
A Computational Framework for Granularity
and its Application to Educational Diagnosis

J im Greer and Gordon McCalla
ARIES Laboratory

Department of Computational Science
University of Saskatchewan

Saskatoon, CANADA S7N 0W0

Abstract

Many artif icial intelligence systems implici t ly
use notions of granularity in reasoning, but there is
very little research into granularity itself. An excep­
tion is the work of Hobbs [1985], which outlines
several characteristics of granularity. In this paper we
describe an approach to representing granularity which
formalizes in computational terms most of Hobbs'
notions, often refining and extending them. In par­
ticular two types of granularity have been delineated:
aggregation and abstraction. Objects can be described
at various grain sizes and connected together into a
granularity hierarchy which allows focus shifts along
either aggregation or abstraction dimensions. We
brief ly discuss how we have used granularity
hierarchies in the recognition of novice LISP
programming strategies and show how this enhances
the recognition process and can lead toward planning
appropriate feedback for the student.

1 Introduct ion

Our long term goal in this research is to show how the use
of granularity can enhance the capabilities of intelligent
tutoring systems. Granularity is an important part of
instruction for two reasons. The first reason involves peda­
gogy. The level of generality or specificity at which a tutor
chooses to present a topic, combined with the level of gen­
erality or specificity at which the student interprets the pre­
sentation, wi l l affect the student's success at understanding
instruction. Both tutor and student must be "on the same
instructional wavelength". Shifting grain size in instruction
must proceed smoothly, guided either by tutor or student.

The second reason is diagnosis. It is often difficult to
precisely diagnose a student's problems. Students frequently
exhibit bizarre or original behaviour which may be quite
incomprehensible in detail. However, it is often possible to
understand generally what a student is attempting to do.
This knowledge can be used in designing appropriate feed-
back to the student and in focussing on points of ambiguity
and misunderstanding. Thus in educational diagnosis, unlike
other domains, being able to recognize student behaviour at
coarse grain sizes is often useful.

In this paper we propose a model for granularity, and
show how it can be used in the recognition of strategies that

novice students use in solving recursive LISP programming
problems. This recognition can occur at coarser or finer
levels of granularity, corresponding to shallower or deeper
understanding of student behaviour.

2 Background

Shifts in perspective from high level to low level and vice
versa have been implicit in many AI systems, ranging from
the level shifts in heuristic classification schemes (e.g. as
discussed in [Clancey, 1985]), through the hierarchical
reasoning used by various planning systems (e.g. ISaccrdoti,
1977]), the use of knowledge hierarchies to guide computer
vision systems (e.g. [Mackworth and Havens, 1981]), and
the representation of knowledge in semantic network
schemes (e.g. [Levesque and Mylopoulos, 1979]). Such
shifts can be interpreted as granularity shifts, but have
seldom been viewed from this perspective.

An exception is the work of Hobbs [1985] which
attempts to explicitly delineate the nature of granularity and
to show how granularity can be used in representation and
reasoning. Hobbs describes the following characteristics and
properties of granularity:
• relevant predicate set (R) - Given a view of the
world, ie. a particular situation of interest, only certain
selected predicates from the global theory of the world are of
interest. These are called "relevant predicates". These must
be determined locally since they constitute the perspective
from which the world is viewed in a particular situation.
• ind is t ingu ishab i l i ty re la t ion (-*) - Pairs of objects
(interpreted broadly as objects, events, actions, agents, etc.)
in the domain of interpretation are considered to be indistin­
guishable if and only if no relevant predicate can distinguish
between them. Thus).
• s impl i f icat ion mapping (K) - A detailed view of the
world may be collapsed to a simpler view by means of a
function K which maps the objects at one grain size to a
simpler set of equivalence classes of objects at a coarser
grain size, K also maps relevant predicates at the finer grain
size onto new relevant predicates which make objects within
the coarser-grained equivalence classes indistinguishable.
Thus for some equivalence class C in the simpler theory, if
K : V - > C and K:W—>C then for all predicates K(p) in the
simpler theory, v is indistinguishable from w.
• a r t i c u l a t i o n - Articulation is the translation from a
coarse-grained to a finer-grained theory. Relevant predicates

