Improving Efficiency by Learning Intermediate Concepts

James Wogulis (WOGULIS@ICS.UCI.EDU)
Pat Langley (LANGLEY@ICS.UCI.EDU)
Department of Information & Computer Science
University of California, Irvine, CA 92717 USA

Abstract

One goal of explanation-based learning is to
transform knowledge into an operational form
for efficient use. Typically, this involves rewrit-
ing concept descriptions in terms of the predi-
cates used to describe examples. In this paper
we present RINCON, a system that extends do-
main theories from examples with the goal of
maximizing classification efficiency. RINCON'S
basic learning operator involves the introduc-
tion of new intermediate concepts into a do-
main theory, which can be viewed as the in-
verse of the operationalization process. We dis-
cuss the system's learning algorithm and its
relation to work on explanation-based learn-
ing, incremental concept formation, represen-
tation change, and pattern matching. We also
present experimental evidence from two natu-
ral domains that indicates the addition of in-
termediate concepts can improve classification
efficiency.

1 Introduction

Knowledge is necessary but not sufficient for intelligent
behavior. In addition, knowledge must be stored in some
form that lets it be used effectively. One of the central
goals of machine learning is to devise mechanisms that
transform knowledge from inefficient forms into more ef-
ficient ones. Most research on this topic has focused
on explanation-based learning [Mitchell et al ., 1986,
DedJong and Mooney, 1986], which augments a domain
theory with rules that are more 'operational' than the
original ones. Such operational rules let one bypass in-
termediate concepts, producing shallower proofs on fu-
ture cases with the same structure.

In this paper, we show that more operational knowl-
edge does not always lead to more efficient behavior.
In addition, we describe an alternative approach that
involves the introduction of new intermediate concepts
into the domain theory - effectively the inverse of op-
erationalization. We show that, at least in some do-
mains, this form of learning leads to more efficient forms
of knowledge than do explanation-based methods.

In the following section we describe RINCON (Retain-
ing INtermediate CONcepts), a learning system that
implements our approach to the transformation of do-
main knowledge. After this, we report experiments

with the system on two natural domains. Finally, we
show how RINCON provides a framework for integrating
explanation-based learning, incremental concept forma-
tion, representation change, and pattern matching.

2 Overview of RINCON

2.1 Representation and organization

RINCON is a system that forms domain theories from
examples with the goal of maximizing classification ef-
ficiency. Instances are represented as conjunctions of
n-ary predicates, allowing one to represent not only at-
tributes, but also relations [Vere, 1975]. For example,
father (A,B) A female (B) expresses a father-daughter
relationship. Instances also contain a class label that
is used for supervised learning.

aunt(X,Y) <- gister(X,Z) A mother(Z.,Y)
aunt (X, ¥) <- simter(X,Z) A father(Z,Y)
uncle(X,¥) <- brother(X,Z) A mother(Z,Y}
uncle(X,¥}) <~ brother(X,Z) A father(Z.,Y)
sister(X,¥) <«- female(X) A sibling(X,Y)
brother(X,Y) <- male(X) A sibling(X,Y)

Figure 1. A domain theory/hierarchy for family relationships.

Instances and concepts are stored hierarchically in a
domain theory that is partially ordered according to the
generality of the concepts. Figure 1 shows a simple hier-
archy of concepts from a domain theory for family rela-
tionships. The highest-level concepts in the domain the-
ory are the primitive features (predicates) used to repre-
sent instances. The lowest-level concepts correspond to
the classes found in the training examples and may be
disjunctive. The learned internal concepts must be con-
junctive, appearing in the head of only one rewrite rule.
All concepts are expressed in terms of higher-level con-
cepts in the domain theory. For example, Figure 1 shows
primitive features used to describe the concept brother,
which is used to describe the concept uncle.

