Abstract Theorem Proving *

Fausto Giunchiglia
Mechanised Reasoning Group
IRST
Povo, | 38100 Trento
Italy
fausto@irst.uucp

Abstract

Informally, abstraction can be described as
the process of mapping a representation of a
problem into a new representation. The aim
of the paper is to propose a theory of abstrac-
tion. The generality of the framework is tested
by formalizing and analyzing some work done
in the past; its efficacy by giving a procedure
which solves the " false proof problem by avoid-
ing the use of inconsistent abstract spaces.

1 Introduction

Abstraction has been suggested as a very powerful
technique for constraining search in automated reason-
ing. Informally, abstraction can be described as the
process of mapping a representation of a problem (also
called the "ground? representation) into a new represen-
tation (also called the "abstract? representation) which
preserves certain desirable properties and is simpler to
handle. The "desirable properties" amount to requir-
ing that the abstract solution be of help in solving the
problem in the original search space. The notion of "sim-
plicity* depends on the application, it may mean decid-
ability or lower complexity.

As far as we know, no comprehensive theory of ab-
straction has been given. The only work in this direction
[Plaisted, 1981] is concerned with one form of abstraction
and is limited to the area of resolution theorem proving.
This has caused the lack of a satisfactory characteriza-
tion and general understanding of abstraction.

The aim of the work (partially) described in this paper
is to provide a theory of abstraction and use it to: (1)
understand what "to abstract" means and how it can be
formalized; (2) classify the various forms of abstraction;
(3) investigate their formal properties and the opera-
tions which can be defined on them; (4) analyze and
classify past work; (5) define ways of building "useful

*This work was begun when the first author was working
at the Department of Artificial Intelligence at Edinburgh Uni-
versity supported by SERC grant GR/E/4459.8. The second
author is supported by a SERC studentship. The research
described in this paper owes a lot to the openess and sharing
of ideas which exists in the Mathematical Reasoning group.
The authors thank Alan Bundy, Enrico Giunchiglia, Alex
Simpson and Richard Weyhrauch for the many discussions
on the topic. Alan Bundy is also thanked for reading early
versions of the paper.

372 Automated Deduction

Toby Walsh
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge, Edinburgh
Scotland
Toby Walsh@uk.ac.edinburgh

abstractions"” and (6) study how the proof in the ab-
stract space can be used to aid the proof in the ground
space.

In this paper, for lack of space, only some issues are
discussed and proofs are only outlined and the sim-
plest not given (for a more complete treatment see
[Giunchiglia and Walsh, Forthcoming 89]). Only top-
ics (1), (2), (3) and (4) are (partially) dealt with. The
following of the paper can be structured in three main
parts.

In the first part (section 2), the formal framework
is presented and some of the underlying motivations are
discussed (topics (1) and (2)). Abstraction is first de-
fined as a mapping between formal systems and then
classes of abstraction are identified depending on how
certain properties (ie. provability, inconsistency) are
preserved by the mapping.

In the second part (section 3), some examples/ case
studies of previous work in abstraction are presented
[Sacerdoti, 1974, Plaisted, 1981, Hobbs, 1985] (topic
(4)). The goal here is to motivate the formal framework
by showing how it can be used to capture and formalise
most of the relevant previous work in various areas of
Al '. This allows us to get an unified view of work which,
on the surface, seems very different. For instance it is
proven that the theory of granularity presented by Hobbs
in [Hobbs, 1985] and described in example 3 can be for-
malised as a particular case of the weak and ordinary
abstractions defined by Plaisted in [Plaisted, 1981] and
described in example 2.

In the third and last part (section 4), it is then shown
how the framework can be actually used to understand
the properties of abstraction mappings and to find solu-
tions to existing problems (topic (3j). In particular the
"false proof problem is investigated. Intuitively stated,
the false proof problem is as follows. In order to build an
abstract space "simpler" than the ground one, the trick
is to forget some "irrelevant" details 2 This, Plaisted
noticed [Plaisted, 1981], may cause problems. In partic-
ular the abstract space may be inconsistent even if the
ground space is not. It is proven that this problem can-
not be avoided as it is always possible to find a set of

"This case study analysis is performed in much more depth
in [Giunchiglia and Walsh, Forthcoming 89]; in [Giunchiglia
and Walsh, 1989] it is shown how the framework can be ef-
fectively used to build global strategies for the unfolding of
definitions.

