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Abstract 

Many artif icial intelligence systems implici t ly 
use notions of granularity in reasoning, but there is 
very little research into granularity itself. An excep­
tion is the work of Hobbs [1985], which outlines 
several characteristics of granularity. In this paper we 
describe an approach to representing granularity which 
formalizes in computational terms most of Hobbs' 
notions, often refining and extending them. In par­
ticular two types of granularity have been delineated: 
aggregation and abstraction. Objects can be described 
at various grain sizes and connected together into a 
granularity hierarchy which allows focus shifts along 
either aggregation or abstraction dimensions. We 
brief ly discuss how we have used granularity 
hierarchies in the recognition of novice LISP 
programming strategies and show how this enhances 
the recognition process and can lead toward planning 
appropriate feedback for the student. 

1 Introduct ion 

Our long term goal in this research is to show how the use 
of granularity can enhance the capabilities of intelligent 
tutoring systems. Granularity is an important part of 
instruction for two reasons. The first reason involves peda­
gogy. The level of generality or specificity at which a tutor 
chooses to present a topic, combined with the level of gen­
erality or specificity at which the student interprets the pre­
sentation, wi l l affect the student's success at understanding 
instruction. Both tutor and student must be "on the same 
instructional wavelength". Shifting grain size in instruction 
must proceed smoothly, guided either by tutor or student. 

The second reason is diagnosis. It is often difficult to 
precisely diagnose a student's problems. Students frequently 
exhibit bizarre or original behaviour which may be quite 
incomprehensible in detail. However, it is often possible to 
understand generally what a student is attempting to do. 
This knowledge can be used in designing appropriate feed-
back to the student and in focussing on points of ambiguity 
and misunderstanding. Thus in educational diagnosis, unlike 
other domains, being able to recognize student behaviour at 
coarse grain sizes is often useful. 

In this paper we propose a model for granularity, and 
show how it can be used in the recognition of strategies that 

novice students use in solving recursive LISP programming 
problems. This recognition can occur at coarser or finer 
levels of granularity, corresponding to shallower or deeper 
understanding of student behaviour. 

2 Background 

Shifts in perspective from high level to low level and vice 
versa have been implicit in many AI systems, ranging from 
the level shifts in heuristic classification schemes (e.g. as 
discussed in [Clancey, 1985]), through the hierarchical 
reasoning used by various planning systems (e.g. ISaccrdoti, 
1977]), the use of knowledge hierarchies to guide computer 
vision systems (e.g. [Mackworth and Havens, 1981]), and 
the representation of knowledge in semantic network 
schemes (e.g. [Levesque and Mylopoulos, 1979]). Such 
shifts can be interpreted as granularity shifts, but have 
seldom been viewed from this perspective. 

An exception is the work of Hobbs [1985] which 
attempts to explicitly delineate the nature of granularity and 
to show how granularity can be used in representation and 
reasoning. Hobbs describes the following characteristics and 
properties of granularity: 
• relevant predicate set ( R ) - Given a view of the 
world, ie. a particular situation of interest, only certain 
selected predicates from the global theory of the world are of 
interest. These are called "relevant predicates". These must 
be determined locally since they constitute the perspective 
from which the world is viewed in a particular situation. 
• ind is t ingu ishab i l i ty re la t ion (-*) - Pairs of objects 
(interpreted broadly as objects, events, actions, agents, etc.) 
in the domain of interpretation are considered to be indistin­
guishable if and only if no relevant predicate can distinguish 
between them. Thus ). 
• s impl i f icat ion mapping ( K ) - A detailed view of the 
world may be collapsed to a simpler view by means of a 
function K which maps the objects at one grain size to a 
simpler set of equivalence classes of objects at a coarser 
grain size, K also maps relevant predicates at the finer grain 
size onto new relevant predicates which make objects within 
the coarser-grained equivalence classes indistinguishable. 
Thus for some equivalence class C in the simpler theory, if 
K : V - > C and K:W—>C then for all predicates K(p) in the 
simpler theory, v is indistinguishable from w. 
• a r t i c u l a t i o n - Articulation is the translation from a 
coarse-grained to a finer-grained theory. Relevant predicates 
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at the coarse-grained level arc decomposed into finer-grained 
predicates. Although Hobbs only talks in general terms 
about articulation, such decomposition would presumably be 
carried out using a mapping like K~1, which defines the 
classes of indistinguishable objects at finer grain sizes. 
• idealization - Often the need to differentiate between 
objects at a coarse grain size forces the imposition of an 
arbitrary boundary between these objects, a process of ideal­
ization that is necessary to preserve the integrity of the 
coarse-grained classification. For example, if temperatures 
in the 60's form one such object and temperatures in the 70's 
form another, a predicate that could distinguish these two 
objects would need to be capable of distinguishing 69.9 
from 70. This seems counterintuitive, given the grain size 
of the two classes being distinguished, but is seen by Hobbs 
as being preferred to fuzzy or probabilistic approaches. 

