed planning system be­
cause nodes may solve their domain problems without ever 
developing an overall network plan. Although our frame-
work allows organizations where nodes can cooperatively 
develop and converge on a consistent distributed plan be­
fore domain problem solving begins, it emphasizes that 
planning usually occurs during problem solving and that 
nodes in an uncertain environment wi l l build and modify 
their plans for network activity over time. When commu­
nication and computation resources are limited and when 
problem and network characteristics change rapidly, nodes 
simply may not be able to plan for optimal cooperation. 
Since the purpose of the network is to solve the domain 
problem, nodes need not cooperate optimally so long as 
they cooperate well enough to form acceptable solutions. 
What nodes need is the flexibility and local sophistication 
to use whatever information they have to decide how best 
to cooperate at a given time. 

In this paper we introduced a new framework that uses 
partial global plans to promote many different styles of co-
operation. Nodes build PGPs by exchanging short sum­
maries of their local plans and recognizing when a group 
of nodes should work together. A node can hypothesize 
how the cooperating nodes could best interact and mod­
ify its local actions accordingly. We outlined important 
issues and algorithms in implementing these mechanisms, 
and showed experimentally how these mechanisms work. 

Several avenues for further research remain. Nodes 
should be able to alter their meta-level organization: they 
need to exchange and reason about pertinent information 
to find a suitable style of cooperation for their current sit­
uation. Nodes also should use computation and communi-
cation resources effectively by selectively transmitting only 
plan information that wi l l significantly impact network be­
havior and by selectively applying planning mechanisms to 
maximise the improvement in problem solving while min­
imizing the overhead costs. Finally, since nodes cooperate 
in so many different styles in this framework, we should try 
to develop some rules-of-thumb about how nodes should 
cooperate for generic problem situations. 

882 REASONING 



Although our mechanisms have been implemented in a 
specific problem domain, we believe that they are applica­
ble to distributed problem solving systems in general. Our 
description has stressed the basic knowledge representa-
tions and reasoning that goes on, and though the decisions 
about how goals and activities interact and how they fit 
into this representation is domain dependent, the planning 
and communication algorithms are not. We expect to use 
these mechanisms for coordinating concurrently running 
KSs in a multiprocessor blackboard-based problem solver, 
and, through this paper, we hope to encourage their ap­
plication in other distributed AI systems as well. 

Acknowledgments 

We would like to thank Reid Smith for many suggestions 
concerning the content and presentation of this paper. 

References 
[Cammarata et ai, 1083] Stephanie Cammarata, 

David McArthur, and Randall Steeb. Strategies of co-
operation in distributed problem solving. In Proceedings 
of the Eighth International Joint Conference on Artificial 
Intelligence, pages 767-770, August 1983. 

[Corkill, 1070] Daniel D. Corkill. Hierarchical planning in 
a distributed environment. In Proceedings of the Sixth 
International Joint Conference on Artificial Intelligence, 
pages 168-175, August 1070. 

(Corkill, 1083] Daniel David Corkill. A Framework for Orga­
nizational Self-Design in Distributed Problem Solving Net­
works. PhD thesis, University of Massachusetts, Amherst, 
Massachusetts 01003, February 1083. Available as Techni­
cal Report 82-33, Department of Computer and Informa­
tion Science, University of Massachusetts, Amherst, Mas­
sachusetts 01003, December 1082. 

[Corkill and Lesser, 1083] Daniel D. Corkill and Victor R. 
Lesser. The use of meta-level control for coordination in a 
distributed problem solving network. In Proceedings of the 
Eighth International Joint Conference on Artificial Intelli­
gence, pages 748-756, August 1083. 

[Davis and Smith, 1083] Randall Davis and Reid G. Smith. 
Negotiation as a metaphor for distributed problem solv­
ing. Artificial Intelligence, 20:63-100, 1083. 

[Durfee and Lesser, 1086] Edmund H. Durfee and Victor R. 
Lesser. Incremental planning to control a blackboard-
based problem solver. In Proceedings of the Fifth National 
Conference on Artificial Intelligence, pages 58-64, August 
1086. 