Wogulis and Langley 657

2.2 The performance system

The domain theory is used to classify instances. Given
an instance and a concept, RINCON determines if the
instance is described by the concept. If the concept is
relational (conjunctions of n-ary predicates), then the
system also determines all of the ways (different bind-
ings) in which the instance is a member of the concept.
The matching process is goal directed, starting with
the concept to be determined and recursively finding all
matches for each subconcept composing the concept.1
Each time a concept node is matched, the resulting bind-
ings are stored with that concept's node. By storing all
matches for all relevant sub concepts, time may be saved
if the bindings are needed again. The match algorithm
is shown in Table 1.

Table 1. The Match Algorithm used by RINCON

function match(concept, instance)
if concept has not already been matched
then if concept ie a primitive feature
then store all matchee of concept with
features from instance
else for each disjunct in concepl do
match-disjunct (disjunct, instance)
store matchas from all disjuncts in
the node concepi
return stored bindinga

function watch-disjunct(disjunct, insiance)
let bindings be the list centaining the empty liat
for each concept used in disjunct
while bindings is not empty do
let bindings be the join of each
bindings list in bindings with
each binding in match{concept, instance)
return hindings

As an example of how internal concepts can improve
overall match efficiency, consider the following simple
domain theory for the concept uncle:?

uncle(X,Y) <- male(X) A sibling(X,Z) A mother(Z,Y)
uncle(X,Y) <- male(X) A sibling(X,Z) A father(Z,Y).

Now suppose this domain theory is used to determine
all of the uncle relations in the instance male(pat) A
sibling(pat,John) A father(John,jean) A male(frank)
A sibling(frank,marie) A mother(marie,jean). Since
there are two uncles in the instance, the matcher would
have to re-join the bindings from the male and sibling
concepts. Instead, suppose the domain theory included
the concept brother:

uncle(X,Y) <- brother(X,Z) A mother(Z,Y)
uncle(X,Y) <= brother(X,Z) A father(Z,Y)
brother(X,Y) <- male(X) A sibling(X,Y).

This domain theory would be more efficient to use since
the work of matching the brother concept would only be
done once when matching against the two definitions for

'This differs from logic programming. Instances in RIN-
CON may contain variables but are treated as constants by
the matcher. Hence, it does not perform unification.

2 Another type of uncle is the husband of an aunt.

658 Machine Learning

uncle. The next section describes how one can acquire
such internal concepts.

2.3 The RINCON learning algorithm

The RINCON system begins with an initial domain the-
ory and incrementally extends it to incorporate new in-
stances. At present, the learned theory does not go
beyond the data; it simply organizes the instances ac-
cording to the existing domain theory and any learned
intermediate concepts. RINCON'S goal is to produce do-
main theories that maximize the classification efficiency
for both seen and unseen instances. Table 2 presents the
algorithm for learning new intermediate concepts.

Table 2. Algorithm for Learning Intermediate Concepts

function incorporate(instance, concept, theory)

match{concept, instance}
if no bindings exiat for concept
then
let maiched be the most specific concapta
in theory that do match instance
let notmaiched be the most general concepts
in theory that do not match insiance
revrite instance in terms of concepts in malched
add snstance to theory
let (7 be all maximally specific generalizations
of instance with concepte in notmatched
let New(@ be the generalization in G that can
be used to re-express the most number of
concepts in theory
add NewG to theory
re—express all concepts in theory
in terms of New(
return theory

RINCON's learning algorithm carries out incremental
hill climbing [Gennari et a/., 1989] through the space
of domain theories. The system starts by matching the
new instance against the concept with the same label. If
the instance is described by the domain theory, then no
learning occurs and the existing theory is retained. Oth-
erwise, it collects the most specific concepts that match
the instance and the most general concepts that do not
match the instance. The system then re-expresses the in-
stance in terms of the concepts it does match and adds
it to the domain theory as a new disjunct for its con-
cept class. The re-expressed instance is then generalized
[Vere, 1975] with each concept in the set of most general
concepts it does not match. Each of these generaliza-
tions is a candidate for a new internal concept. RIN-
CON's evaluation function selects the generalization that
can be used to re-express the most concepts in the do-
main theory. The selected generalization is then added
to the theory and used to re-express all of the concepts
in the domain theory that it can.

