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Abstract

In this paper, we explore the computational po-
tential and limitations of the multi-layered con-
nectionist models [Minsky and Papert, 1968].
We found that the number of layers and the
width are two crucial parameters for the multi-
layered connectionist models. If each layer has
the same size n and we increment the number of
layers by 1, then the number of problems solved
will increase 0{n® ) times. On the other hand,
suppose the number of layers is equal to 2. If
we increment the width by 1, then the number
of problem solved will increase <D(n” ) times,
where n is the input size. Hence, we can extend
a 2-layered connectionist model by adding lay-
ers or increasing width. Our conclusion is that
increasing width is better than adding layers.

1 Introduction

For studying learning in the multi-layered connectionist
models, It is important to understand the computational
potential and limitations of the multi-layered connec-
tionist models. The single layered connectionist models
have limited computational ability. For example, there is
no single layered connectionist machine which can com-
pute the 'exclusive or' of two bits. But the 'exclusive
or' problem can be solved by a 2-layer connectionist ma-
chine. However, the computational ability of 2-layer con-
nectionist models depends on the width of the models.
We define the width of a connectionist machine to be the
maximum number of neurons in one layer of the connec-
tionist machine. The number of layers and the width are
two crucial parameters for the multi-layered connection-
ist models. In this paper, we examine two extreme cases
of the multi-layered connectionist models. In the first
case, we fix the width of the multi-layered connectionist
models and see what happen when the number of layers
is increased. In the second case, we fix the number of
layers to be two and see what happen when the width
is increased. Our result is that in the first case, if each
layer has the same size n and we increment the number
of layers by 1, then the number of problems solved will
increase 0(n" ) times; in the second case, when we in-
crement the width by 1, the number of problem solved
will increase O(n" ) times, where n is the input size.
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2 Layered Connectionist models

A layered connectionist machine is a special case of con-
nectionist models. It has t layers and one input layer
(layer zero). The input (bottom) layer contains n input
neurons. The last (top) layer contains m output neu-
rons. Each of the remainder layers contains w neurons.
Fori =0,...,t — 1, there are links connecting the neu-
rons in layer i to the neurons in layer (i + 1); no other
links exist. The following is a formal definition of layered
connectionist machines.

Definition A layered connectionist machine is a 7-tuple
(t,w,n,m,C, B, A), where

1. t is a positive integer defining the number of layers.

2. w is a positive integer defining the width of the
model.

3. n is a positive integer defining the input size of the
model.

4. m is a positive integer bounding the output size of
the model.

5. Cis aset of peurons. ("= LogUL,U---UL, where
Ly = {Co1.Caz,...,Con} is the set of input neu-
rons, Ly = {Cu,Ce,...,Cem} is the set of output
neurons, and L; = {Cj; 1 j = 1,...,w} is the
set of neurons in layer i for i = 1,...,t - 1. We
denote by |[L;| the number of elements in L; for
i = 0,1,...,t. Clearly, |[Ly] = n, |L/] = m and
|[Lil =wfori=1,...,t—1.

6. B is a set of real numbers. B = {b; : i =
1,...,t; and j = 1,...,|L;|} where b;; serves as
the threshold of C;;.

7. A is a sel of matrices. A = {A;, Ay, ..., A}
where A; = (a;) 15 a matrix of real numbers
whose entry a;;x represents the connection weight
with which C;_, ; affects C;; for ¢ = 1,...,7 and
j= L...,!Li_]l and k = I,‘.‘,IL,‘I.

Each neuron C;; has a binary valuc vij. Initially, the
values vy, vos,..., ¥, are set to the input values, At
time ¢,i = 1,...,t, the values of neurons in the ith layer
are determined by the following formula :

1Lu—1|
1 (Y

j=1

Vi = GijeVie-1j > i)
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for k =1,2,...,|L;|. Clearly, the computation time for
a layered connectionist machine with ¢ layers is ¢.

Example 1 The following is an example of layered con-
nectionist models with 3 input neurons, 2 output neu-
rons, 4 layers and width 5:

layer 4
layer 8
layer 2

layer 1

layer 0

Figure 1 An example of layered connectionist models.

Let Hpm(t) denote a class of problems solved by lay-
ered connectionist machines with n input neurons, m
output neurons, ¢ layers and width w = max{n,m}. We
denote by {H,,m(t)| the number of elements in H,,(1).

We regards each problem in H,,(t) as a mapping
from {0,1]™ to {0,1}™. Thus, each problem in H,n,(t)
can be represented as a function f(z;,z,...,2,) =
Ys - Ym where Zy,Za, ... Za U1, ¥ .. Um € {0,1}.
For j = 1,2,...,m, each y; i1s a Boolean function in
£1,%9, ..., 2. We write y; = fi(z1,22....,2,). f can
be specified with m Boolean functions, fi, f2,..., fms.
Therc are 2" possible combinations of binary input val-
ues. Therelore, |Ham()| < 2™m2"  Ag we know, the
Boolean functions can be expressed in sum of producis
form. The product terms are AND lerms and the sum
denotes the ORing of product terms.

