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A b s t r a c t 

One goal of explanation-based learning is to 
t ransform knowledge into an operational form 
for efficient use. Typical ly , this involves rewrit-
ing concept descriptions in terms of the predi­
cates used to describe examples. In this paper 
we present R I N C O N , a system that extends do­
main theories f rom examples w i th the goal of 
maximiz ing classification efficiency. R I N C O N ' S 
basic learning operator involves the introduc­
t ion of new intermediate concepts into a do­
main theory, which can be viewed as the in­
verse of the operationalization process. We dis­
cuss the system's learning algor i thm and its 
relation to work on explanation-based learn­
ing, incremental concept format ion, represen­
tat ion change, and pattern matching. We also 
present experimental evidence f rom two natu­
ral domains that indicates the addit ion of in­
termediate concepts can improve classification 
efficiency. 

1 I n t r o d u c t i o n 

Knowledge is necessary but not sufficient for intell igent 
behavior. In addi t ion, knowledge must be stored in some 
form that lets it be used effectively. One of the central 
goals of machine learning is to devise mechanisms that 
transform knowledge f rom inefficient forms into more ef­
ficient ones. Most research on this topic has focused 
on explanation-based learning [Mitchell et al ., 1986, 
DeJong and Mooney, 1986], which augments a domain 
theory w i th rules that are more 'operat ional ' than the 
original ones. Such operational rules let one bypass in­
termediate concepts, producing shallower proofs on fu­
ture cases w i t h the same structure. 

In this paper, we show that more operational knowl­
edge does not always lead to more efficient behavior. 
In addi t ion, we describe an alternative approach that 
involves the in t roduct ion of new intermediate concepts 
into the domain theory - effectively the inverse of op­
erat ional izat ion. We show that , at least in some do­
mains, this form of learning leads to more efficient forms 
of knowledge than do explanation-based methods. 

In the fol lowing section we describe R I N C O N (Retain­
ing INtermediate CONcepts), a learning system that 
implements our approach to the transformation of do­
main knowledge. Af ter this, we report experiments 

w i th the system on two natural domains. Final ly, we 
show how R I N C O N provides a framework for integrating 
explanation-based learning, incremental concept forma­
t ion, representation change, and pattern matching. 

2 Ove rv i ew of R I N C O N 

2.1 R e p r e s e n t a t i o n a n d o r g a n i z a t i o n 

R I N C O N is a system that forms domain theories f rom 
examples wi th the goal of maximizing classification ef­
ficiency. Instances are represented as conjunctions of 
n-ary predicates, allowing one to represent not only at­
tr ibutes, but also relations [Vere, 1975]. For example, 
fa ther (A,B) A female (B) expresses a father-daughter 
relationship. Instances also contain a class label that 
is used for supervised learning. 

Figure 1. A domain theory/hierarchy for family relationships. 

Instances and concepts are stored hierarchically in a 
domain theory that is part ial ly ordered according to the 
generality of the concepts. Figure 1 shows a simple hier­
archy of concepts from a domain theory for family rela­
tionships. The highest-level concepts in the domain the­
ory are the pr imi t ive features (predicates) used to repre­
sent instances. The lowest-level concepts correspond to 
the classes found in the t ra in ing examples and may be 
disjunctive. The learned internal concepts must be con­
junct ive, appearing in the head of only one rewrite rule. 
A l l concepts are expressed in terms of higher-level con­
cepts in the domain theory. For example, Figure 1 shows 
pr imi t ive features used to describe the concept brother , 
which is used to describe the concept uncle. 
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2.2 T h e p e r f o r m a n c e s y s t e m 

The domain theory is used to classify instances. Given 
an instance and a concept, RINCON determines if the 
instance is described by the concept. If the concept is 
relat ional (conjunctions of n-ary predicates), then the 
system also determines all of the ways (different b ind­
ings) in which the instance is a member of the concept. 
The matching process is goal directed, star t ing w i th 
the concept to be determined and recursively finding al l 
matches for each subconcept composing the concept.1 

Each t ime a concept node is matched, the result ing b ind­
ings are stored w i t h that concept's node. By storing al l 
matches for al l relevant sub concepts, t ime may be saved 
if the bindings are needed again. The match a lgor i thm 
is shown in Table 1. 

