
I m p r o v i n g Eff ic iency by Learn ing In te rmed ia te Concepts

James Wogu l i s (WOGULIS@ICS.UCI.EDU)
Pa t Lang ley (LANGLEY@ICS.UCI.EDU)

Department of Information & Computer Science
University of California, Irvine, CA 92717 USA

A b s t r a c t

One goal of explanation-based learning is to
t ransform knowledge into an operational form
for efficient use. Typical ly , this involves rewrit-
ing concept descriptions in terms of the predi­
cates used to describe examples. In this paper
we present R I N C O N , a system that extends do­
main theories f rom examples w i th the goal of
maximiz ing classification efficiency. R I N C O N ' S
basic learning operator involves the introduc­
t ion of new intermediate concepts into a do­
main theory, which can be viewed as the in­
verse of the operationalization process. We dis­
cuss the system's learning algor i thm and its
relation to work on explanation-based learn­
ing, incremental concept format ion, represen­
tat ion change, and pattern matching. We also
present experimental evidence f rom two natu­
ral domains that indicates the addit ion of in­
termediate concepts can improve classification
efficiency.

1 I n t r o d u c t i o n

Knowledge is necessary but not sufficient for intell igent
behavior. In addi t ion, knowledge must be stored in some
form that lets it be used effectively. One of the central
goals of machine learning is to devise mechanisms that
transform knowledge f rom inefficient forms into more ef­
ficient ones. Most research on this topic has focused
on explanation-based learning [Mitchell et al ., 1986,
DeJong and Mooney, 1986], which augments a domain
theory w i th rules that are more 'operat ional ' than the
original ones. Such operational rules let one bypass in­
termediate concepts, producing shallower proofs on fu­
ture cases w i t h the same structure.

In this paper, we show that more operational knowl­
edge does not always lead to more efficient behavior.
In addi t ion, we describe an alternative approach that
involves the in t roduct ion of new intermediate concepts
into the domain theory - effectively the inverse of op­
erat ional izat ion. We show that , at least in some do­
mains, this form of learning leads to more efficient forms
of knowledge than do explanation-based methods.

In the fol lowing section we describe R I N C O N (Retain­
ing INtermediate CONcepts), a learning system that
implements our approach to the transformation of do­
main knowledge. Af ter this, we report experiments

w i th the system on two natural domains. Final ly, we
show how R I N C O N provides a framework for integrating
explanation-based learning, incremental concept forma­
t ion, representation change, and pattern matching.

2 Ove rv i ew of R I N C O N

2.1 R e p r e s e n t a t i o n a n d o r g a n i z a t i o n

R I N C O N is a system that forms domain theories f rom
examples wi th the goal of maximizing classification ef­
ficiency. Instances are represented as conjunctions of
n-ary predicates, allowing one to represent not only at­
tr ibutes, but also relations [Vere, 1975]. For example,
fa ther (A,B) A female (B) expresses a father-daughter
relationship. Instances also contain a class label that
is used for supervised learning.

Figure 1. A domain theory/hierarchy for family relationships.

Instances and concepts are stored hierarchically in a
domain theory that is part ial ly ordered according to the
generality of the concepts. Figure 1 shows a simple hier­
archy of concepts from a domain theory for family rela­
tionships. The highest-level concepts in the domain the­
ory are the pr imi t ive features (predicates) used to repre­
sent instances. The lowest-level concepts correspond to
the classes found in the t ra in ing examples and may be
disjunctive. The learned internal concepts must be con­
junct ive, appearing in the head of only one rewrite rule.
A l l concepts are expressed in terms of higher-level con­
cepts in the domain theory. For example, Figure 1 shows
pr imi t ive features used to describe the concept brother ,
which is used to describe the concept uncle.

Wogulis and Langley 657

2.2 T h e p e r f o r m a n c e s y s t e m

The domain theory is used to classify instances. Given
an instance and a concept, RINCON determines if the
instance is described by the concept. If the concept is
relat ional (conjunctions of n-ary predicates), then the
system also determines all of the ways (different b ind­
ings) in which the instance is a member of the concept.
The matching process is goal directed, star t ing w i th
the concept to be determined and recursively finding al l
matches for each subconcept composing the concept.1

Each t ime a concept node is matched, the result ing b ind­
ings are stored w i t h that concept's node. By storing al l
matches for al l relevant sub concepts, t ime may be saved
if the bindings are needed again. The match a lgor i thm
is shown in Table 1.