As an example, assume the following domain theory,
which contains only one instance:

uncle(walter,jim) <- male(walter) A
sibling(walter,carol) A
mother(carol,jim).

If RINCON is presented with the new instance

uncle(pat,,jean) <- male(pat) A sibling(pat,John) A

tather(j ohn,j ean)

it finds that the concept uncle in the domain theory
does not match this instance. The system then finds
the most specific concepts in the theory that do match
(male, sibling, and father), and the most general con-
cepts that do not match (uncle). IlINCON then rewrites
the instance using the highest-level concepts matched.
Since these are simply the primitive features, the in-
stance description remains unchanged. The instance is
then added to the domain theory and is generalized with
all of the lowest-level concepts that do not match, in this
case uncle. The only maximally specific generalization is
male(X) A sibling(X,Y), which is added to the domain
theory. This generalization is used to rewrite both of
the uncle definitions to produce the following domain
theory:®

uncle(walter, jim) <- brother{walter,carocl) A
mother{carol, jim)

uncle(pat,jean) <- brother{pat,john) A
father{john,jean)

brother(X,Y) <- male{X) A sibling(X,Y).

RINCON continues processing new instances, extending
the domain theory to incorporate each new instance.

3 Experimental evaluation of RINCON

The goal of RINCON is to improve the efficiency of match-
ing instances. Since the system currently does no induc-
tion, classification accuracy is irrelevant. Instead, the
natural unit of measure is the amount of work required to
match or reject an instance. We measure work in terms
of the number ofjoin operations performed in the match
process. A join occurs when two lists of bindings are
combined to form a new consistent bindings list (which
might be empty if the bindings are inconsistent). For
attribute-value representations the join of N attributes
is N — 1, since multiple bindings are never produced.
The number of joins provides a reasonable measure of
work since at least one join occurs whenever a concept
node in the hierarchy is matched (see match-disjunct in
Table 1). Also, the time required to perform ajoin is
bounded by a constant for any given domain.

As a baseline for comparison in all of our experiments
we measured the work performed by a corresponding do-
main theory with no intermediate concepts.* This 'flat'
domain theory is simply an extensional description of all
the observed instances.

Our first experiment involved building a domain the-
ory from instances of mushrooms [Schlimmer, 1987] in
which each instance was described as a conjunction of
23 attribute-value pairs. A total of 3,078 instances were
available. The experiment began with an empty domain
theory, to which RINCON incrementally added randomly
chosen instances. After every ten instances were incorpo-
rated into the domain theory, we computed the average
amount of work required for matching each of the pre-

3We have named the new concept brother only for clarity.
“This is equivalent to a domain theory containing only
'operational' definitions.

viously seen instances. We also measured the average
amount of work for matching the same number of mush-
room instances not described by the domain theory. Fig-
ure 2 presents the learning curves for the average work
of matching an instance as a function of the number of
instances stored in the domain theory. Each curve shows
the average over 25 different runs.

g
-j:; 175 = —— learned domain theory -
E 1(50 - - =~ fiat domain theory Pl : s
v 125 © unseen - .2
) -
5 100 - secn
E oo
E 50
8 25 -
o 0 ; | T T |
-
¢ 20 40 60 80 100

Number of Instances

Figure 2. Average work to match previously seen and unseen
mushroom instances.

The figure shows that the domain theory containing
intermediate concepts was on average more efficient at
matching previously seen instances than was the corre-
sponding flat domain theory. Surprisingly, the flat the-
ory also required more match time to reject previously
unseen instances than did the learned domain theory.
This suggests that the learned theory contains interme-
diate concepts shared among all mushroom instances.
Such intermediate concepts would save on the overall
match time for unseen instances, since they would store
bindings often needed in the match process.