[Durfee and Lesser, 1087] Edmund H. Durfee and Victor R. 
Lesser. Incremental planning to control a time-constrained, 
blackboard-based problem solver. Technical Report 87-07, 
Department of Computer and Information Science, Uni­
versity of Massachusetts, Amherst, Massachusetts 01003, 
February 1087. 

[Durfee et a/., 1085a] Edmund H. Durfee, Victor R. Lesser, and 
Daniel D. Corkill. Coherent Cooperation Among Commu­
nicating Problem Solvers. Technical Report 85-15, Depart-
ment of Computer and Information Science, University 
of Massachusetts, Amherst, Massachusetts 01003, April 
1085. Also to appear in IEEE Transactions on Computers. 

[Durfee et ai, 1085b] Edmund H. Durfee, Victor R. Lesser, and 
Daniel D. Corkill. Increasing coherence in a distributed 
problem solving network. In Proceedings of the Ninth 
International Joint Conference on Artificial Intelligence, 
pages 1025-1030, August 1085. 

[Durfee et ai, 1087] Edmund H. Durfee, Victor R. Lesser, and 
Daniel D. Corkill. Cooperation through communication 
in a distributed problem solving network. In Michael N. 
Huhns, editor, Distributed Artificial Intelligence, Pitman, 
1087. (In press. Also to appear as Chapter 7 in Scott 
P. Robertson, Wayne Zachary, and John Black, editors, 
Cognition, Computing, and Cooperation: Collected works 
on cooperation in complex systems, in press). 

[Erman et ai, 1080] Lee D. Erman, Frederick Hayes-Roth, Vic­
tor R. Lesser, and D. Raj Reddy. The Hearsay-II speech 
understanding system: integrating knowledge to resolve 
uncertainty. Computing Surveys, 12(2):213-253, June 
1080. 

[Fikes, 1082] R. E. Fikes. A commitment-based framework for 
describing informal cooperative work. Cognitive Science, 
6:331-347, 1082. 

[Georgeff, 1083] Michael Georgeff. Communication and inter­
action in multi-agent planning. In Proceedings of the Eighth 
International Joint Conference on Artificial Intelligence, 
pages 125-120, August 1083. 

[Georgeff, 1084] Michael Georgeff. A theory of action for mul-
tiagent planning. In Proceedings of the Fourth National 
Conference on Artificial Intelligence, pages 121-125, Au­
gust 1084. 

[Konolige, 1084] Kurt Konolige. A deductive model of belief. 
In Proceedings of the Eighth International Joint Conference 
on Artificial Intelligence, pages 377-381, August 1084. 

[Lesser and Corkill, 1081] Victor R. Lesser and Daniel D. 
Corkill. Functionally-accurate, cooperative distributed 
systems. IEEE Transactions on Systems, Man, and Cy­
bernetics, SMC-ll(l):81-06, January 1081. 

[Lesser and Corkill, 1083] Victor R. Lesser and Daniel D. 
Corkill. The distributed vehicle monitoring test bed: a tool 
for investigating distributed problem solving networks. AI 
Magazine, 4(3):15-33, Fall 1083. 

[Rosenschein and Genesereth, 1085] Jeffrey S. Rosenschein 
and Michael R. Genesereth. Deals among rational agents. 
In Proceedings of the Ninth International Joint Conference 
on Artificial Intelligence, pages 01-00, August 1085. 

[Smith, 1080] Reid G. Smith. The contract-net protocol: high-
level communication and control in a distributed problem 
solver. IEEE Transactions on Computers, C-20(12):1104-
1113, December 1080. 

[Steeb et ai, 1086] Randall Steeb, Stephanie Cammarata, San-
jai Narain, Jeff Rothenberg, and William Giarla. Coopera­
tive Intelligence for Remotely Piloted Vehicle Fleet Control. 
Technical Report R-3408-ARPA, Rand Corporation, Oc­
tober 1086. 

[Vere, 1083] Steven A. Vere. Planning in time: windows 
and durations for activities and goals. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-
5(3):246-267, May 1083. 

Durfee and Lesser 883 