Greer and McCalla 477

at the coarse-grained level arc decomposed into finer-grained
predicates. Although Hobbs only talks in general terms
about articulation, such decomposition would presumably be
carried out using a mapping like K~1, which defines the
classes of indistinguishable objects at finer grain sizes.
• idealization - Often the need to differentiate between
objects at a coarse grain size forces the imposition of an
arbitrary boundary between these objects, a process of ideal­
ization that is necessary to preserve the integrity of the
coarse-grained classification. For example, if temperatures
in the 60's form one such object and temperatures in the 70's
form another, a predicate that could distinguish these two
objects would need to be capable of distinguishing 69.9
from 70. This seems counterintuitive, given the grain size
of the two classes being distinguished, but is seen by Hobbs
as being preferred to fuzzy or probabilistic approaches.

The theoretical framework for granularity described by
Hobbs has been the starting point for our investigations.
We have been able to reinterpret Hobbs' notions in a
computational formalism which both elaborates and refines
the concept of granularity, as will be discussed below.

3 A Representation for Granularity

On closer analysis of granularity, it becomes apparent
that there are at least two dimensions along which which
granularity must be interpreted: abstraction, corresponding to
shifts in focus from general to specific or vice versa; and
aggregation, corresponding to shifts in focus through part-
whole relationships. We propose a hierarchical represent­
ation for granularity in objects, roughly equating granularity
with level shifts in a directed graph. Nodes in the graph are
thought of as objects (broadly interpreted as in Hobbs), with
links representing two distinct granularity relations,
abstraction and aggregation.

Formally, a granularity hierarchy, y, consists of a
finite set of objects, N, linked by granularity relations, i.e.
the asymmetric binary relations _
(corresponding to abstraction and aggregation respectively).

for)

which may be read is an abstraction of , or
alternatively, is a specialization of n-, and

V

for

which may be read is an aggregation containing ni or
alternatively, ni is a part of These two relations provide
the links for a granularity hierarchy representing objects
related by abstraction and/or aggregation. Objects may be
maximal aggregations, which by definition are those objects
which are not parts of any other objects, i.e. n is a maximal
aggregation iff

A principal abstraction hierarchy, consisting of only
these maximal aggregations, is a uniquely-rooted, directed
acyclic graph with links corresponding to abstraction rela­
tions, connecting the maximal aggregation objects.
The principal hierarchy represents the simplest (most aggre­
gate) objects we wish to consider, arranged in terms of rela-

tive abstraction. This hierarchy is rooted at the most ab­
stract object, and bottoms out at the most specialized ob­
jects. Figure 1 shows a fragment of a principal abstraction
hierarchy for a set of LISP strategies at various grain sizes.

Each maximal aggregation object is the root of another
directed acyclic graph, this time linked by aggregation
relations p. Each object in this dimension is a component
part of the maximal aggregation object, or a part of one of
its parts, etc. Figure 2 shows the aggregation hierarchy
rooted at the maximal aggregation "Cdr Recursion" object
shown in the previous figure.

Abstraction and aggregation can be thought of as
orthogonal dimensions of granularity, relating objects in the
granularity hierarchy with one another. The entire granular­
ity hierarchy is connected to the most general object, (root),
in the principal abstraction hierarchy according to the
connectivity axiom,

where and arc the transitive closures of and
respectively. This implies that from any object the root can
be accessed by shifting focus to more aggregate grain sizes
until reaching a maximal aggregation, followed by shifting
to more abstract grain sizes along the abstraction dimension.
The root in the above figures is the object "Lisp program".

478 Intelligent Tutoring Systems

In addition to these linkages, we permit, but do not require,
the existence of abstraction relations between finer-grained
objects in the aggregation dimension. This provides for
abstraction relationships among parts of finer aggregations.
The resulting granularity hierarchy is a partial lattice of ob­
jects characterized by its two orthogonal relations. A more
complete description of this formalization of granularity is
given in another paper [Greer and McCalla, 1988].