Example 2 f(x),29,23) = F12o23 + 21 F2%3 + T1T2X3
18 the sum of products form of f where z; is the comple-
ment of z; for § =1,2,3.

Lemma 1 Suppose the sum of produclts form of a
Boolean function f(zy,zq,...,2,) contains single prod-
uct term. Then, f € H,1(1). In other words, [ can be
compuled by a single layered connectionist mackhine.

Proof. In the product term, either z; or ¥; appears for i =
1,...,n. Let U = {i : x; appears in the product term}
and V = {j: #; appears in the product term}. Suppose
the number of elements in {/ is p and the number of
elements in V is ¢. Clearly, YUV = {1,2,...,n} and
p+ ¢ = n. We construct a single layered connectionist
machine for computing f(zy,...,z,) as follows:

The set of neurons C = Ly U L, where o =
{z|,x9....,2,} is the set of input neurons and L, = {y}
is the set of the output neuron. Let b = p — 1 be the
threshold of y. For¢ = 1,...,n, suppose a; i1s the con-
neclion weight with which z; affects y. We let a; = 1 if
it € U, let a; = —1 otherwise. Clearly, y = 1 only when
all z; (: € U) and %, (j € V) are equal to 1. Hence, this
single layered connectionist machine computes f. 0O

Example 3 y = r1%2x3%425 can be computed by the

following single layered connectionist machine:

Figure 2 y = 1 %373%476.

We don’t know if there exists an integer {p such that
|H am(l0)] = 2™%". However, the following lemma shows
that any boolean function f(£1,....%n) = y1 -+ ¥ can
be computed by a layered connectionist machine M =
(2", w.nmC B Aifw>n4+m

Lemma 2 Let T,,(t) denote a class of problems solved
by layered connectionist machines with n inpul neurons,
m oulpui neurons, t layers and width w = n4+m. Then,
‘Tnm(gn)l = "

Proof. It is equivalent to show that for an arbitrary func-
tion f : {0,1}" —— {0,1}™ there is a layered connection-
1st models M = (2", n + m,n,m,C, B, A) which com-
putes f. Let t; = 2". f can be specified with m Boolean
functions, fi,f2,....fm. Each f; (7 = 1,2,...,m) can
be represented by a sum of products form. The sum of
products forms can be embedded in a layered connec-
tionist model M = (2%, n+ m, n,m,C, B, A) as follows:

The input values pass to neurons Cy;,Cis,...,Ciy, at
time ¢ for { = 1,2,...,¢; — 1. This can be achieved
by setting weight a;c = 1 and threshold &, = 0
for k = 1,2,...,n. v;,v%s,..., v, serve as inputs to
Ciyingj for j = 1,2,...,m. The ith produci term
of f; is corresponding to the single layered subnetwork
wilh nodes Ci—],]vcl'—l,2v---'Cl'—l.n and Ci,n+j- For
£k =1,2,...,n, we sct the weight ai ny; {(with which
Ci_1 4 affects C; oy ;) and threshold ¥ n4+; by using the
melhod described in Lemma 1 and Example 3. Now,
for fixed } (1 < j < m), we need only Lo sum (OR) ali
of the values in Cy 47, Congj, ... Cty npj- This can be
done by setting @; n4jnyj = 2nfori=2,...,¢;. All the
other weights and thresholds which haven’t been men-
tioned are set Lo zero.

We have finished the description of the layered con-
nectionist model M. The nuniber of product terms in f;
( = 1,2,....m) can not be greater than 2", Hence, M
computes f. 0O

Example 4 The following layered connectionist model
for computing f = £y + =¥ is constructed by using the
method described in Lemma 2. Note: all the thresholds
are zero.
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Figure 3 f = Zy 4 z§.

Next, we will separate H,m(t + 1) from Hpm(t). Let
K = max{|Haom(t)| : t > 1}.