Table 1. The Match Algorithm used by RiNCON

As an example of how internal concepts can improve
overall match efficiency, consider the fol lowing simple
domain theory for the concept uncle:2

uncle(X,Y) <- male(X) A s i b l i n g (X , Z) A mother(Z,Y)
uncle(X,Y) <- male(X) A s i b l i n g (X , Z) A f a t h e r (Z , Y) .

Now suppose this domain theory is used to determine
all of the uncle relations in the instance male (pat) A
s ib l i ng (pa t , John) A fa ther (John, jean) A male(f rank)
A s i b l i n g (f r a n k , m a r i e) A mother(mar ie, jean) . Since
there are two uncles in the instance, the matcher would
have to re-join the bindings f rom the male and s i b l i n g
concepts. Instead, suppose the domain theory included
the concept b ro ther :

This domain theory would be more efficient to use since
the work of matching the b ro ther concept would only be
done once when matching against the two definitions for

1This differs from logic programming. Instances in RlN-
CON may contain variables but are treated as constants by
the matcher. Hence, it does not perform unification.

2 Another type of uncle is the husband of an aunt.

uncle. The next section describes how one can acquire
such internal concepts.

2.3 T h e RiNCON l e a r n i n g a l g o r i t h m

The RiNCON system begins w i t h an in i t ia l domain the-
ory and incremental ly extends it to incorporate new in-
stances. At present, the learned theory does not go
beyond the data; it s imply organizes the instances ac­
cording to the exist ing domain theory and any learned
intermediate concepts. R I N C O N ' S goal is to produce do­
main theories that maximize the classification efficiency
for both seen and unseen instances. Table 2 presents the
a lgor i thm for learning new intermediate concepts.

Table 2. Algorithm for Learning Intermediate Concepts

RlNCON's learning a lgor i thm carries out incremental
h i l l c l imbing [Gennari et a/., 1989] through the space
of domain theories. The system starts by matching the
new instance against the concept w i t h the same label. If
the instance is described by the domain theory, then no
learning occurs and the existing theory is retained. Oth­
erwise, it collects the most specific concepts that match
the instance and the most general concepts that do not
match the instance. The system then re-expresses the in­
stance in terms of the concepts it does match and adds
it to the domain theory as a new disjunct for its con­
cept class. The re-expressed instance is then generalized
[Vere, 1975] w i th each concept in the set of most general
concepts it does not match. Each of these generaliza­
tions is a candidate for a new internal concept. R lN­
CON's evaluation funct ion selects the generalization that
can be used to re-express the most concepts in the do­
main theory. The selected generalization is then added
to the theory and used to re-express all of the concepts
in the domain theory that i t can.

As an example, assume the fo l lowing domain theory,
which contains only one instance:

If RlNCON is presented w i th the new instance

658 Machine Learning

uncle(pat , , jean) <- male(pat) A s ib l i ng (pa t , John) A
tather(j ohn, j ean)

it finds that the concept uncle in the domain theory
does not match this instance. The system then finds
the most specific concepts in the theory that do match
(male, s i b l i n g , and f a t h e r) , and the most general con-
cepts that do not match (uncle). IllNCON then rewrites
the instance using the highest-level concepts matched.
Since these are simply the pr imi t ive features, the in­
stance description remains unchanged. The instance is
then added to the domain theory and is generalized wi th
all of the lowest-level concepts that do not match, in this
case uncle. The only max imal ly specific generalization is
male(X) A s i b l i n g (X , Y) , which is added to the domain
theory. Th is generalization is used to rewrite both of
the uncle definit ions to produce the fol lowing domain
theory:3

RlNCON continues processing new instances, extending
the domain theory to incorporate each new instance.