The theoretical framework for granularity described by 
Hobbs has been the starting point for our investigations. 
We have been able to reinterpret Hobbs' notions in a 
computational formalism which both elaborates and refines 
the concept of granularity, as will be discussed below. 

3 A Representation for Granularity 

On closer analysis of granularity, it becomes apparent 
that there are at least two dimensions along which which 
granularity must be interpreted: abstraction, corresponding to 
shifts in focus from general to specific or vice versa; and 
aggregation, corresponding to shifts in focus through part-
whole relationships. We propose a hierarchical represent­
ation for granularity in objects, roughly equating granularity 
with level shifts in a directed graph. Nodes in the graph are 
thought of as objects (broadly interpreted as in Hobbs), with 
links representing two distinct granularity relations, 
abstraction and aggregation. 

Formally, a granularity hierarchy, y, consists of a 
finite set of objects, N, linked by granularity relations, i.e. 
the asymmetric binary relations _ 
(corresponding to abstraction and aggregation respectively). 

for ) 

which may be read is an abstraction of , or 
alternatively, is a specialization of n-, and 

V 

for 

which may be read is an aggregation containing ni or 
alternatively, ni is a part of These two relations provide 
the links for a granularity hierarchy representing objects 
related by abstraction and/or aggregation. Objects may be 
maximal aggregations, which by definition are those objects 
which are not parts of any other objects, i.e. n is a maximal 
aggregation iff 

A principal abstraction hierarchy, consisting of only 
these maximal aggregations, is a uniquely-rooted, directed 
acyclic graph with links corresponding to abstraction rela­
tions, connecting the maximal aggregation objects. 
The principal hierarchy represents the simplest (most aggre­
gate) objects we wish to consider, arranged in terms of rela-

tive abstraction. This hierarchy is rooted at the most ab­
stract object, and bottoms out at the most specialized ob­
jects. Figure 1 shows a fragment of a principal abstraction 
hierarchy for a set of LISP strategies at various grain sizes. 

Each maximal aggregation object is the root of another 
directed acyclic graph, this time linked by aggregation 
relations p. Each object in this dimension is a component 
part of the maximal aggregation object, or a part of one of 
its parts, etc. Figure 2 shows the aggregation hierarchy 
rooted at the maximal aggregation "Cdr Recursion" object 
shown in the previous figure. 

Abstraction and aggregation can be thought of as 
orthogonal dimensions of granularity, relating objects in the 
granularity hierarchy with one another. The entire granular­
ity hierarchy is connected to the most general object, (root), 
in the principal abstraction hierarchy according to the 
connectivity axiom, 

where and arc the transitive closures of and 
respectively. This implies that from any object the root can 
be accessed by shifting focus to more aggregate grain sizes 
until reaching a maximal aggregation, followed by shifting 
to more abstract grain sizes along the abstraction dimension. 
The root in the above figures is the object "Lisp program". 
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In addition to these linkages, we permit, but do not require, 
the existence of abstraction relations between finer-grained 
objects in the aggregation dimension. This provides for 
abstraction relationships among parts of finer aggregations. 
The resulting granularity hierarchy is a partial lattice of ob­
jects characterized by its two orthogonal relations. A more 
complete description of this formalization of granularity is 
given in another paper [Greer and McCalla, 1988]. 