2Where "irrelevant" should be read as "irrelevant accord-
ing to same theorem proving strategy".

consistent axioms whose abstraction is inconsistent. A
solution is then proposed based on the ordering of ab-
stractions into a partial order.

2 The formal framework

Definition 1 (Formal system) : A formal system
L 15 a triple (A, A, 1), where A 12 the Language, 11 1s
t!}c Bmtel: of axiomsa and A 1s the Deductive Machinery
of L.

The language A is composed of an alphabet, the set
of (well formed) terms and the set of well formed formu-
lae (wffs from now on). {1 is a subset of the wifs of A.
The deductive machinery is a set of rules of inference for
deriving theorems from axioms.

Definition 2 (Abstraction) If ,; = (Ap,,Qg,, Ax,)
and L3 = {Ag,,{lg,, Ax,) are two formal systems, an
abstraction mopping f, written also f : L, — 3, 15 a
triple of total functions (fa, fa, fa) such that:

fa i Ap, — Ag,
fa 292; = QE,
fa g, — Ap,

If not explicitly stated to the contrary we assume that
J4 and fu agree on the axioms; that is, for any wif w, if
w € {1, then f,\(iu = fﬂé&?)s. When no confusion arises
we drop the subfixes. Given a deduction tree IIx, of
tr, vz, in I;, we indicate by f(Ilg,} a deduction tree

HE: of l_E: f[@ﬂx)‘
Definition 8 (T*-abstractions) : An edstraction f :
Ei— Iz 1ssaid to beat

TC-Abstraction iff, for ary wff pp,, Fr, o5, tf
Fe, fles,);

TD-Abstraction iff, for any wff vx,, if s, fles,)
then }‘E‘ YE, s

TI-Abstraction iff, for any wff or,, if -5, w5, then
+_E:| f(‘pﬂx)‘

It can be easily proved that any TC-abstraction is both
a TD-abstraction and a Tl-abstraction.

We write “T'*.abstraction” to mean any of the above

abstractions, TH{Z) to mean the set of wifs provable in
Z and NTH(Z) to mean the set of wffs which, if added

to the axioms of L, make it inconsistent.

TC-abstractions map all the elements of TH{Z,) into
elements of TH{L;) and these are all and only the ele-

ments of TH(E;). Herbrand’s theorem [Goldfarb, 1971]
can be formalized as a TC-abstraction. TC-abstractions
are used, for instance, in decision theory, under the name
of reduction methods, to prove the decidability of and to
build deciders for the validity problem for certain sub-
classes of the firat order calculus [Dreben and Goldfarb,
1979]. The trick is to find a class whose decidability is
known and prove that there is a proof of a wif iff there
is a proof of the “translated” wif in the new class.

3To be precise, since we distinguish between wifs occur-
ring as axioms and as anything else, we should consider oc-
currences of wils and not wifs. Since, in this paper, for any
wil w, if w € (1, then fi{w) = fa(w), to make things simpler,
we consider f, and fa to range over wits.

4%T® stands for theorem, “C* for constant, *D* for de-
creaging and *I™ for increasing.

mnl ms’

me) ()]

TH(Z,)

O NTH(E,)

Figure 1: Tl-abstraction

In TD-abstractions a subset of the elements of TH(Z1)
is mapped into TH(ZX2) and these are all the ele-
ments of TH(ZX2). TD-abstractions are used, for in-
stance, to implement derived inference rules [Giunchiglia
and Giunchiglia, 1988] and, as alternatives to TI-
abstractions, to overcome some of their problems [Tenen-
berg, 1987] (see later).

In Tl-abstractions all the elements of TH(Zi) are
mapped into a subset of TH(,). Tl-abstractions have
been mostly used in "abstract theorem proving" (see fig-
ure 1). The main idea underlying the use of these
abstractions is to prove the abstracted theorem in %,
(which, supposedly, should be simpler than in %) and
then to use the structure of the proofin X, to shape the
proof in Z4. The fact that there is a proof in Z, does
not guarantee that there is a proofin Z;.