The results presented in Figure 2 seem to run counter
to the notion that operational domain theories are more
efficient to use than those containing intermediate con-
cepts. However, for some instances the flat domain the-
ory is more efficient. At the end of each of the 25 ex-
periments, for each 100 mushroom instances processed,
we computed the percentage of work saved by using the
learned domain theory over the flat one. Figure 3 shows
the distribution of instances as a function of the percent-
age of work saved. Although work is saved on average,
intermediate concepts sometimes do reduce efficiency.
This suggests a trade-off between retaining intermediate
concepts and operationalizing concepts.

The mushroom experiments measured the efficiency of
learned domain theories as a function of the number of
instances processed. The size of each mushroom instance
was constant. Our second experiment measured the effi-
ciency of learned domain theories as a function of the size
of the instances matched while holding the number of in-
stances in the domain theory constant. This experiment
involved using RINCON to organize the rules of a produc-
tion system. |In this case, the instances' used to build
the domain theory were the condition sides of produc-
tion rules. Unlike the mushroom domain, these instances
were relational and contained variables. The production
system solved multi-column subtraction problems [Lang-
ley and Ohlsson, 1984] such as 128 - 39 using a set ofnine

Wogulis and Langley 659

rules. The rule set included such operators as subtract-
ing two numbers in a column, shifting attention from
one column to another, and borrowing ten from a col-
umn. The production rules were written such that only
one rule with one set of bindings ever matched against
working memory.

400 - 1]

o ettt s
[T 1

G I

a 300 — { B
2 i

5 §

e - 1

5 200 !

&

£ 100
=

0 T Y T 1 }

-200 -150 -10 -50 0 50 100

Percentage Savings

Figure 3. Distribution of instances as a function of work saved
by using interrnediate concepts.

The experiment consisted of running the production
system on sets of subtraction problems of varying com-
plexity, measured as the maximum number of columns in
the problem. Each problem was solved using the domain
theory of rules built by RINCON and the corresponding
flat theory to find which rules matched against working
memory. We computed the average work (number of
joins) per production system cycle for both of the do-
main theories when solving each problem. Each cycle of
the production system requires matching the rules in the
domain theory against working memory.

250 learned domain theory -
i 200 - ~ ~ - flat domain theory - ~
o
=150
'3
=100
¥
< 50 -
0 T E | |)
0 2 4 L] 8 10

) Number of Columns
Figure 4. Average work/cycle as a function of instance size.

The graph in Figure 4 shows the average amount of
work per cycle as a function of instance size for both of
the domain theories. Each point in the graph is the av-
erage over 25 different subtraction problems at a given
level of problem complexity. The curves for the flat do-
main theory and for the domain theory built by RIN-
CON suggest that the average work per cycle is a linear
function of the number of columns in the subtraction
problem. This reflects the fact that the working mem-
ory increases linearly in the number of columns. Overall,
the domain theory built by RINCON required about half
as much work as the flat domain theory.

660 Machine Learning

4 Discussion

The learning mechanism used in RINCON is closely re-
lated to methods used in four Al paradigms that have
traditionally been viewed as quite diverse - explanation-
based learning, incremental concept formation, represen-
tation change, and pattern matching. Below we expand
on these relations noting some directions for future re-
search.

4.1 Relation to explanation-based learning

QOur approach to learning has much in common with
explanation-based learning [Mitchell et al.,
1986, DeJong and Mooney, 1986]. In both cases, do-
main knowledge is organized as a set of inference rules,
recognition involves constructing a proof tree by chain-
ing off those rules, and learning alters the structure of
the domain theory by adding new inference rules. More-
over, in both cases this process may affect the efficiency
of recognition, but no induction is involved.®

work on

However, the basic operations used in the two frame-
works differ radically. Explanation-based learning mod-
ifies the knowledge base through a 'knowledge compi-
lation* mechanism. The structure of an explanation is
compiled into a new inference rule; this lets the per-
formance system bypass intermediate terms on future
cases with the same structure, giving shallower expla-
nations. In contrast, our approach creates new inter-
mediate terms, leading to deeper explanation structures
on future cases. One can view RINCON's mechanism for
creating new terms as a 'decompilation' process - the
inverse operation of that in explanation-based systems.