A Fragment of the Aggregation
Hierarchy for Cdr Recursion

Figure 2

Our approach to granularity can be interpreted in terms
of Hobbs' characteristics, and in fact often refines and
extends his notions. Each characteristic will be considered
in turn:
• indistinguishabil i ty and distinguishability:
Indistinguishability can be defined using the explicit
structure of the hierarchy, y, rather than some set of relevant
predicates. The indistinguishability relation is meaningful
relative to a particular level of granularity (in abstraction and
in aggregation). Objects are considered indistinguishable if
they are finer grained than the object under consideration.
Hence, there is a notion of indistinguishability with respect
to each and every object in the hierarchy (denoted as ~n).
We define indistinguishability between objects n\ and nj

with respect to an object n as

A related characteristic, not directly discussed by
Hobbs, is distinguishability. Intuit ively, one may think
that this is simply the dual of indistinguishability, but it is
not. Objects which can be distinguished with respect to a
given object are precisely the other siblings of the object in
both the aggregation and abstraction dimension. This
relation gives an object knowledge of the perspective it
embodies relative to local alternative perspectives. Clearly
some objects may be neither indistinguishable nor
distinguishable relative to some given object. Such objects
are simply irrelevant to the given object, at least with
respect to granularity considerations.

Looking at figure 1, from the point of view of "Cdr
Recursion", "Car/Cdr Recursion", "Car Recursion", "Tail-
end Recursion", and "Embedded Recursion" can all be
distinguished from one another (being siblings). Further,
"Cdr Tail-End Recursion", "Cdr Tail-End Predicate", etc.
down to "FindB preferred solution" are all indistinguishable;
and "Predicate Funct ion" , "Recurs ion" , "Funct ion
Definition", and "Lisp Program" are undefined.
• re levant predicates: We refine Hobbs' notion of
relevance to incorporate two kinds of predicates:
observations and K-clustcrs. These not only define the
aggregation level of granularity of an object, but arc utilized
in object recognition at a particular level of abstraction
granularity, as wi l l be discussed in section 4.

An observation is a predicate completely determined by
evidence obtained directly from the environment through the
evaluation of some observer function (ofunction). An
observation may be associated with an object for the
purposes of distinguishing it from other objects, or to
contribute to the recognition of the object on the basis of
outside evidence. In fact, at some grain size(s) objects must
be recognizable from direct observations alone. Thus
aggregation "bottoms out", and every finest grained object
along the aggregation dimension ult imately must be
recognized by a direct observation.

Frequently an object can be characterised in a number
of ways, even at a specific grain size. It may be
characterized in terms of its parts and predicates that describe
how those parts f it together; it may be characterised by some
subset or other set of parts under certain conditions; or it
may be characterized by predicates that are quite independent
of its parts. For example, a recursive LISP function may be
characterized by 1) a combination of recursive function parts
(base cases and recursive cases) properly assembled, 2) an
infinite tail-end recursion (as in an interpeter), or 3)
particular behaviour in traces of function calls and returns.
We name each different way of characterizing an object a "K-
cluster" [Nilsson, 1981]. A K-cluster is a combination of
observations and component parts that characterize an object
under certain conditions. Thus, K-clusters occur along the
aggregation dimension of the granularity hierarchy. The K-
cluster provides a mechanism for effectively grouping
relevant predicates into relevance groups.

In figure 2 there are a number of K-clusters, indicated
by the arc connecting sub-aggregate descendants beneath a
node. Observers in the figure are denoted as circles rather
than boxes. For example, the object "Recursive cdr
reduction case" has two K-clusters, one consisting of the
two sub-aggregate objects "Some test (default)" and

Greer and McCalla 479

"Recursive cdr-reduction action" as well as the observation
"test-action pair", and the other consisting of the two sub-
aggregate objects "Recursive cdr-reduction test" and "Some
action" as well as the observation "test-action pair". Each of
these K-clusters represents a different way in which a
recursive cdr reduction case could be framed in LISP, and
hence define alternative groups of relevant "predicates" which
must be "true" for the object "Recursive cdr reduction case"
to be distinguished. The truth or falsity of such predicate
groups is determined by a gestalt function described below.
• s imp l i f i ca t ion and a r t i cu l a t i on : Simplif ication in
granularity hierarchies is accomplished by a focus shift from
a particular level of granularity to a coarser grain size. A
simplification operator (similar to Hobbs' K mapping) is
required to guide these focus shifts. In the abstraction
dimension, s impl i f icat ion amounts to traversing an
abstraction relation, which impl ic i t ly alters the sets of
distinguishable and indistinguishable objects.