T*-abstraction8 are classified on how provability is
preserved between the ground space and the abstract
space; they are thus useful when the deductive machin-
ery is defined to generate theorems. On the other hand
there are formal systems (it. resolution) whose deduc-
tive machinery determines inconsistency. In these cases,
abstractions must be classified on how inconsistent for-
mal systems are mapped. This requires the definition of
new classes of abstractions, called NT*-abstractions.
Thus, for instance, NTl-abstractions are defined as
follows °:

Definition 4 ; An abstraction f : 21 H» 2, isanNTI-
Abstraction iff, for any wff 5. if adding s; to tht
axioms of % yields an inconsistent formal system, then
adding f(2;) to the axioms of Z, yields an inconsistent
formal system.

Various properties, equivalences, and relationships
among T*- and NT*-abstractions can be proved
[Giunchiglia and Walsh, Forthcoming 89]. NTI-
abstractions* behaviour can be represented as in figure

2.

In this paper we mention only one result which allows
us to prove how and to what extent T*-abstractions (and
in particular Tl-abstractions) can be used in resolution
based theorem provers. Note that, if a formal system
E has negation, then, for any wff a, a € TH(L) iff
-«<a € NTH(E). Thus trivially:

Corollary 1 If ¥ and %, are two formal systems
with negation and iff : %, »¥» %, is a Tl-abstraction

°NTC-abstractions and NTD-abstractions are defined
analogously to TC-abstractions and TD-abstractions respec-
tively, but preserving inconsistency instead of theoremhood
(see definitions 3, 4).

Giunchiglia and Walsh 373

e,

O TH(E,)

NTH(Z,)

Az,
e
NTH(Z;) Q

Figure 2: NTI-abstractions {Falseful abstractions)

then, for any o, if a € TH(L,) then ~a € NTH(Z,)
and ~f{a) € NTH(Z;).

TI-abstractions can be used in resclution theorem prov-
ing as long as, in the abstract space, the wif added to the
axioms is the negation of the abstraction of the wif whose
negation is added to the axioms of the ground space.
This makes Tl-abstractions very ugeful since often refu-
tation systems, take as input a goal formula o (usually
automatically) negate it, add the result to the axioms
and try to prove that the resulting theory iz inconsis-
tent. In the abetract space, instead of f{—a), ~f(a) is
added as an axiom.

On the other hand there are TI-abstractions which

can be used in resolution-based systems independently
of whether the negation in front of the goal is abstracted.

Definition 6 (Negation preserving) : An abstrac-
tion f : I; — L 1s negation preserving +ff f[—a) =
~f(a).

Theorem 1 : If El = (Al,ﬂl,A_l) and Eg =
{Ag, Dz, Az} are two formal aystems wilh negation, then
6 negation preserving abstrachion f : L) ++ Ly 15 @
TI-abstraction iff f' : L] — I, 32 a NTl-abstraction,
where B = (A, (2, A}), I} = {A2,0)3, A}) and A] and

5 are such that TH(X)) = TH(E,) and TH(Z}) =
TH(Zz).

Examples are f = f’ with &), I3, E! and L} being
natural deduction, and f # f' with &;, £, being natu-
ral deduction and B}, I} being resolution. As far as we
know, all the abstractions proposed to work in resolution
systems are negation preserving. However, there are use-
ful abstractions which are not negation preserving (for
instance when negation is not part of the language of I;
or I, |[Newell et al., 1963], or only partially preserved
by the mapping}.

3 Some examples of abstraction

The purpose of these examples, together with provid-
ing a rational reconstruction of the work described, is to
convince the reader that the framework is very power-
ful and allows us to present an unified view of the work
done in different areas and with different goals. For lack
of space, only three examples are reported, more “histor-
ical® examples are reported in [Giunchiglia and Walsh,
Forthcoming 89}.