3 Exper imenta l evaluation of RlNCON
The goal of RlNCON is to improve the efficiency of match­
ing instances. Since the system currently does no induc­
t ion, classification accuracy is irrelevant. Instead, the
natural uni t of measure is the amount of work required to
match or reject an instance. We measure work in terms
of the number of j o i n operations performed in the match
process. A j o i n occurs when two lists of bindings are
combined to form a new consistent bindings list (which
might be empty if the bindings are inconsistent). For
attr ibute-value representations the jo in of N attr ibutes
is N — 1, since mul t ip le bindings are never produced.
The number of jo ins provides a reasonable measure of
work since at least one jo in occurs whenever a concept
node in the hierarchy is matched (see match-dis junct in
Table 1). Also, the t ime required to perform a jo in is
bounded by a constant for any given domain.

As a baseline for comparison in all of our experiments
we measured the work performed by a corresponding do­
main theory w i th no intermediate concepts.4 This ' f lat '
domain theory is simply an extensional description of all
the observed instances.

Our first experiment involved bui ld ing a domain the­
ory f rom instances of mushrooms [Schlimmer, 1987] in
which each instance was described as a conjunction of
23 attr ibute-value pairs. A total of 3,078 instances were
available. The experiment began w i th an empty domain
theory, to which RlNCON incrementally added randomly
chosen instances. After every ten instances were incorpo­
rated into the domain theory, we computed the average
amount of work required for matching each of the pre-

3 We have named the new concept bro ther only for clarity.
4This is equivalent to a domain theory containing only

'operational' definitions.

viously seen instances. We also measured the average
amount of work for matching the same number of mush­
room instances not described by the domain theory. Fig­
ure 2 presents the learning curves for the average work
of matching an instance as a function of the number of
instances stored in the domain theory. Each curve shows
the average over 25 different runs.

The figure shows that the domain theory containing
intermediate concepts was on average more efficient at
matching previously seen instances than was the corre­
sponding flat domain theory. Surprisingly, the flat the­
ory also required more match t ime to reject previously
unseen instances than did the learned domain theory.
This suggests that the learned theory contains interme­
diate concepts shared among all mushroom instances.
Such intermediate concepts would save on the overall
match t ime for unseen instances, since they would store
bindings often needed in the match process.

The results presented in Figure 2 seem to run counter
to the notion that operational domain theories are more
efficient to use than those containing intermediate con­
cepts. However, for some instances the flat domain the­
ory is more efficient. At the end of each of the 25 ex­
periments, for each 100 mushroom instances processed,
we computed the percentage of work saved by using the
learned domain theory over the flat one. Figure 3 shows
the distr ibut ion of instances as a function of the percent­
age of work saved. Al though work is saved on average,
intermediate concepts sometimes do reduce efficiency.
This suggests a trade-off between retaining intermediate
concepts and operationalizing concepts.

The mushroom experiments measured the efficiency of
learned domain theories as a function of the number of
instances processed. The size of each mushroom instance
was constant. Our second experiment measured the effi­
ciency of learned domain theories as a funct ion of the size
of the instances matched while holding the number of in­
stances in the domain theory constant. This experiment
involved using R I N C O N to organize the rules of a produc­
t ion system. In this case, the instances' used to bui ld
the domain theory were the condit ion sides of produc­
t ion rules. Unlike the mushroom domain, these instances
were relational and contained variables. The production
system solved mul t i -column subtraction problems [Lang-
ley and Ohlsson, 1984] such as 128 - 39 using a set of nine

Wogulis and Langley 659

ru les . T h e ru l e set i n c l u d e d such ope ra to r s as s u b t r a c t ­
i n g t w o n u m b e r s i n a c o l u m n , s h i f t i n g a t t e n t i o n f r o m
one c o l u m n t o a n o t h e r , a n d b o r r o w i n g t e n f r o m a co l ­
u m n . T h e p r o d u c t i o n ru les were w r i t t e n such t h a t o n l y
one r u l e w i t h one set o f b i n d i n g s ever m a t c h e d aga ins t
w o r k i n g m e m o r y .

The experiment consisted of running the product ion
system on sets of subtract ion problems of varying com­
plexity, measured as the max imum number of columns in
the problem. Each problem was solved using the domain
theory of rules bu i l t by RlNCON and the corresponding
flat theory to find which rules matched against working
memory. We computed the average work (number of
joins) per product ion system cycle for both of the do­
main theories when solving each problem. Each cycle of
the product ion system requires matching the rules in the
domain theory against working memory.