In the aggregation dimension, the presence of K-
clusters impacts the simplification process. Each object that
could be a candidate for aggregation simplification (objects
that are not maximal aggregations) is by definit ion a
member of one or more K-clustcrs. Associated with each K-
cluster is a function, called a gestalt function, which
arbitrates the simplification and articulation of K-clusters.
The gestalt function is essentially a local interpreter for the
K-cluster which determines whether the objects (parts and
observations) in the K-cluster are put together correctly. For
example, in figure 2, the gestalt function associated with the
K-cluster of parts of the "Cdr Recursion" object wi l l make
sure that the null base case and recursive cdr reduction case
are in fact embedded in the observed cond function in an
appropriate manner (i.e. the null case must precede the
reduction case in the cond) before it w i l l allow the "Cdr
Recursion" object to be distinguished. The gestalt function
has proven to be particularly useful for guiding aggregation
focus shifts when granularity hierarchies are employed for
recognition (as described in section 4).

Articulation is accomplished by a focus shift from one
level of abstraction granularity to a finer grain size. This
type of focus shift is the inverse of simplification, but has
quite different semantics when applied to recognition tasks.
Again the gestalt function is employed to arbitrate articula­
tion between an object and one of its parts in a K-cluster.
• i d e a l i z a t i o n : The need to impose fine-grained
distinctions or boundaries between coarser-grained objects
poses a diff icult problem, only partially resolved in our
framework. In contrast to Hobbs' framework where
predicates relevant to coarser-grained objects are themselves
necessarily coarser-grained, we permit but do not impose
such restrictions. For example, in figure 2, "Null base case"
(one of the relevant objects necessary to distinguish "Cdr
Recursion") could have specializations or generalizations at
finer or coarser levels of abstraction. These specializations
or generalizations could, in turn, be objects relevant to
distinguishing descendants or ancestors of "Cdr Recursion"
in the principal hierarchy. However, such correspondences
do not need to exist. This allows us to incorporate
specialized relevant predicates at any level of abstraction and
solves the fine-grained boundary problem in a manner
similar to Hobbs' idealization approach.

On the other hand, this solut ion prevents the
delineation of planes across the hierarchy at a particular level
of abstraction (except in the special case where a complete
lattice is defined by abstraction relations on aggregate parts).
Such planes would roughly form a complete theory of the
world at some abstraction grain size. In the recognition
system that we have built using this theoretical framework,
there has been no need for such a complete theory of the
world at a level of abstraction, and in fact there are
advantages to being able to connect objects to each other
without regard for maintaining such planes (for example we
have been able to avoid the need for plane-preserving
intermediate dummy nodes required in Mulder's scene
recognition vision system [Mulder, 1985]).

4 Using Granularity in LISP Program
Strategy Recognition

Our main interest in using granularity has been to
recognize the strategics novice students employ when they
solve simple recursive LISP programming problems. This
work has been carried on in the context of the SCENT
project [McCalla and Greer, 1988], which is investigating
issues in the construction of an intelligent tutoring system
that dispenses advice to students as they learn to program in
LISP. Using granularity, we are able to recognize student
programming strategies at various levels of detail, which can
be useful pedagogically and can enhance the robustness of
the diagnostic system by allowing at least coarse grained
recognition of bizarre student solutions. In fact, in the
granularity hierarchy that we have implemented for LISP
programming, strategy recognition at some grain size is
guaranteed, albeit sometimes at only a coarse grain size.

To give a flavour for how the granularity-based
recognition system works, consider the fol lowing simple
LISP program, which a student might submit as his or her
solution to the FindB problem (the FindB problem is to
return T if the atom B exists at the top-level of a list, and to
return N IL otherwise):

(defun FindB (Lst)
(cond ((null Lst) nil)

((atom 'B) t)
(t (cons nil (FindB (cdr Lst))))))

This is a flawed solution, in that the task-specific test
"(atom 'B)" does not check for a B in the list, and there is no
need for the "cons" composition after the recursive call.
Most program recognition systems would find such a
perturbed solution hard to deal with unless these particular
perturbations had been expl ic i t ly anticipated. In our
granularity-based approach, this program could at least be
recognized as "Cdr Recursion" (see Figure 2).