EXAMPLE 1 [Planning): Abstrips [Sacerdoti, 1974
was one of the first noticeable applications of abstrac-
tion. In Abstripe the preconditions to operators were
abstracted according to their crificality. To formalize

374 Automated Deduction

Strips-like planning we shall adopt a situation calculus
in a patural deduction formal system. Let us consider
the abstraction f4p where ; and £z are situation cal-
culi with a first order language, {} consista of frame, op-
erator and theoretic axioms and A consists of natural
deduction rules of inference. Operators are wfis of the
form * Vs.(A<ica Pi(s8) — 4¢(f(2))) * where p; in a
precondition, 3 is a state of the world, f is some action,
and g describes the new state of the world. Goals are
wifs of the form *3s r(s)”. fap is applied to wifs and
axioms as follows;

Jasla} = a if a is an atomic formula.

fap(-a) = ~fap(a);

fan(aoB) = fap(a)o fap(B), where “o” is “A™ or “v”;
fap{liz a) = j= fap{a), where % is “I* or “¥”;
fasla — B) = fap(a) — fas(B), provided “a — B” is
not an operator;

fas(Aicicnpils) — r) = AiEcﬂ't(u:) pi(s) — fam(r),
provided that “Als‘. <n pi(a} — r” is an operator, where
t € crit(x) if the criticality of p; is greater than x.
Theorem 2 : f4p 15 TI, namely, tfl-g, o5,, thentgp,
fas(ez,)-

Proof|Outline]: By proving that given a deduction tree
Iz, of kg, pr,, we can build a deduction tree [In, =

fas{llg,) of Fx, fap(ex,). The proof proceeds by in-
duction on the weight N ¢ of [Tz, . For proofs of weight
1, fap 18 applied to the single wﬂl; this generates a valid
proof in IIx,. Assume that we have a deduction tree up
to weight N. Any rule application that is not modus po-
nens involving an operator translates unmodified, in the
sense that, for instance, an “vI” on p in Ilz, becomes
an “VI” on fap(p) in Ilz,. For an operator application,
the following transformation is performed:

I,
A1<.'<npi A1<.'<..P:' - q =

q

AiEcﬂ't{x] pi

A:‘Gcrit[u} P — fAB(Q}
JaBlq)

The abstract proof is valid since fup(...) is a valid
deduction tree from the induction hypothesis, and the
hypothesis of the (abstract) operator axiom is obtained
from “A, ;<. Pi" by a (possibly empty) sequence of ap-
plications of “and-elimination®. O

Note that the abstract proof is longer than the one in
the ground space. The purpose of abstracting is not to
find these longer proofs; we hope that there are also go-
ing to be shorter proofs. These shorter proofs are those
that don’t try to satisfy p,; for 7 & crit{x). There is
no guarantee that there will be a shorter proof than the
one exhibited; we will always be able to devise an obtuse
theory in which to prove the p; for 1 € crit(x) we have
to prove all the other p; for j & crit{x). &

*The weight of a deduction tree is the number of ita for-
mula occurrences.

EXAMPLE 2 [Resolution theorem proving, logic pro-
gramming]: The work by Plaisted is closest in spirit to
ours. Plaisted proposes two classes of abstraction, ords-
nary abstractions and weak abstractions [Plaisted, 1981,
which map a set of clauses onto a set of clauses and pre-
serve inconsistency. His work is less general than ours
as: he restricts has atiention to resoluison systems and his
classes of abstraction fadl to capture all NTI abstraction
mappings that preserve inconsistency between resolution
systems, In other words, Plaisted’s abstractions are NTI,
but not all NTI-abstractions are weak or ordinary 7.
Moreover we claim that our definitions of abstraction
are *more natural® in the sense that better reflect and
capture the functionalities they are given for.

Ordinary abstractions are described as taking both I,
and I3 to be first order caleyli with Ag allowing clausal
form, Ay being resolution and {1z being arbitrary. Any
ordinary abstraction mapping f maps a clause in Ag,
onto a set of clauses in Ay, subject to the following con-
ditions:

a) f(1) = {1}

b) if @y is a resolvent of a; and a3 in E;, and f» € f(aa)
then there exist f; € f(a:;) and §; € f(a)) such
that a resolvent of #; and f; subsumes 83 in Lz;

¢) if oy subsumes a3 in Ij, then for every f2 € f(as)
!‘.heﬁe exists 81 € f(oy) such that 5; subsumes §;
1n b

Weak abstractions are identically defined to ordinary
abstractione except condition b) is weakened to the
property that if oy is a resolvent of oy and a5 in X;, and
B3 € f{as) then there exist f; € f{az) and §) € f(ay)
such that either S, subsumes S35, or A2 subsumes 8, or
a resolvent of #; and Sz subsumes 85 in X,.