Our experimental results indicate it is sometimes bet-
ter to operationalize than to introduce intermediate con-
cepts. to RINCON would be to
include a mechanism for knowledge compilation in addi-
Upon encountering

An obvious extension

tion to that for new term creation.
a previously unseen situation, the system would extend
the knowledge base, generating new terms in the pro-
Upon recognizing a previously seen case, it would
construct a compiled rule for matching the instance in a
single inference step. To determine whether the compiled
or uncompiled knowledge was more efficient, the system
would keep statistics on each rule, eventually eliminating
ones with low utility [Minton, 1988]. Such an extension
would constitute an important step towards unifying in-
ductive and analytic approaches to learning.

cess.

4.2 Relation to incremental concept formation

Gennari, Langley, and Fisher [1989] have reviewed work
on incremental concept formation. In this framework one
incrementally induces a taxonomy of concepts, which can
then be used in classifying new instances and in making
predictions. Each instance is sorted through the taxon-
omy, altering the knowledge base in passing.

Such learning can be characterized as an incremental
form of hill climbing, in that only a single concept hier-

"In incremental mode, one can view RINCON as changing
the deductive closure of its knowledge base, since it accepts
new instances as input. However, the system does not move
beyond the instances it is given.

archy is retained in memory. Examples of concept for-
mation systems include Levinson's [1985] self-organizing
system, Lebowitz's [1987] UNIMEM, Fisher's [1987] COB -
WEB, and Gennari et al.'s [1989] CLASSIT.

The learning method in RINCON can be viewed as a
form of incremental concept formation. The domain the-
ory constitutes a taxonomy, with primitive predicates as
the most general concepts, instances as the most specific
concepts, and defined terms as concepts of intermediate
generality. New instances are 'sorted' down this concept
hierarchy, and new concepts are introduced in the pro-
cess. RINCON'S search control is an incremental form of
hill climbing, preferring new terms that will be used by
more existing concepts.

However, there are also some important differences be-
tween the two approaches. Research on concept forma-
tion has typically focused on attribute-value representa-
tions, whereas RiINCON employs a relational formalism.
Most concept formation methods construct disjoint tax-
onomies, whereas RINCON forms a nondisjoint hierarchy
in which a concept may have multiple parents. Finally,
most earlier methods have employed partial matching
techniques in the classification process, which let them
make predictions about, unseen data. In contrast, our
approach uses complete matching and thus only sum-
marizes the observed instances.

The last difference suggests extensions to RINCON that
would let it move beyond the data to make predictions
about unseen instances (i.e., to do induction). The cur-
rent system allows disjunctions only at the final level of
the concept hierarchy, but the basic learning operator
can be extended to create disjuncts at any level. The in-
troduction of multiple disjuncts into a concept definition
leads to coverage of unseen instances. A more radical ap-
proach involves deleting these structures entirely, so one
need not match against them at all. In either case, the
system would need to collect statistics to estimate the
desirability of such drastic actions.

4.3 Relation to representation change

Another active area of machine learning research fo-
cuses on changing representations by introducing new
terms into the language of concept descriptions. For in-
stance, given a primitive set of features, a learning sys-
tem might define new terms as conjunctions or disjunc-
tions of these features, and then attempt to induce a con-
cept description over this extended language. A variety
of researchers have taken this general approach to repre-
sentation change in induction [Fu and Buchanan, 1984,
Schlimmer, 1987, Muggleton, 1987, Pagallo and Haus-
sler, 1988, Rendell, 1988].

RINCON's learning method involves a variety of rep
resentation change. When the system introduces a new
concept into its domain theory, it redefines existing con-
cepts using this term. Also, it uses these intermediate
terms during the matching process to redescribe new in-
stances. The more concepts in which an intermediate
term is used, the more efficiently the system matches or
rejects new instances. Thus, the change in representa-
tion has a definite impact on performance.