A Fragment of the Aggregation 
Hierarchy for Cdr Recursion 

Figure 2 

Our approach to granularity can be interpreted in terms 
of Hobbs' characteristics, and in fact often refines and 
extends his notions. Each characteristic will be considered 
in turn: 
• indistinguishabil i ty and distinguishability: 
Indistinguishability can be defined using the explicit 
structure of the hierarchy, y, rather than some set of relevant 
predicates. The indistinguishability relation is meaningful 
relative to a particular level of granularity (in abstraction and 
in aggregation). Objects are considered indistinguishable if 
they are finer grained than the object under consideration. 
Hence, there is a notion of indistinguishability with respect 
to each and every object in the hierarchy (denoted as ~n ). 
We define indistinguishability between objects n\ and nj 

with respect to an object n as 

A related characteristic, not directly discussed by 
Hobbs, is distinguishability. Intuit ively, one may think 
that this is simply the dual of indistinguishability, but it is 
not. Objects which can be distinguished with respect to a 
given object are precisely the other siblings of the object in 
both the aggregation and abstraction dimension. This 
relation gives an object knowledge of the perspective it 
embodies relative to local alternative perspectives. Clearly 
some objects may be neither indistinguishable nor 
distinguishable relative to some given object. Such objects 
are simply irrelevant to the given object, at least with 
respect to granularity considerations. 

Looking at figure 1, from the point of view of "Cdr 
Recursion", "Car/Cdr Recursion", "Car Recursion", "Tail-
end Recursion", and "Embedded Recursion" can all be 
distinguished from one another (being siblings). Further, 
"Cdr Tail-End Recursion", "Cdr Tail-End Predicate", etc. 
down to "FindB preferred solution" are all indistinguishable; 
and "Predicate Funct ion" , "Recurs ion" , "Funct ion 
Definition", and "Lisp Program" are undefined. 
• re levant predicates: We refine Hobbs' notion of 
relevance to incorporate two kinds of predicates: 
observations and K-clustcrs. These not only define the 
aggregation level of granularity of an object, but arc utilized 
in object recognition at a particular level of abstraction 
granularity, as wi l l be discussed in section 4. 

An observation is a predicate completely determined by 
evidence obtained directly from the environment through the 
evaluation of some observer function (ofunction). An 
observation may be associated with an object for the 
purposes of distinguishing it from other objects, or to 
contribute to the recognition of the object on the basis of 
outside evidence. In fact, at some grain size(s) objects must 
be recognizable from direct observations alone. Thus 
aggregation "bottoms out", and every finest grained object 
along the aggregation dimension ult imately must be 
recognized by a direct observation. 

Frequently an object can be characterised in a number 
of ways, even at a specific grain size. It may be 
characterized in terms of its parts and predicates that describe 
how those parts f it together; it may be characterised by some 
subset or other set of parts under certain conditions; or it 
may be characterized by predicates that are quite independent 
of its parts. For example, a recursive LISP function may be 
characterized by 1) a combination of recursive function parts 
(base cases and recursive cases) properly assembled, 2) an 
infinite tail-end recursion (as in an interpeter), or 3) 
particular behaviour in traces of function calls and returns. 
We name each different way of characterizing an object a "K-
cluster" [Nilsson, 1981]. A K-cluster is a combination of 
observations and component parts that characterize an object 
under certain conditions. Thus, K-clusters occur along the 
aggregation dimension of the granularity hierarchy. The K-
cluster provides a mechanism for effectively grouping 
relevant predicates into relevance groups. 

In figure 2 there are a number of K-clusters, indicated 
by the arc connecting sub-aggregate descendants beneath a 
node. Observers in the figure are denoted as circles rather 
than boxes. For example, the object "Recursive cdr 
reduction case" has two K-clusters, one consisting of the 
two sub-aggregate objects "Some test (default)" and 
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"Recursive cdr-reduction action" as well as the observation 
"test-action pair", and the other consisting of the two sub-
aggregate objects "Recursive cdr-reduction test" and "Some 
action" as well as the observation "test-action pair". Each of 
these K-clusters represents a different way in which a 
recursive cdr reduction case could be framed in LISP, and 
hence define alternative groups of relevant "predicates" which 
must be "true" for the object "Recursive cdr reduction case" 
to be distinguished. The truth or falsity of such predicate 
groups is determined by a gestalt function described below. 
• s imp l i f i ca t ion and a r t i cu l a t i on : Simplif ication in 
granularity hierarchies is accomplished by a focus shift from 
a particular level of granularity to a coarser grain size. A 
simplification operator (similar to Hobbs' K mapping) is 
required to guide these focus shifts. In the abstraction 
dimension, s impl i f icat ion amounts to traversing an 
abstraction relation, which impl ic i t ly alters the sets of 
distinguishable and indistinguishable objects. 