The graph in Figure 4 shows the average amount of
work per cycle as a funct ion of instance size for both of
the domain theories. Each point in the graph is the av­
erage over 25 different subtraction problems at a given
level of problem complexity. The curves for the flat do­
main theory and for the domain theory bui l t by R lN­
CON suggest that the average work per cycle is a linear
funct ion of the number of columns in the subtraction
problem. This reflects the fact that the working mem­
ory increases l inearly in the number of columns. Overal l ,
the domain theory bu i l t by R I N C O N required about half
as much work as the flat domain theory.

4 Discuss ion

T h e l e a r n i n g m e c h a n i s m used i n R I N C O N i s closely re­
l a t e d t o m e t h o d s used i n f o u r A I p a r a d i g m s t h a t have
t r a d i t i o n a l l y been v iewed as q u i t e d iverse - e x p l a n a t i o n -
based l e a r n i n g , i n c r e m e n t a l concep t f o r m a t i o n , represen­
t a t i o n change, and p a t t e r n m a t c h i n g . Be low w e e x p a n d
on these re la t i ons n o t i n g some d i r ec t i ons fo r f u t u r e re­
search.

4 . 1 R e l a t i o n t o e x p l a n a t i o n - b a s e d l e a r n i n g

O u r a p p r o a c h t o l e a r n i n g has m u c h i n c o m m o n w i t h
w o r k on e x p l a n a t i o n - b a s e d l e a r n i n g [M i t c h e l l e t a/.,
1986, D e J o n g a n d M o o n e y , 1986]. I n b o t h cases, do­
m a i n know ledge is o rgan i zed as a set of in ference ru les,
r e c o g n i t i o n invo lves c o n s t r u c t i n g a p r o o f t ree by cha in ­
i n g o f f those ru les , and l e a r n i n g a l te rs t h e s t r u c t u r e o f
t he d o m a i n t h e o r y by a d d i n g new in ference ru les. M o r e ­
over , in b o t h cases t h i s process m a y affect the eff ic iency
o f r e c o g n i t i o n , b u t no i n d u c t i o n i s i n v o l v e d . 5

However , t h e basic o p e r a t i o n s used i n t he t w o f r a m e -
w o r k s d i f fer r a d i c a l l y . E x p l a n a t i o n - b a s e d l ea rn i ng m o d ­
ifies the know ledge base t h r o u g h a ' know ledge c o m p i ­
l a t i o n * m e c h a n i s m . T h e s t r u c t u r e o f an e x p l a n a t i o n i s
c o m p i l e d i n t o a new inference ru l e ; t h i s lets the per­
f o r m a n c e sys tem bypass i n t e r m e d i a t e t e rms on f u t u r e
cases w i t h the same s t r u c t u r e , g i v i n g sha l lower exp la ­
n a t i o n s . In con t ras t , ou r a p p r o a c h creates new in ter ­
m e d i a t e t e r m s , l ead ing t o deeper e x p l a n a t i o n s t ruc tu res
on f u t u r e cases. One can v i ew R I N C O N ' s m e c h a n i s m for
c rea t i ng new t e r m s as a ' d e c o m p i l a t i o n ' process - the
inverse o p e r a t i o n o f t h a t i n e x p l a n a t i o n - b a s e d systems.

O u r e x p e r i m e n t a l resu l ts i n d i c a t e i t i s somet imes bet­
ter t o o p e r a t i o n a l i z e t h a n t o i n t r o d u c e i n t e r m e d i a t e con­
cepts. An obv i ous ex tens ion t o R lNCON w o u l d be t o
i nc lude a m e c h a n i s m for know ledge c o m p i l a t i o n in a d d i ­
t i o n t o t h a t fo r new t e r m c r e a t i o n . U p o n encoun te r i ng
a p r e v i o u s l y unseen s i t u a t i o n , t he sys tem w o u l d ex tend
t he know ledge base, g e n e r a t i n g new t e r m s i n t he p r o ­
cess. U p o n recogn i z i ng a p rev ious l y seen case, i t w o u l d
cons t ruc t a c o m p i l e d ru le for m a t c h i n g t he ins tance in a
s ing le in ference s tep . To d e t e r m i n e w h e t h e r the c o m p i l e d
o r u n c o m p i l e d k n o w l e d g e was m o r e ef f ic ient , t he sys tem
w o u l d keep s ta t i s t i cs on each ru l e , e v e n t u a l l y e l i m i n a t i n g
ones w i t h l ow u t i l i t y [M i n t o n , 1988]. Such an ex tens ion
w o u l d c o n s t i t u t e an i m p o r t a n t s tep t o w a r d s u n i f y i n g in -
d u c t i v e and a n a l y t i c approaches t o l e a r n i n g .