In order to be a cdr recursion, a program must have a
null base case, a recursive cdr reduction case, and these must
be put together in a well-formed conditional. A null base
case, in turn, must have a null base test and some base
action, both put together as a test-action pair. Observers
looking at the FindB solution above would find that "(null
Lst)" is a satisfactory null base test, that "n i l " is a suitable
base action, and that the two are formed as a test-action pair.
Thus, this program has a null base case. Does it have a

480 Intelligent Tutoring Systems

recursive cdr reduction case? There are two ways of having a
recursive cdr reduction case, as shown by the two K-clusters
in figure 2. The relevant K-cluster here is the one requiring
some test (possibly a default) and a recursive cdr reduction
action combined as a test-action pair. The student's use of
"t" in the third clause of the cond can be recognized as a
default test, but recognizing a recursive cdr reduction action
involves a further aggregation articulation requiring a cdr
reduction and a recursive call, properly composed. Observers
can recognize "(cdr Lst)" as a cdr reduction, the call to
"FindB" as a recursive call, and that these are composed
properly (i.e. that the reduction is in the argument to the
recursive call). Thus, a recursive cdr reduction action can be
recognized. It remains only to observe that the default test
"t" and this recursive cdr reduction action form a test-action
pair, which means that a recursive cdr reduction case is
recognized. The recognition of both the null base case and
the recursive cdr reduction case, combined wi th the
observation that the cond is well-formed, means that a cdr
reduction has occurred. Since "Cdr Reduction" is an object
in the principal hierarchy, further aggregation simplification
cannot occur. Despite its perturbations, the student's
program has been definitely recognized as a cdr recursion.

The recognition process proceeds as recognition of "Cdr
Recursion" automatically propagates upwards through levels
of abstraction s impl i f icat ion, a l lowing "Recursion",
"Function Definit ion", and "Lisp Program" all to be recog­
nized as well (see figure 1). In fact, once an object has been
recognized at any level of aggregation, recognition propa­
gates upwards through its abstraction ancestors, a fact which
often allows rapid recognition of coarser grained sub-aggre­
gate objects without needing to articulate all of their com­
ponent parts. Using this information, the SCENT system
knows what the student is doing at any of 4 levels of ab­
straction granularity, as well as being able to understand
more precisely the various parts of the student's program
that have been recognized in the aggregation dimension.
This can be useful for updating the student model, and for
framing the discussion with the student by focussing on the
parts of the program that are correct and well understood.

This degree of recognition is insufficient, however.
Pedagogically, it is the unrecognized parts of the student's
program which usually form the basis for tutoring. The
granularity-based recognition system is also quite useful in
this regard. In the attempt to recognize the student's
program, various objects elsewhere in the granularity
hierarchy may have been recognized. These can include sub-
aggregate objects of finer grained objects in the principal
abstraction hierarchy. In particular, objects like "Cdr Tail-
End Recursion", "Cdr Tail-End Predicate", and "FindB
preferred solution" may all have some of their sub-
aggregates recognized, while obviously not being able to
recognize a complete K-clustcr of objects. For example,
"FindB preferred solution", which is the finest grained object
along the abstraction dimension, would be satisfied with the
null base test, but would not accept the task-specific test
(should be "(eq(car Lst)'B)"), nor would it be satisfied with
the existence of a composition step. These unfelicitous
parts could form the basis for tutoring, or at least for
inquiries of the student or the student model as to problem-
solving intentions. Thus, the two kinds of recognition,

complete coarse grained recognition and finer grained partial
recognition, provide the rest of the tutoring system with
different sorts of relevant information for student modelling
and pedagogical decision making.

The approach to granularity-based recognition discussed
here has points of similarity to several other major research
projects. In the domain of intell igent tutoring, the
PROUST system [Johnson and Soloway, 1984] recognizes
student programs at three levels: problem, goal, and plan.
Our strategies are most like PROUST's plans, but unlike
PROUST, we do not attempt to induce a student's goals in
choosing a particular strategy (this is a role envisaged in
SCENT for the student modelling component), nor do we
formalize the problem description (although our work is
currently progressing in this area). Instead, our approach has
concentrated on strategy (plan) diagnosis, and in that regard
goes considerably beyond PROUST in the formalization and
use of granularity, in the delineation of both an aggregation
and abstraction dimension to strategy recognit ion, in
robustness, and in breadth and depth of strategies dealt with.