Theorem 3 : Weak and ordinary ebstracttons are NT1.

Proof: The proof ie a corollary to Theorem 2.5 on page
55 of [Plaisted, 1981]. O

Theorem 4 : There cxist NTl-abstractions between res-
olution sysiema that are not weak or ordinary abstrac-
lions.

Proof{Outline]: We can find NTI-abstractions that fail
every one of the three conditions in the definition of weak
and ordinary abstractions. Condition a) is failed by
the NTI-abstraction f such that, for any wif ¢ in &,,
f(e) = {¢ vL}. The problem with condition b} is that
we may also need to resclve with an axiom of the the-
ory. Consider, for instance, the abatraction defined by
flevg) = {pvr}and flp) = “p} otherwise. If T
contains the axioms, ¢, and —r then f is NT1. In par-
ticular, p Vv g resolves with —p in E; to give g. However,
no clause in the abstraction of p v q, or ~p {or their re-
solvent) subsumes the clause g found in the abstraction
of ¢. For condition ¢), consider the abstraction defined
by f(pvq) = {r,pVq} and f{p) = © otherwise. Now f
is NT1. However, f faila condition ¢) of the definition of
weak and ordinary abstractions as p subsumes pV ¢ but
no clauge in the abatraction of p subsumes » which is in

flpvg). D

TAll Plaisted’s examples of abstraction are negation pre-
serving and thus also TIL.

The definition of weak and ordinary abstractions could
be extended to overcome the first counter-example by re-
placing condition a) with the more general requirement
that 3p € f(L). bg, ~v. However, this still leaves use-
ful NTI-abstractions that fail conditions b{ and ¢). For
example, if pg +» p; for many s we might abstract many
clauses of the form p; V¢ onto the one clause {pVg}. One
could argue that ordinary and weak absiractions have
the advantage, over NTI-abstractions, that they always
map into simpler theories, in the sense that there is al-
ways an abstract proof that is no longer than the short-
est proof of the unabstracted theorem [Plaisted, 1981].
This does not seem a good point since, first of all, we
intuitively expect NTI-abstractions Sthat. are not NTC)
to have this or similar properties and, second and more
importantly, there are NTI-abstractions, which are not
weak or ordinary, which build simpler theories {the last
example is one possible case). #

EXAMPLE 8 {Common sense reasoning]: In [Hobbs,

1985}, Hobbs presents a theory of granularity in which
a complex theory is abstracted onto a simpler, more
“coarse-grained” theory with a smaller domain; for ex-
ample, we could map the real world of continuous time
and positions onto a (micro}world of discrete time and
positions. Hobbse’ granularity theory can he formalized
as a mapping (let us call #t “f,,,”) that can be proved
to be TI. Let us suppose that both ¥; and L, are cal-
cull with a first order language, an arbitrary get of ax-
ioms and any complete deductive machinery for first or-
der logic. fyran maps different objects in I, into (not
necessarily different) objects in ¥; according to an in-
distinguishability relation, defined by the {second-order}
axiom:

Va,yz ~y «~ Vp€ Rp(z) & p(y)

where R is the subset of the predicates of the theory
determined to be relevant to the situation at hand®.
Thus fgran keeps the same logical structure of wifs and
translates any constant into ite equivalence class, namely
foran(p(a)) = p(x(a)}) where a 18 any constant symbol
and x(a) 18 the equivalence class of the constant 6 wrt the
indistinguighability relation; that is s{z) = {y: x ~ y}.

Theorem 5 : fyrqn 38 TI/NTL

Proof By mapping a proof tree I, in I, of px, (pos-
sibly of L} onto a proof tree Ilg, in Kz of f(pr,). The
proof proceeds by induction on the weight of Ilg,. We
merely apply fj to every wifin Ilg,. D

(Like any TT abstraction, see next section) fyrqan can map
a consistent theory into an inconsistent theory. For ex-
ample, if the constants a and b are “indistinguishable®,
then a consistent theory with equality and the axiom
maps into an inconsistent theory with the ax-
iom ~{{a,4} = {a,b}). However, the following result
holds:

—{a=1%

Theorem 8 : f,.,, preserves consistency if indistin-
guishablity s deﬁned over all predicates.