In the aggregation dimension, the presence of K-
clusters impacts the simplification process. Each object that 
could be a candidate for aggregation simplification (objects 
that are not maximal aggregations) is by definit ion a 
member of one or more K-clustcrs. Associated with each K-
cluster is a function, called a gestalt function, which 
arbitrates the simplification and articulation of K-clusters. 
The gestalt function is essentially a local interpreter for the 
K-cluster which determines whether the objects (parts and 
observations) in the K-cluster are put together correctly. For 
example, in figure 2, the gestalt function associated with the 
K-cluster of parts of the "Cdr Recursion" object wi l l make 
sure that the null base case and recursive cdr reduction case 
are in fact embedded in the observed cond function in an 
appropriate manner (i.e. the null case must precede the 
reduction case in the cond) before it w i l l allow the "Cdr 
Recursion" object to be distinguished. The gestalt function 
has proven to be particularly useful for guiding aggregation 
focus shifts when granularity hierarchies are employed for 
recognition (as described in section 4). 

Articulation is accomplished by a focus shift from one 
level of abstraction granularity to a finer grain size. This 
type of focus shift is the inverse of simplification, but has 
quite different semantics when applied to recognition tasks. 
Again the gestalt function is employed to arbitrate articula­
tion between an object and one of its parts in a K-cluster. 
• i d e a l i z a t i o n : The need to impose fine-grained 
distinctions or boundaries between coarser-grained objects 
poses a diff icult problem, only partially resolved in our 
framework. In contrast to Hobbs' framework where 
predicates relevant to coarser-grained objects are themselves 
necessarily coarser-grained, we permit but do not impose 
such restrictions. For example, in figure 2, "Null base case" 
(one of the relevant objects necessary to distinguish "Cdr 
Recursion") could have specializations or generalizations at 
finer or coarser levels of abstraction. These specializations 
or generalizations could, in turn, be objects relevant to 
distinguishing descendants or ancestors of "Cdr Recursion" 
in the principal hierarchy. However, such correspondences 
do not need to exist. This allows us to incorporate 
specialized relevant predicates at any level of abstraction and 
solves the fine-grained boundary problem in a manner 
similar to Hobbs' idealization approach. 

On the other hand, this solut ion prevents the 
delineation of planes across the hierarchy at a particular level 
of abstraction (except in the special case where a complete 
lattice is defined by abstraction relations on aggregate parts). 
Such planes would roughly form a complete theory of the 
world at some abstraction grain size. In the recognition 
system that we have built using this theoretical framework, 
there has been no need for such a complete theory of the 
world at a level of abstraction, and in fact there are 
advantages to being able to connect objects to each other 
without regard for maintaining such planes (for example we 
have been able to avoid the need for plane-preserving 
intermediate dummy nodes required in Mulder's scene 
recognition vision system [Mulder, 1985]). 

4 Using Granularity in LISP Program 
Strategy Recognition 

Our main interest in using granularity has been to 
recognize the strategics novice students employ when they 
solve simple recursive LISP programming problems. This 
work has been carried on in the context of the SCENT 
project [McCalla and Greer, 1988], which is investigating 
issues in the construction of an intelligent tutoring system 
that dispenses advice to students as they learn to program in 
LISP. Using granularity, we are able to recognize student 
programming strategies at various levels of detail, which can 
be useful pedagogically and can enhance the robustness of 
the diagnostic system by allowing at least coarse grained 
recognition of bizarre student solutions. In fact, in the 
granularity hierarchy that we have implemented for LISP 
programming, strategy recognition at some grain size is 
guaranteed, albeit sometimes at only a coarse grain size. 

To give a flavour for how the granularity-based 
recognition system works, consider the fol lowing simple 
LISP program, which a student might submit as his or her 
solution to the FindB problem (the FindB problem is to 
return T if the atom B exists at the top-level of a list, and to 
return N IL otherwise): 

(defun FindB (Lst) 
(cond ((null Lst) nil) 

((atom 'B) t) 
(t (cons nil (FindB (cdr Lst)))))) 

This is a flawed solution, in that the task-specific test 
"(atom 'B)" does not check for a B in the list, and there is no 
need for the "cons" composition after the recursive call. 
Most program recognition systems would find such a 
perturbed solution hard to deal with unless these particular 
perturbations had been expl ic i t ly anticipated. In our 
granularity-based approach, this program could at least be 
recognized as "Cdr Recursion" (see Figure 2). 