Knowledge-based vision systems, such as the various
Mapsee systems [Mackworth and Havens, 1981, Mulder,
1985] and A L V E N and CAA [Tsostsos and Shibahara,
1987], have strong points of similarity with our approach to
recognition as well. These systems, which use hierarchies
of visual knowledge to guide recognition of scenes, bear
similarity in organization of knowledge into aggregation and
abstraction hierarchies to guide recognition. There are, of
course, obvious differences in domain: the Mapsee systems
recognize an idealized sketch map, A L V E N looks at medical
images, and CAA analyzes electrocardiograms. None of
these systems explicitly formulate recognition in terms of
granularity, nor are they satisfied, in general, with only
achieving coarse-grained recognition. The usefulness in an
education domain of coarse grained recognition and partial
fine grained recognition does not carry over very well to
scene analysis. There arc also many technical differences
between our approach and the knowledge-based vision
approaches. Nevertheless, the important point is that the
knowledge-based vision systems provide further evidence
that the approach taken here may be widely applicable
beyond program strategy recognition.

5 Conclusion

Much work has gone into the creation of a granularity-
based recognition system for LISP strategies, and this work
continues. One line of development has been to investigate
various kinds of control paradigms. We have experimented
with top-down, bottom-up, and task-dependent control
schemes, and work by Barrie [1988] has investigated how to
use so-called "strong" and "weak" recognizers to help direct
the search through the granularity hierarchy. In fact, Barrie's
initial work some years ago on strategy recognition launched
our investigations into the use of granularity in recognition.
Another line of development, explored by Pospisil [1988],
has been to incorporate buggy strategies into the hierarchy,
which if recognized allow a definit ive diagnosis of the
student's misconceptions, and provide even more concrete
information for the student modell ing and pedagogic
components of SCENT. A third direction of current

Greer and McCalla 481

investigations has been the knowledge engineering of a
large system in order to rigorously test this approach to
recognition, to prove out its usefulness in a real domain, and
to find limitations and/or to explore possible enhancements
to the approach. The design of the strategy objects in this
large system is based on a repository of actual solutions to
several LISP problems collected from some 48 novice LISP
programmers (sec [Escott and McCal la, 1988] for an
analysis of this data). We currently have implemented some
200 objects connected together at ten levels of abstraction
granularity and averaging approximately four levels of
aggregation granularity. These objects allow the recognition
of a wide variety of the basic recursive strategies used by
LISP programmers. We are enhancing the coverage of the
hierarchy by adding more strategy objects and by integrating
into the system knowledge-based program transformations in
order to reduce the observers' dependency on exact code
matches [Huang and McCalla, 1988]. We are currently
attempting to reduce the need to store explicit task-dependent
strategies at the finer levels of abstraction granularity and
instead to generate these task-dependent strategies from the
problem description as new tasks arc created for students to
solve. Finally, we would like to find other domains where
granularity-based recognition would be useful; some
possibilities which we have considered include recognizing
strategies used in software testing and debugging, and
recognizing strategics employed by chess players.

Much work has gone into the formalization of granu­
larity as well. We have been able to describe granularity in
precise computational terms, have characterized two kinds of
granularity, and have shown how this approach to granu­
larity relates to Hobbs' properties of granularity, and in
some ways refines and extends his ideas. We would like to
explore our approach to granularity further, especially to
define a notion of relative granularity between coarser and
finer grained objects, to investigate how groups of objects at
a similar relative grain size can be put together into a coher­
ent "theory" of the world at a particular grain size, and to
look at the implications of these variously grain-sized theo­
ries for representation and reasoning. Another interesting
avenue to explore is the delineation of other kinds of granu­
larity besides aggregation and abstraction. In particular, the
human ability to carry out goals and sub-goals may suggest
the existence of a dimension of granularity involving focus
shifts between levels of goals. Perhaps other such dimen­
sions exist as well. We believe that explicitly investigating
granularity wi l l prove to be useful for artificial intelligence,
both theoretically and practically, and we are optimistic
about our ongoing research into the formalization and use of
granularity.