Then, clearly |Hnm(t)] < K < 2™?" fort > 1.
Theorem 3 For t > 1, if |Ham(t)] < K,
|[Ham{$)| < |[Ham(t + 1)].
Proof If |Ham(1)| < K and |Ham(t)| = |Ham(t + 1)}, we
will show that |[Hom(t}| = |Ham(t + i)| for § > 1 which
lead to a contradiction. Clearly, Hom(2) C Hpm(t + 1).
H |Hpom(?)| = |Ham(t + 1), then Hpp(t) = Hom(t + 1).
For showing H,m(t) = Hpum(t+1) for ¢ > 1, we need only
to show that Hom(t + 1) = Hom(t + 2). Let us consider
the case of t+2. Obviocusly, Hym(t+1) C Ham(t+2) and
[Hom(t+1)| € |Ham(t+2)|. Forany f(zy,22,...,2a) €
Huam(l + 2), we consider two cases:

Case 1, m > n : there exists a layered connectionist
model M = (1 + 2,m,n,m,C, B, A) which computes f.
Each vy (J = 1,2,...,m) in M can be represented
as a Boolean function in 2,22, ..., Zs. Since Hom(t) =
Hom(t + 1), there is a layered connectionist model N =
(t+1,m,n,m,C’, B’, A") such that v{,— = V4,5 for j =
1,2,...,m, where v:j is the value of C{j. We can let

141 = Arqz 50 that N also computes f.

Case 2, m < n : there exists a layered connec-
tionist model M = (t + 2,n,n,m,C, B, A) which com-
putes f. We can write f = g(vy1,v12,-..,%1,). Since
Hom(t) = Hpm(t + 1), there is a layered connection-
ist model N’ = (t + 1,n,n,m,C", B”, A"} such that
[ = g(viy,vls, ..., v]y), where v]; is the value of CY}
for j=1,2,...,n. Wecanlet AY = A;. Thus, vi’j = vy,
for j=1,2,...,n; so that N’/ also computes f.

Thus, f € Hym(t+1); hence, Hom(t+2) € Hopm(t+1).
Therefore, Hom(t+1) = Hnm(t+2); and thus H,m(t) =
Hom(t + 1) for i > 1. Let f; be an integer auch that
|Ham(to)| = K. I {H,m(t)| < K, then it is impossible
that t > ¢5. However, if t < to, then we have Hpp(t) <
K. Contradiction. Hence, |Hon(t)] < |Ham(t+1)|. 0O
Ciorollary 4 If |Ham(t)| < K then Hom(t) C Hum(t +
1).

Proof. Clearly, Hopm(t) C Hom(t + 1). But, by Theorem
3, Hom(1) # Hopm(t 4+ 1). Hence, Hppn(t) C Hppm(t + 1).
O

then

By Corollary 4, Hym(t + 1) can be separated from
Hpm(t). There exists a function f € H,m(t + 1) but
f & Hom(t).
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tionist machine. If we add one layer to M, we will add
w? links to M; and thus w? weights are added to M.

The following theorem is due to [Hong, 1987).

Theorem 5 (Hong) Suppese ry,ra,...,r, are real

numbers. There exisis inlegers my,my, ..., m, such thal
the length of m; (j = 1,2,...,n) is O(nlogn) and for
any ¢1,€2,...,¢n tn {0,1}, we have
1} n
Ecjr_,- >0 iff Zijj > 0.
j=1 =1
ry,ra, ..., s are said to be simulated by my,mq, ..., m,.

By Theorem 5, each weights added can be simulated
by an integer with binary length O(wlogw). Thus, w?
weights has total binary length O(w3logw). There-
fore, by adding one more layer to M, we can create
O(w'”a) different layered connectionist machines. Hence,
[Tam(t+1)| is8 O({n + m)("""“)’) times of |T,m(1)|. But
O((n + m)(n+m™®) = 0(2("+™)*) Thus, |Tam(t)| =
O(21"+m™)'). We conclude that if |Thm(t)| = 2™2", then

n

m2
Tt my

If m = O(n), then ¢ = (2"/n?). It means that if
w = O(n) then 0(27 /n?) layers are needed for comput-

ing an arbitrary function with input size n and output
size O(n).

1= £

3 2-Layer Connectionist models

Let M = (t,w,n,m,C, B, A) be a layered connectionist
machine. If ¢ = 2, we call M a 2-layer connectionist
machine. A 2-layer connectionist machine is a special
case of connectionist models. It has an input layer, an
intermediate layer and an output layer. We denote by w
the size of the intermediate layer. There are links con-
necting the neurons in the input layer to the neurons in
the intermediate layer and there are links connecting the
neurons in the intermediate layer to the neurons in the
output layer; no other links exist. Clearly, the computa-
tion time for a 2-layer connectionist machine is 2.

Let W, ,(w) denote a class of problems solved by 2-
layer connectionist machines wilh input size n, output
size m and width w. We denote by |Wy,m(w)| the number
of elements in W, ,,,(w).