In order to be a cdr recursion, a program must have a 
null base case, a recursive cdr reduction case, and these must 
be put together in a well-formed conditional. A null base 
case, in turn, must have a null base test and some base 
action, both put together as a test-action pair. Observers 
looking at the FindB solution above would find that "(null 
Lst)" is a satisfactory null base test, that "n i l " is a suitable 
base action, and that the two are formed as a test-action pair. 
Thus, this program has a null base case. Does it have a 
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recursive cdr reduction case? There are two ways of having a 
recursive cdr reduction case, as shown by the two K-clusters 
in figure 2. The relevant K-cluster here is the one requiring 
some test (possibly a default) and a recursive cdr reduction 
action combined as a test-action pair. The student's use of 
"t" in the third clause of the cond can be recognized as a 
default test, but recognizing a recursive cdr reduction action 
involves a further aggregation articulation requiring a cdr 
reduction and a recursive call, properly composed. Observers 
can recognize "(cdr Lst)" as a cdr reduction, the call to 
"FindB" as a recursive call, and that these are composed 
properly (i.e. that the reduction is in the argument to the 
recursive call). Thus, a recursive cdr reduction action can be 
recognized. It remains only to observe that the default test 
"t" and this recursive cdr reduction action form a test-action 
pair, which means that a recursive cdr reduction case is 
recognized. The recognition of both the null base case and 
the recursive cdr reduction case, combined wi th the 
observation that the cond is well-formed, means that a cdr 
reduction has occurred. Since "Cdr Reduction" is an object 
in the principal hierarchy, further aggregation simplification 
cannot occur. Despite its perturbations, the student's 
program has been definitely recognized as a cdr recursion. 

The recognition process proceeds as recognition of "Cdr 
Recursion" automatically propagates upwards through levels 
of abstraction s impl i f icat ion, a l lowing "Recursion", 
"Function Definit ion", and "Lisp Program" all to be recog­
nized as well (see figure 1). In fact, once an object has been 
recognized at any level of aggregation, recognition propa­
gates upwards through its abstraction ancestors, a fact which 
often allows rapid recognition of coarser grained sub-aggre­
gate objects without needing to articulate all of their com­
ponent parts. Using this information, the SCENT system 
knows what the student is doing at any of 4 levels of ab­
straction granularity, as well as being able to understand 
more precisely the various parts of the student's program 
that have been recognized in the aggregation dimension. 
This can be useful for updating the student model, and for 
framing the discussion with the student by focussing on the 
parts of the program that are correct and well understood. 

This degree of recognition is insufficient, however. 
Pedagogically, it is the unrecognized parts of the student's 
program which usually form the basis for tutoring. The 
granularity-based recognition system is also quite useful in 
this regard. In the attempt to recognize the student's 
program, various objects elsewhere in the granularity 
hierarchy may have been recognized. These can include sub-
aggregate objects of finer grained objects in the principal 
abstraction hierarchy. In particular, objects like "Cdr Tail-
End Recursion", "Cdr Tail-End Predicate", and "FindB 
preferred solution" may all have some of their sub-
aggregates recognized, while obviously not being able to 
recognize a complete K-clustcr of objects. For example, 
"FindB preferred solution", which is the finest grained object 
along the abstraction dimension, would be satisfied with the 
null base test, but would not accept the task-specific test 
(should be "(eq(car Lst)'B)"), nor would it be satisfied with 
the existence of a composition step. These unfelicitous 
parts could form the basis for tutoring, or at least for 
inquiries of the student or the student model as to problem-
solving intentions. Thus, the two kinds of recognition, 

complete coarse grained recognition and finer grained partial 
recognition, provide the rest of the tutoring system with 
different sorts of relevant information for student modelling 
and pedagogical decision making. 

The approach to granularity-based recognition discussed 
here has points of similarity to several other major research 
projects. In the domain of intell igent tutoring, the 
PROUST system [Johnson and Soloway, 1984] recognizes 
student programs at three levels: problem, goal, and plan. 
Our strategies are most like PROUST's plans, but unlike 
PROUST, we do not attempt to induce a student's goals in 
choosing a particular strategy (this is a role envisaged in 
SCENT for the student modelling component), nor do we 
formalize the problem description (although our work is 
currently progressing in this area). Instead, our approach has 
concentrated on strategy (plan) diagnosis, and in that regard 
goes considerably beyond PROUST in the formalization and 
use of granularity, in the delineation of both an aggregation 
and abstraction dimension to strategy recognit ion, in 
robustness, and in breadth and depth of strategies dealt with. 