Muggleton's [1987] DU CE system employs constructive

induction in much the same way as RiNCON, but has
more operators for introducing new concepts. However,
before a new concept is actually retained, the user is
required to either accept or reject the concept. DUCE'S
main goal is to maximize the symbol reduction of the rule
base while creating meaningful intermediate concepts.
On the other hand, RINCON'S main goal is to improve the
domain theory's efficiency of recognizing instances. Also,
RINCON processes instances incrementally and handles
relational input whereas DUCE is non-incremental and
is limited to propositional calculus.

With the exception of Fu and Buchanan [1984], most
earlier research on representation change has empha-
sized classification accuracy rather than efficiency. An-
other difference between RINCON and other approaches
involves its use of a relational formalism rather than
a feature-based language. However, our work to date
has dealt only with introducing new conjunctive terms.
Future versions of RINCON should introduce disjunctive
relational terms as well, as do most other methods for
representation change.

4.4 Relation to pattern matching

Research on production-system architectures has led
to algorithms and data structures for efficient pattern
matching. One of the best-known schemes involves rete
networks [Forgy, 1982], a memory organization that al-
lows sharing of redundant conditions and storage of par-
tial matches. This technique leads to significant reduc-
tions in the match time required for certain large pro-
duction systems.®

The rete network approach to matching has many sim-
ilarities to RINCON'S scheme. In both cases, the perfor-
mance element stores partial matches at nodes in the
network. More important, both methods construct in-
ternal nodes for this purpose, based on shared structures
in the inputs. Finally, in both cases the resulting 'do-
main theory' is purely conjunctive, in that internal nodes
have only one definition.

However, RINCON also differs in some significant ways
from systems based on rete networks. First, Forgy's
framework assumes a binary network, in which each in-
ternal node is defined as the conjunction of two other
nodes. In contrast, our system can use an arbitrary
number of nodes in its definitions. Second, methods
for constructing rete networks typically detect shared
structures only if they occupy the same positions in the
condition sides of productions, and they automatically
create nodes when they are found. RINCON carries out
a more sophisticated search for shared structures, and it
employs an evaluation function to select among alterna-
tive concepts that it might construct. Thus, our scheme
can be viewed as a heuristic approach to constructing
generalized rete networks, and future work should com-
pare the two methods empirically.

Levinson's [1985] work on self-organizing retrieval for
graphs also extends Forgy's idea of improving retrieval

SMiranker [1987] has presented evidence that, in some
cases, using intermediate nodes leads to slower matching.
This corresponds to the 'flat’ domain theory we used in our
experiments; thus, our initial results side with rete networks.

Wogulis and Langley 661

efficiency by creating intermediate concepts. As in
RINCON, intermediate concepts correspond to common
structures found among the relational examples stored
in the database. They may be added or deleted accord-
ing to a heuristic information-theoretic measure of re-
trieval efficiency. Levinson's experiments in the retrieval
of chemical structures show that introducing intermedi-
ate concepts results in only a fraction of the database
(on the order of the log of the number of elements in the
database) being compared to the query structure dur-
ing retrieval. He also provides theoretical justification
for this increase in efficiency. This reduction in search
is critical in structured domains, in which the cost of
comparison is potentially exponential in the size of the
objects being compared.

5 Conclusion

RiINCON incrementally learns domain theories from ex-
amples with the goal of maximizing classification effi-
ciency. The version described in this paper is only an
initial step toward our goal of integrating inductive and
explanation-based learning. We have focused here on as-
pects of the efficient use of knowledge, but future work
should also address induction and the associated goal of
maximizing classification accuracy.

Our preliminary results indicate that introducing in-
termediate concepts into a domain theory can increase
overall match efficiency. This result seems counter to the
work on explanation-based learning, which holds that
operationalization is the key to efficiency. However, our
results suggest that both views are correct. By adding
an operationalization component to RiNCON, we will be
able to explore the efficiency tradeoff between opera-
tionalization and introducing new intermediate concepts.