Each problem in W,,,(w) can alsc be regarded as a
function

f(-":l,xz,...,zn)zyl...ym

where 21,22, ...,%0, %1, ¥%2.....¥m € {0,1}. Moreover,
each y; (j = 1,2,...,m} is a Boolean function in
x1,%2,...,2n. There are 2™ possible combinations of
binary input values. Therefore, we have |W,m(w)| <
22" In fact, for an arbitrary function f : {0,1}" r—s
{0,1}™ there is a 2-layer connectionist models M =
(2,2",n,m,C, B, A) which computes f. f can be spec-
ified with m Boolean functions, f, fa,..., fm. Each f;
(7 = 1,2,...,m) can be represented by a sum of prod-
ucts form. Each n-digit input value has a corresponding



product term such that the value will produce 1 for this
product term. M can be constructed as follows:

Let v1y,v13,...,v1,2» represent 2" different product
terms. This can be done by using the method described

in Lemma 1 to set the weights a3;;(i = 1,...,n; j =
1,...,2") and thresholds &,;(; = 1,...,2") to proper
values. Then, fori = 1,...,2 and ; = 1,...,m, let

azgij =1ifvy;18a product term in the sum of products
form of f;; let agi; = 0 otherwise. Clearly, vz; = f; for
j=1,2,...,m. Hence, M computes f. We thus proved
the l'ollowmg lemma:

Lemma 6 |W,.(2")| = 2™%".

Theorem 7 For w > 1, if |[Wam(w)] < 2™%", then

Proof. Since {W,n(w)| < 2™?", there exists a func-

tion f(zy,... Zn} € Wam(w). Suppose f is speci-
fied with m Boolean functions, fi, fa,..., fmm. Let f;
(j = 1,2,...,m) be represented as the sum of product

form. We define

S= {{di,....dm):
after delete d; product terms from f;,
f will be in Wy, (w)}

d= min{{:i=min(d;,...,d,)

dm) € S}

Suppose (€1,...,8m) € S and there is ey, } < £ < m,
such that d = ex. Let g(xy,....xn) € Wan(w) be
specified with m Boolean functions, g1,¢42, ..., gm such
that g; is obtained by deleting ¢; product terms from
fi for j = 1,...,m. Suppose pi,...,pq are the product
terms deleted from fr. Let hy = gx + p1 and let h be
specified with g;,92,. ... gk—1, e, Geg1, -+ -2 gm. Clearly,
h ¢ Won{w), otherwise it will contradict to the defini-
ticn of d. Suppose g is computed by a 2-layer connec-
tionist model M = (2,w,n, m, (", B, A). We construct a
2-layer connectionist model N by adding one more neu-
ron €y w4y to M such that vy 43 = p1 (which can be
done by using the method described in Lemma 1) and
a2wt1f = Ef:x lazjk| + bax + 1. Clearly, N computes
h. Thus, h € Won(w + 1); but A § W,,(w). Hence
Wam(w) # Wam(w + 1). But Wyn(w) € Wym(w + 1),
Hence, we have Wy(w) C Won(w + 1) D
Theorem 7 explains the space hierarchy of the 2-layer
connectionist models. Suppose N = (2, w,n,m,C, B, A)
18 a 2-layer connectionist machine. If we add one nen-
ron to layer 1 of N, we will add (n + 1) links to N;
and thus (n + 1) weights are added to N. By The-
oremm 5, each weight added can be simulated by an
integer with binary length O(nlogn). Thus, (n 4 1)
weights has total binary length O(n?logn). Therefore,
by adding one more neuron in layer 1 of N, we can
create O(n"’) different 2- layer connectionist machines.

Hence, |W,m,.(u,l + 1} is O(n™) times of |an(w)| But

for 7=1,2,...,m,

for some (d;,...,

O(n") = 0(2""). Thus, IW,,m(w)} = O(2v"*), we con-
clude that if [Wpm(w)] = 22", then
m2"

w =955,

If m = O(n), then w = ©(2"/n?). 1t means that there
exists a problem with input size n and output size O(n}
which can only be solved by the 2-layer connectionist
machines with width Q(2"/n?).

4 Conclusion

Computational complexity for the connectionist models
has not been studied much. In the complexity theory,
we usually consider the uniform models. However, The
connectionist models are non-uniform models. Little is
known about the non-uniform models. [Hong, 1987] has
proved the similarity between the connectionist models
and other non-uniform models. Therefore, for the com-
plexity theory in the non-uniform models, we can just
focus upon the connectionist models. In this paper, we
presented time and space hierarchy in two extreme cases
of the layered connectionist models. Open question: is
there time and space hierarchy in the multi-layered con-
nectionist models?

If a function can not be learned by a 2-layer connec-
tionist model with width w = O(n), then, by Corollary
4 and Theorem 7, we may extend the 2-layer connec-
tionist model by adding layers or increasing width such
that the extended model can learn this function. The
total number of neurons in a connectionist machine is
said to be the size of this machine. For computing any
function with input size n and output size O(n), both
2-layer connectionist models and layered connectionist
models with O(n) width need size Q(2"/n?). But the
2-layer connectionist models always take time 2 whereas
the layered connectionist models with O(n) width may
take time Q(2"/n®). Therefore, for extending a 2-layer
connectionist model, we suggest that increasing width is
better than adding layers.
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