®As in [Hobba, 1985], we define indistinguishability for

unary predicates; it can, however, be easily generalized to
n-ary predicates.

Giunchiglia and Walsh 375

Proof[Outline]}:: By contradiction. Assume that a con-
sistent theory, &; maps onto an inconsistent theory, Xj.
That is, we can find a proof tree, II;, of 1. We show how
you can construct a proof tree, Iy, of L, contradicting
the assumption that X; is consistent. For every equiva-
lence class, x{a) we pick one member of that class, b; to
every wif, p in [Ip, we apply the substitution {x(a}/b}.
Thie will generate a proof tree, Iy, whose assumptions
will either be axioms of £, or will be derivable from them
using the indistinguishability relation and substitution of
equivalences. If indistinguishability is not defined over
all predicates, this last fact will not necessarily be true.
O

Note that fyrqn i& a special case of the example of weak/

ordinary abstractions {given in [Plaisted, 1981]) where
function symbols are renamed in a systematic {but not
necessarily 1-to-1) way. &

4 The false proof problem

A major problem with the use of Tl-abstractions ? is
that, even if I, is consistent, £ may be inconsistent.
An example has already been given for f;,qn. With f4p
it is sufficient to consider abstracting the operators “a; A
az — a3” and "oy A a4 — —a3® onte “a; — as” and
*a; — —a3” when o is a theorem but a; and a4 are not
both theorems. This problem was noticed by Plaisted
[Plaisted, 1981] who called it the “false proof problem®.
A symptom of the problem comes from the following
theorem:

Lemma 1 : If f: L, — E; 12 an abstraction and I3 1s
inconsistent then f 13 a Tl-abstraction.

Lemma 1 holds independently of the consistency of
¥;. Example can be easily found with &, consistent or
with ¥ inconsistent. Once f has been proved to be
TI it may happen that ¥, i inconsistent. This is a
major blow to the use of TI-abatractions to guide the
proof in the ground space. When X7 is inconsistent the
structure of the proof in X2 could still be used to shape
the proof in ;. However, any wff in 5 is a theorem
and thus X5 does not filter out any of the wiffs which
are not theorems in X;. In a way Iz gives too little
information. To make matters worse, in general it is not
possible to decide in a finite amount of time whether a
formal system is consistent.

When working with a fixed formal system (ie. set
theory + first order logic) a solution is to build abstrac.
tions which are proved a priori to have consistent ;.
In many cases, however, (s¢. planning, logic program-
ming, knowledge based systems), while the set of infer-
ence rules of I, is fixed, its axioms may vary and de-
pend on the application. Tenenberg [Tenenberg, 1987,
Tenenberg, 1988) proposed some solutions to the prob-
lem for predicate abstractions '° in a resolution-based
system. However, the abstractions he proposes have
many drawbacks: in one case the abatraction is TI but
{1, is not recursive {even if recursively enumerable} and
it may take an infinite amount of time to generate it; the

®Everything stated in this section holds dually for NTI-
abstractions.

1°Predicate abstractions are abstractions where distinct
predicate symbols in ; are mapped onto {possibly not dis-
tinct) predicate symbols in L.

376 Automated Deduction

other two types of abstraction are TD or similar to TD

[Giunchiglia and Walsh, Forthcoming 89 *!. This means
that completeness is lost since there ig at Jeast one theo-
rem in E; whose abstraction is not a theorem in ;. We
co:;aider completeness the one properly you do not want
to lose.

The ideal solution would be to generalize the concept
of abatraction mapping to be parameterized on the ax-
ioms of £; and then to find sufficient conditions which
guarantee that a TI-abstraction maps I; into a consis-
tent L3, independently of the axioms of I; (as long as
L, is consistent). This seems a reasonable request since
there are abstractions which, fix Ag,, Az,, Ag,, Az,
fa, fo and fa are T1 for any choice of the theoretic ax-
ioms (this is, for inatance, true for the abstractions of the

three examples) 2. This request turns out to be unsat-
isfiable. In fact, even if there are abstractions which are
TI- for any choice of the theoretic axioms, for any such
Tl-abstraction there always czists a sel of consistent az-
toma whose abstraction 18 snconsistent. The argument
goes as follows.