4 . 2 R e l a t i o n t o i n c r e m e n t a l c o n c e p t f o r m a t i o n

G e n n a r i , Lang ley , and F isher [1989] have rev iewed work
o n i n c r e m e n t a l concept f o r m a t i o n . I n t h i s f r a m e w o r k one
i n c r e m e n t a l l y induces a t a x o n o m y o f concepts , w h i c h can
t hen be used in c lass i f y ing new ins tances and in m a k i n g
p red i c t i ons . Each ins tance i s so r ted t h r o u g h the t a x o n ­
o m y , a l t e r i n g the k n o w l e d g e base in pass ing .

Such l e a r n i n g can be charac te r i zed as an i nc remen ta l
f o r m o f h i l l c l i m b i n g , i n t h a t o n l y a s ing le concept h ier-

r> ln incremental mode, one can view R lNCON as changing
the deduct ive closure of i ts knowledge base, since it accepts
new instances as i npu t . However, the system does not move
beyond the instances it is given.

660 Machine Learning

archy is retained in memory. Examples of concept for­
mat ion systems include Levinson's [1985] self-organizing
system, Lebowitz's [1987] U N I M E M , Fisher's [1987] C O B ­
W E B , and Gennari et a/.'s [1989] C L A S S I T .

The learning method in R I N C O N can be viewed as a
fo rm of incremental concept format ion. The domain the­
ory constitutes a taxonomy, w i t h pr imi t ive predicates as
the most general concepts, instances as the most specific
concepts, and defined terms as concepts of intermediate
generality. New instances are 'sorted' down this concept
hierarchy, and new concepts are introduced in the pro­
cess. R I N C O N ' S search control is an incremental form of
h i l l c l imbing, preferring new terms that w i l l be used by
more existing concepts.

However, there are also some impor tant differences be­
tween the two approaches. Research on concept forma­
t ion has typical ly focused on attr ibute-value representa­
t ions, whereas RiNCON employs a relational formalism.
Most concept format ion methods construct disjoint tax­
onomies, whereas RiNCON forms a nondisjoint hierarchy
in which a concept may have mul t ip le parents. Final ly,
most earlier methods have employed part ia l matching
techniques in the classification process, which let them
make predictions about, unseen data. In contrast, our
approach uses complete matching and thus only sum­
marizes the observed instances.

The last difference suggests extensions to RiNCON that
would let it move beyond the data to make predictions
about unseen instances (i.e., to do induction). The cur­
rent system allows disjunctions only at the final level of
the concept hierarchy, but the basic learning operator
can be extended to create disjuncts at any level. The in­
t roduct ion of mul t ip le disjuncts into a concept definit ion
leads to coverage of unseen instances. A more radical ap­
proach involves deleting these structures entirely, so one
need not match against them at al l . In either case, the
system would need to collect statistics to estimate the
desirabil i ty of such drastic actions.

4.3 R e l a t i o n t o r e p r e s e n t a t i o n change

Another active area of machine learning research fo­
cuses on changing representations by introducing new
terms into the language of concept descriptions. For in­
stance, given a pr imi t ive set of features, a learning sys­
tem might define new terms as conjunctions or disjunc­
tions of these features, and then at tempt to induce a con­
cept description over this extended language. A variety
of researchers have taken this general approach to repre­
sentation change in induct ion [Fu and Buchanan, 1984,
Schlimmer, 1987, Muggleton, 1987, Pagallo and Haus-
sler, 1988, Rendell, 1988].

RlNCON's learning method involves a variety of rep
resentation change. When the system introduces a new
concept into its domain theory, it redefines existing con­
cepts using this te rm. Also, it uses these intermediate
terms dur ing the matching process to redescribe new in­
stances. The more concepts in which an intermediate
term is used, the more efficiently the system matches or
rejects new instances. Thus, the change in representa­
t ion has a definite impact on performance.