Acknowledgements

We would like to thank Bryce Barrie and Paul Pospisil for
helping recognize the need for granulari ty-based
representations. We would also l ike to thank Dan Bari l ,
Shawkat Bhuiyan, Xueming Huang, and Mary Mark for
their help in current investigations into granularity. The
financial support of the Natural Sciences and Engineering
Research Council of Canada is gratefully acknowledged.

References
[Barrie, 1988] Barrie, J.B. Using Granularity Hierarchies for

Strategy Recognition, M.Sc. Thesis, Dept. of Computa­
tional Science, U. of Sask, Saskatoon, Canada, 1988.

[Clancey, 1985] Clancey, W.J. Heuristic classification,
Art i f ic ial Intelligence, 27:289-350,1985.

[Escott and McCalla, 1988] Escott, J.A. and McCalla, G.I.
Problem solving by analogy: a source of errors in novice
programming, pages 312-319, Proc. In ternat ional
Conference on Intelligent Tutoring Systems, Montreal,
Canada, June, 1988.

[Greer and McCalla, 1988] Greer, J.E. and McCalla, G I.
Formalizing granularity for use in recognition, Applied
Mathematics Ut ters , 1(4), 347-350,1988.

[Hobbs, 1985] Hobbs, J.R. Granularity, Ninth International
Joint Conference on Art i f ic ia l Intelligence, pages 432-
435, Los Angeles, California, August, 1985.

[Huang and McCalla, 1988] Huang, X. and McCalla, G.I.
A hybrid approach to finding language errors and program
equivalence in an automated advisor, Proc. 7th National
Conference of the Canadian Society fo r Computational
Studies of Intelligence (CSCSI/SCEIO), pages 161-168,
Edmonton, Canada, June, 1988.

[Johnson and Soloway, 1984] Johnson, W.L. and Soloway,
E. Intention-based diagnosis of programming errors,
Proc. 5th Conference of American Association f o r
Ar t i f i c ia l Intell igence (AAAI), pp. 162-168, Austin,
Texas, August, 1984.

[Levesque and Mylopoulos, 1979] Levcsque, H. J. and
Mylopoulos, J. A procedural semantics for semantic
networks", in N. V. Findler (ed) Associative Networks,
Academic Press, New York, 1979, 93-120.

[Mackworth and Havens, 1981] Mackworth, A.K. and
Havens, W.S. Structuring domain knowledge for visual
perception, Proc. 7lh International Joint Conference on
Ar t i f i c ia l Intel l igence, pages 625-627, Vancouver,
Canada, August, 1981.

[McCalla and Greer, 1988] McCalla, G., Greer, J., & the
SCENT Research Team, Intelligent advising in problem-
solving domains: the SCENT-3 architecture, pages 124-
131, Proc. Internat ional Conference on Intel l igent
Tutoring Systems, Montreal, Canada, June, 1988.

[Mulder, 1985] Mulder, J. A. Using discrimination graphs
to represent visual knowledge, Ph.D. Thesis, TR 85-14,
Dept. of Computer Science, U. Bri t ish Columbia,
Vancouver, Canada, 1985.

[Nilsson, 1981] Nilsson, N.J. Principles of Ar t i f i c ia l
Intelligence, Tioga, Menlo Park, 1981.

[Pospisil, 1988] Pospisil, P.R. Diagnosising strategy
errors in SCENT, M.Sc. Thesis, Dept. of Computational
Science, U. of Sask, Saskatoon, Canada, 1988.

[Sacerdoti, 1977] Sacerdoti, E.D. A Structure f o r Plans and
Behavior, Elsevier, New York, 1977.

[Tsostsos and Shibahara, 1987] Tsostsos, J. and Shibahara,
T. Knowledge organization and its role in temporal and
causal signal understanding: the A L V E N and CAA
projects, page 221-261, in Cercone & McCalla (eds), The
Knowledge Frontier, Springer-Verlag, 1987.

482 Intelligent Tutoring Systems