Let Ay, and Ap, be two languages, Ay, and Ag,
two deductive machineries. Then, if fa : Ax, = Ag,,
g: Ag, +— Ag, and fa : Ay, — Ay, are three to-
tal functions, F = {fi,g,fa) is an abstraction from
21 = <Azl,ﬂgl,ﬁgl) to Eg = AE‘, !Lg,,ﬁg,). Then
for any {1, C Ag,, if by “g T {lg,” we indicate g re-
stricted to apply to fig,, F®o = {f3,91 Ox,, fa)isan

abstraction from E?”' = {Ag,,g,. Ar,) to 22”1 =
(AIJ,s nf]p ABg)y with nEg = g(nr-l)'

Theorem T : Let Az, and Ay, be two languages, Ax,
and Ay, iwo deductive machineries, fa : Ap, — Ax,, ¢:
Ag, =+ Ag, and fa : &g, +~+ Ag, three total functions.
Then there ezats {1y, C ‘gl such that, {f the abstraction

FO = (f3,9 185, fa) is T1 and NTI but not NTC,
then E?" 38 consisient and 22"' 18 tnconsistent,

Proof|Outline]: By constructing (Ipn,. Because FU»:
is NTI- but not NTC-, there exists a wif ¢ such that

adding F"'>:i(p) as an axiom to L2 makes an inconsis-
tent formal system, but that adding ¢ as an axiom to
2 doesn’t. O

Theorem 7 can actually be proved in more power-
ful forms; however the hypotheses hold for most TI-
abstractions. For instance negation preserving abatrac-
tions that are T are also NTI and vice versa (theorem 1).
Theorem 7 proves that we cannot find a Tl-abstractions
which maps a consistent I; into a consistent X5 indepen-
dently of the axioms of I,. One possible solution 15 to
define abstractions which guarantee to build consistent
abstract spaces for certain (syntatic characterisations of)
clasges of theories., However such a solution would not
solve the problem in its generality and could not be used
in a general purpose, theory independent “abstract the-
orem prover', A different approach is to be able to vary
(in an automated way) the TI-abstraction until we can

‘1Note that it can be proved that, more generally, for any
TD-abstraction, if ¥, is consistent, so is E,.

1201 course theory independent TI-abstractions are in gen-
eral less officient than the ones geared towards one single the-
ory as they do not exploit the structure of theoretic axioms.

decidably show that L2 is consistent. This can be done
as follows.

TI-abstractions applied to the same X; can be classi-
fied into a weak partial order, indicated by “C°>.

Definition 6 (C) : If fi: £, — 55 and f;: By — &2
are two Tl-abstractions then f; C f; off for all wifs o3,
1f !_E‘, f.'((pgl) then }'2;' f_f(lpgl). We say that f; 1a
weaker than f; or, dually, that f; 4s stronger than f;.

If f¢ © f;, then f; is stronger than f; in the sense
that there are fewer wffs which are theorems in Y and
not in E; than wifs which are theorems in L} and not
in ;. “C” is in general a weak partial order {respect-
ing transitivity, antisymmetry and reflexivity) but not a
total order. If, however, we have a set of totally ordered
abstractions then the following result holda:

Theorem 8 : If f; : £, — ZL, .., fu: &y — Lf are
Tl-abstractions and fy C ... T fu (f1)..s fr ore totally
?Ziered), then sf £ is consistent so is LY for any 1 <
1< n.

Theorem 8 suggests the following process:

e build sets of abstractions, F; = {f},..., f,‘,.} where
Ji E .. C fi and [} (%) is decidable (eg. it is
propositional).

o find a set, ¥y in which the codomain of the strongest
abstraction fJ (T,) is consistent. Note that, since
f,{j(zl) is decidable, its consistency or inconsis-
tency can be proved in a finite amount of time.

s starting with the strongest abstraction (that is with
I = n;), until! > 1 use the proof that the abstracted
wif is a theorem in ff(Sl] to help construct a proof
in f_,(£1). If, in any of the f7(Z,), the abstracted
wif is not a theorem, then the wif cannot be a the-
orem in £, (since f7 is a TI-abstraction).