Muggleton's [1987] D U C E system employs constructive

induction in much the same way as RiNCON, but has
more operators for introducing new concepts. However,
before a new concept is actually retained, the user is
required to either accept or reject the concept. D U C E ' S
main goal is to maximize the symbol reduction of the rule
base while creating meaningful intermediate concepts.
On the other hand, R I N C O N ' S main goal is to improve the
domain theory's efficiency of recognizing instances. Also,
RiNCON processes instances incrementally and handles
relational input whereas D U C E is non-incremental and
is l imited to propositional calculus.

W i t h the exception of Fu and Buchanan [1984], most
earlier research on representation change has empha­
sized classification accuracy rather than efficiency. An­
other difference between RiNCON and other approaches
involves its use of a relational formalism rather than
a feature-based language. However, our work to date
has dealt only w i th introducing new conjunctive terms.
Future versions of R I N C O N should introduce disjunctive
relational terms as well, as do most other methods for
representation change.

4.4 R e l a t i o n t o p a t t e r n m a t c h i n g

Research on production-system architectures has led
to algorithms and data structures for efficient pattern
matching. One of the best-known schemes involves rete
networks [Forgy, 1982], a memory organization that al­
lows sharing of redundant conditions and storage of par­
t ial matches. This technique leads to significant reduc­
tions in the match t ime required for certain large pro­
duction systems.6

The rete network approach to matching has many sim­
ilarities to R I N C O N ' S scheme. In both cases, the perfor­
mance element stores part ial matches at nodes in the
network. More important , both methods construct in­
ternal nodes for this purpose, based on shared structures
in the inputs. Finally, in both cases the resulting 'do­
main theory' is purely conjunctive, in that internal nodes
have only one definit ion.

However, RINCON also differs in some significant ways
f rom systems based on rete networks. First, Forgy's
framework assumes a binary network, in which each in­
ternal node is defined as the conjunction of two other
nodes. In contrast, our system can use an arbitrary
number of nodes in its definitions. Second, methods
for constructing rete networks typical ly detect shared
structures only if they occupy the same positions in the
condit ion sides of productions, and they automatical ly
create nodes when they are found. RiNCON carries out
a more sophisticated search for shared structures, and it
employs an evaluation function to select among alterna­
tive concepts that it might construct. Thus, our scheme
can be viewed as a heuristic approach to constructing
generalized rete networks, and future work should com­
pare the two methods empirically.

Levinson's [1985] work on self-organizing retrieval for
graphs also extends Forgy's idea of improving retrieval

6 Miranker [1987] has presented evidence tha t , in some
cases, using intermediate nodes leads to slower matching.
Th is corresponds to the ' f la t ' domain theory we used in our
experiments; thus, our i n i t i a l results side w i t h rete networks.

Wogulis and Langley 661

efficiency by creating intermediate concepts. As in
RINCON, intermediate concepts correspond to common
structures found among the relat ional examples stored
in the database. They may be added or deleted accord­
ing to a heuristic information-theoret ic measure of re­
tr ieval efficiency. Levinson's experiments in the retrieval
of chemical structures show that in t roducing intermedi­
ate concepts results in only a fract ion of the database
(on the order of the log of the number of elements in the
database) being compared to the query structure dur­
ing retr ieval. He also provides theoretical just i f icat ion
for this increase in efficiency. Th is reduction in search
is cr i t ical in structured domains, in which the cost of
comparison is potent ia l ly exponential in the size of the
objects being compared.

5 Conc lus i on

RiNCON incremental ly learns domain theories f rom ex­
amples w i th the goal of maximiz ing classification effi­
ciency. The version described in this paper is only an
in i t ia l step toward our goal of integrat ing inductive and
explanation-based learning. We have focused here on as­
pects of the efficient use of knowledge, but future work
should also address induct ion and the associated goal of
maximiz ing classification accuracy.

Our prel iminary results indicate that introducing in ­
termediate concepts in to a domain theory can increase
overall match efficiency. Th is result seems counter to the
work on explanation-based learning, which holds that
operat ional izat ion is the key to efficiency. However, our
results suggest that both views are correct. By adding
an operat ional izat ion component to RiNCON, we w i l l be
able to explore the efficiency tradeoff between opera­
t ional izat ion and int roducing new intermediate concepts.