Knowledge-based vision systems, such as the various 
Mapsee systems [Mackworth and Havens, 1981, Mulder, 
1985] and A L V E N and CAA [Tsostsos and Shibahara, 
1987], have strong points of similarity with our approach to 
recognition as well. These systems, which use hierarchies 
of visual knowledge to guide recognition of scenes, bear 
similarity in organization of knowledge into aggregation and 
abstraction hierarchies to guide recognition. There are, of 
course, obvious differences in domain: the Mapsee systems 
recognize an idealized sketch map, A L V E N looks at medical 
images, and CAA analyzes electrocardiograms. None of 
these systems explicitly formulate recognition in terms of 
granularity, nor are they satisfied, in general, with only 
achieving coarse-grained recognition. The usefulness in an 
education domain of coarse grained recognition and partial 
fine grained recognition does not carry over very well to 
scene analysis. There arc also many technical differences 
between our approach and the knowledge-based vision 
approaches. Nevertheless, the important point is that the 
knowledge-based vision systems provide further evidence 
that the approach taken here may be widely applicable 
beyond program strategy recognition. 

5 Conclusion 

Much work has gone into the creation of a granularity-
based recognition system for LISP strategies, and this work 
continues. One line of development has been to investigate 
various kinds of control paradigms. We have experimented 
with top-down, bottom-up, and task-dependent control 
schemes, and work by Barrie [1988] has investigated how to 
use so-called "strong" and "weak" recognizers to help direct 
the search through the granularity hierarchy. In fact, Barrie's 
initial work some years ago on strategy recognition launched 
our investigations into the use of granularity in recognition. 
Another line of development, explored by Pospisil [1988], 
has been to incorporate buggy strategies into the hierarchy, 
which if recognized allow a definit ive diagnosis of the 
student's misconceptions, and provide even more concrete 
information for the student modell ing and pedagogic 
components of SCENT. A third direction of current 
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investigations has been the knowledge engineering of a 
large system in order to rigorously test this approach to 
recognition, to prove out its usefulness in a real domain, and 
to find limitations and/or to explore possible enhancements 
to the approach. The design of the strategy objects in this 
large system is based on a repository of actual solutions to 
several LISP problems collected from some 48 novice LISP 
programmers (sec [Escott and McCal la, 1988] for an 
analysis of this data). We currently have implemented some 
200 objects connected together at ten levels of abstraction 
granularity and averaging approximately four levels of 
aggregation granularity. These objects allow the recognition 
of a wide variety of the basic recursive strategies used by 
LISP programmers. We are enhancing the coverage of the 
hierarchy by adding more strategy objects and by integrating 
into the system knowledge-based program transformations in 
order to reduce the observers' dependency on exact code 
matches [Huang and McCalla, 1988]. We are currently 
attempting to reduce the need to store explicit task-dependent 
strategies at the finer levels of abstraction granularity and 
instead to generate these task-dependent strategies from the 
problem description as new tasks arc created for students to 
solve. Finally, we would like to find other domains where 
granularity-based recognition would be useful; some 
possibilities which we have considered include recognizing 
strategies used in software testing and debugging, and 
recognizing strategics employed by chess players. 

Much work has gone into the formalization of granu­
larity as well. We have been able to describe granularity in 
precise computational terms, have characterized two kinds of 
granularity, and have shown how this approach to granu­
larity relates to Hobbs' properties of granularity, and in 
some ways refines and extends his ideas. We would like to 
explore our approach to granularity further, especially to 
define a notion of relative granularity between coarser and 
finer grained objects, to investigate how groups of objects at 
a similar relative grain size can be put together into a coher­
ent "theory" of the world at a particular grain size, and to 
look at the implications of these variously grain-sized theo­
ries for representation and reasoning. Another interesting 
avenue to explore is the delineation of other kinds of granu­
larity besides aggregation and abstraction. In particular, the 
human ability to carry out goals and sub-goals may suggest 
the existence of a dimension of granularity involving focus 
shifts between levels of goals. Perhaps other such dimen­
sions exist as well. We believe that explicitly investigating 
granularity wi l l prove to be useful for artificial intelligence, 
both theoretically and practically, and we are optimistic 
about our ongoing research into the formalization and use of 
granularity. 
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