» when [= 1, use the proof in T} to help construct the
proof in &,. If success, then t?he goal is a theorem.

Of course there is no guarantee that all the steps in unab-
stracting back to ; will go through or terminate. The
overall performance depends on how the various abstrac-
tions in the total order are built and on how the process
of unabstracting 18 performed. For instance, computing

the consistency of f1 (E;) can be optimized by build-
ing a very simple, “minimal® f,{j (E1}. Further time can
also be saved, when f,{j (¥,) is proved inconsistent by

introducing (in an automated way) small variations in
f;rl,- that are tuned to the source of the inconsistency.

5 Conclusions

In this paper we have proposed a theory of abstraction
which extends the notions of abstraction previously used.
We have focused on abstract theorem proving and have
suggested that a certain class of provability preserving
abstractions '3, Tl-abstractions {which are not TC) are

13Everything said in this section holde dually for NTI-
abatractions.

the correct abstractions to use. TC-abstractions are in
general too strong, and the goal of having “simpler” ab-
stract proofs does not seem achievable except in very.
gpecial and limited forms {for instance, if f : &, — Ly is
a TC-abstraction then H L; is undecidable then X, can-
not be decidable). The dual class of provability preserv-
ing abstractions, TD-abstractions {(which are not TC)
are of less use as they lose completeness; that is, there is
at least one theorem whose abstraction is not a theorem.

Unfortunately, TI-abstractions are subject to the false
proof problem; they can map a consistent theory into
an inconsistent abstract theory. This problem has been
tackled in the last section, where a new general purpose
solution has been proposed.

References

[Dreben and Goldfarb, 1979]
B. Dreben and W.D. Goldfarb. The Decision prob-
lem - Solvable classes of quantificational formulas.
Addison-Wesley Publishing Company Inc., 1979.

[Giunchiglia and Giunchiglia, 1988] F. Giunchiglia and
E. Giunchiglia. Building complex derived inference
rules: a decider for the class of prenex universal-
existential formulas. In Proc. 1th ECAI, 1988. Ex-
tended version available as DAl Research Paper 359,
Dept. of Artificial Intelligence, Edinburgh.

[Giunchiglia and Walsh, 1989]
F. Giunchiglia and T. Walsh. Theorem Proving with
Definitions. In Proc. AISB 89, 1989.

[Giunchiglia and Walsh, Forthcoming 89]
F. Giunchiglia and T. Walsh. A Theory of Abstrac-
tion. Research paper, Dept. of Artificial Intelligence,
University of Edinburgh, Forthcoming 89.

[Goldfarb, 1971] W.D. Goldfarb. Jacques Herbrand Log-
ical writings. D. Reidel Publishing Company, Dor-
drect, Holland, 1971. A translation of the 'Ecrit
logiques', edited by J.V. Heijnoort.

[Hobbs, 1985] J.R. Hobbs. Granularity. In Proc. 9th
IJCAI conference, pages 432-435. International Joint
Conference on Artificial Intelligence, 1985.

[Newell et al., 1963] A. Newell, J.C. Shaw, and H.A. Si-
mon. Empirical explorations of the logic theory ma-
chine. In Fiegenbaum and Feldman, editors, Comput-
ers & Thought, pages 134-152. McGraw-Hill, 1963.

[Plaisted, 198l] D.A. Plaisted.
abstraction. Artificial Intelligence,

[Sacerdoti, 1974] E.D. Sacerdoti.
archy of abstraction spaces.
5:115-135, 1974.

[Tenenberg, 1987] J.D. Tenenberg. Preserving Consis-
tency across Abstraction Mappings. In Proc. 10th IJ-
CAIl conference, pages 1011-1014. International Joint
Conference on Artificial Intelligence, 1987.

[Tenenberg, 1988] J.D. Tenenberg. Abstraction in Plan-
ning. PhD thesis, Computer Science Department,
University of Rochster, 1988. Also TR 250.

Theorem proving with
16:47-108, 1981.

Planning in a hier-
Artificial Intelligence,

Giunchiglia and Walsh 377