Final ly , the RINCON framework is also closely related
to research in the areas of incremental concept forma­
t ion , representation change, and pattern matching. Our
work impacts each of these areas and provides a frame-
work for integrat ing these diverse fields.

Acknowledgements

We have benefited f rom discussions w i th Robert
Levinson at the University of Cal i fornia, Santa Cruz.
We would also like to thank Wayne Iba, John Gennari ,
and Mike Pazzani for their discussions on this work.

References

[DeJong and Mooney, 1986] Gerald F. DeJong and Ray­
mond J. Mooney. Explanation-based learning: An al­
ternate view. Machine Learning, 1:145-176, 1986.

[Fisher, 1987] Douglas H. Fisher. Knowledge acquisi­
t ion v ia incremental conceptual clustering. Machine
Learning, 2:139-172, 1987.

[Forgy, 1982] Charles L. Forgy. Rete: A fast a lgor i thm
for the many pa t te rn /many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982.

[Fu and Buchanan, 1984] L i - M i n Fu and Bruce G.
Buchanan. Enhancing performance of expert systems

by automated discovery of meta-rules. In Proceed­
ings of the First Conference on Artificial Intelligence
Applications, pages 107-115, Denver, Colorado, 1984.
IEEE Computer Society Press.

[Gennari et al., 1989] John H. Gennar i , Pat Langley,
and Doug Fisher. Models of incremental concept for­
mat ion. Artificial Intelligence, 40, 1989.

[Langley and Ohlsson, 1984] Pat Langley and Stellan
Ohlsson. Automated cognitive model ing. In Proceed-
ings of the Fourth National Conference on Artificial
Intelligence, pages 193-197, Aus t in , Texas, 1984. Mor­
gan Kaufmann.

[Lebowitz, 1987] Michael Lebowitz. Experiments w i th
incremental concept format ion: U N I M E M . Machine
Learning, 2:103-138, 1987.

[Levinson, 1985] Robert A. Levinson. A self organizing
retrieval system for graphs. PhD thesis, University of
Texas, Aus t in , T X , 1985.

[Minton, 1988] Steven M in ton . Quant i ta t ive results con­
cerning the u t i l i t y of explanation-based learning. In
Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 564-569, Saint Paul, M in ­
nesota, 1988. Morgan Kaufmann.

[Miranker, 1987] Daniel P. Miranker. T R E A T : A better
match a lgor i thm for AI product ion systems. In Pro­
ceedings of the Sixth National Conference on Artificial
Intelligence, pages 42-47, Seattle, Washington, 1987.
Morgan Kaufmann.

[Mitchell et a/., 1986] Tom M. Mi tche l l , Richard M.
Keller, and Smadar T. Kedar-Cabel l i . Explanat ion-
based generalization: A uni fy ing view. Machine
Learning, 1:47-80, 1986.

[Muggleton, 1987] Stephen Muggleton. D U C E , an ora­
cle based approach to constructive induct ion. In Pro­
ceedings of the Tenth International Joint Conference
on Artificial Intelligence, pages 287-292, M i lan , I taly,
1987. Morgan Kaufmann.

[Pagallo and Haussler, 1988] G iu l ia Pagallo and David
Haussler. Feature discovery in empir ical learning.
Technical Report UCSC-CRL-88-08, Board of Stud­
ies in Computer and In format ion Sciences, University
of Cal i fornia at Santa Cruz, 1988.

[Rendell, 1988] Larry Rendell. Learning hard concepts.
In Proceedings of the Third European Working Session
on Learning, pages 177-200, Glasgow, Scotland, 1988.
P i tman Publ ishing.

[Schlimmer, 1987] Jeffrey C. Schlimmer. Concept acqui­
sition through representation adjustment. PhD thesis,
University of Cal i fornia at I rv ine, 1987.

[Vere, 1975] Steven A. Vere. Induct ion of concepts in
the predicate calculus. In Proceedings of the Fourth
International Joint Conference on Artificial Intelli­
gence, pages 281-287, Tb i l i s i , USSR, 1975. Morgan
Kaufmann.

662 Machine Learning