Finally, the RINCON framework is also closely related
to research in the areas of incremental concept forma-
tion, representation change, and pattern matching. Our
work impacts each of these areas and provides a frame-
work for integrating these diverse fields.

Acknowledgements

We have benefited from discussions with Robert
Levinson at the University of California, Santa Cruz.
We would also like to thank Wayne Iba, John Gennari,
and Mike Pazzani for their discussions on this work.

References

[Dedong and Mooney, 1986] Gerald F. DeJong and Ray-
mond J. Mooney. Explanation-based learning: An al-
ternate view. Machine Learning, 1:145-176, 1986.

[Fisher, 1987] Douglas H. Fisher. Knowledge acquisi-
tion via incremental conceptual clustering. Machine
Learning, 2:139-172, 1987.

[Forgy, 1982] Charles L. Forgy. Rete: A fast algorithm
for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982.

[Fu and Buchanan, 1984] Li-Min Fu and Bruce G.
Buchanan. Enhancing performance of expert systems

662 Machine Learning

by automated discovery of meta-rules. In Proceed-
ings of the First Conference on Artificial Intelligence
Applications, pages 107-115, Denver, Colorado, 1984.
IEEE Computer Society Press.

[Gennari et al, 1989] John H. Gennari, Pat Langley,
and Doug Fisher. Models of incremental concept for-
mation. Artificial Intelligence, 40, 1989.

[Langley and Ohlsson, 1984] Pat Langley and Stellan
Ohlsson. Automated cognitive modeling. In Proceed-
ings of the Fourth National Conference on Artificial
Intelligence, pages 193-197, Austin, Texas, 1984. Mor-
gan Kaufmann.

[Lebowitz, 1987] Michael Lebowitz. Experiments with
incremental concept formation: UNIMEM. Machine
Learning, 2:103-138, 1987.

[Levinson, 1985] Robert A. Levinson. A self organizing
retrieval system for graphs. PhD thesis, University of
Texas, Austin, TX, 1985.

[Minton, 1988] Steven Minton. Quantitative results con-
cerning the utility of explanation-based learning. In
Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 564-569, Saint Paul, Min-
nesota, 1988. Morgan Kaufmann.

[Miranker, 1987] Daniel P. Miranker. TREAT: A better
match algorithm for Al production systems. In Pro-
ceedings of the Sixth National Conference on Artificial
Intelligence, pages 42-47, Seattle, Washington, 1987.
Morgan Kaufmann.

[Mitchell et a/., 1986] Tom M. Mitchell,
Keller, and Smadar T. Kedar-Cabelli.
based generalization:
Learning, 1:47-80, 1986.

[Muggleton, 1987] Stephen Muggleton. DUCE, an ora-
cle based approach to constructive induction. In Pro-
ceedings of the Tenth International Joint Conference
on Artificial Intelligence, pages 287-292, Milan, ltaly,
1987. Morgan Kaufmann.

Richard M.
Explanation-
A unifying view. Machine

[Pagallo and Haussler, 1988] Giulia Pagallo and David
Haussler. Feature discovery in empirical learning.
Technical Report UCSC-CRL-88-08, Board of Stud-
ies in Computer and Information Sciences, University
of California at Santa Cruz, 1988.

[Rendell, 1988] Larry Rendell. Learning hard concepts.
In Proceedings of the Third European Working Session
on Learning, pages 177-200, Glasgow, Scotland, 1988.
Pitman Publishing.

[Schlimmer, 1987] Jeffrey C. Schlimmer. Concept acqui-
sition through representation adjustment. PhD thesis,
University of California at Irvine, 1987.

[Vere, 1975] Steven A. Vere. Induction of concepts in
the predicate calculus. In Proceedings of the Fourth
International ~ Joint ~ Conference on Artificial Intelli-
gence, pages 281-287, Thilisi, USSR, 1975. Morgan
Kaufmann.