Table 1. The Match Algorithm used by RiNCON 

As an example of how internal concepts can improve 
overall match efficiency, consider the fol lowing simple 
domain theory for the concept uncle:2 

uncle(X,Y) <- male(X) A s i b l i n g ( X , Z ) A mother(Z,Y) 
uncle(X,Y) <- male(X) A s i b l i n g ( X , Z ) A f a t h e r ( Z , Y ) . 

Now suppose this domain theory is used to determine 
all of the uncle relations in the instance male (pat) A 
s ib l i ng (pa t , John ) A fa ther (John, jean) A male( f rank) 
A s i b l i n g ( f r a n k , m a r i e ) A mother(mar ie, jean) . Since 
there are two uncles in the instance, the matcher would 
have to re-join the bindings f rom the male and s i b l i n g 
concepts. Instead, suppose the domain theory included 
the concept b ro ther : 

This domain theory would be more efficient to use since 
the work of matching the b ro ther concept would only be 
done once when matching against the two definitions for 

1This differs from logic programming. Instances in RlN-
CON may contain variables but are treated as constants by 
the matcher. Hence, it does not perform unification. 

2 Another type of uncle is the husband of an aunt. 

uncle. The next section describes how one can acquire 
such internal concepts. 

2.3 T h e RiNCON l e a r n i n g a l g o r i t h m 

The RiNCON system begins w i t h an in i t ia l domain the-
ory and incremental ly extends it to incorporate new in-
stances. At present, the learned theory does not go 
beyond the data; it s imply organizes the instances ac­
cording to the exist ing domain theory and any learned 
intermediate concepts. R I N C O N ' S goal is to produce do­
main theories that maximize the classification efficiency 
for both seen and unseen instances. Table 2 presents the 
a lgor i thm for learning new intermediate concepts. 

Table 2. Algorithm for Learning Intermediate Concepts 

RlNCON's learning a lgor i thm carries out incremental 
h i l l c l imbing [Gennari et a/., 1989] through the space 
of domain theories. The system starts by matching the 
new instance against the concept w i t h the same label. If 
the instance is described by the domain theory, then no 
learning occurs and the existing theory is retained. Oth­
erwise, it collects the most specific concepts that match 
the instance and the most general concepts that do not 
match the instance. The system then re-expresses the in­
stance in terms of the concepts it does match and adds 
it to the domain theory as a new disjunct for its con­
cept class. The re-expressed instance is then generalized 
[Vere, 1975] w i th each concept in the set of most general 
concepts it does not match. Each of these generaliza­
tions is a candidate for a new internal concept. R lN­
CON's evaluation funct ion selects the generalization that 
can be used to re-express the most concepts in the do­
main theory. The selected generalization is then added 
to the theory and used to re-express all of the concepts 
in the domain theory that i t can. 

As an example, assume the fo l lowing domain theory, 
which contains only one instance: 

If RlNCON is presented w i th the new instance 
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uncle(pat , , jean) <- male(pat) A s ib l i ng (pa t , John) A 
tather(j ohn, j ean) 

it finds that the concept uncle in the domain theory 
does not match this instance. The system then finds 
the most specific concepts in the theory that do match 
(male, s i b l i n g , and f a t h e r ) , and the most general con-
cepts that do not match (uncle). IllNCON then rewrites 
the instance using the highest-level concepts matched. 
Since these are simply the pr imi t ive features, the in­
stance description remains unchanged. The instance is 
then added to the domain theory and is generalized wi th 
all of the lowest-level concepts that do not match, in this 
case uncle. The only max imal ly specific generalization is 
male(X) A s i b l i n g ( X , Y ) , which is added to the domain 
theory. Th is generalization is used to rewrite both of 
the uncle definit ions to produce the fol lowing domain 
theory:3 

RlNCON continues processing new instances, extending 
the domain theory to incorporate each new instance. 

3 Exper imenta l evaluation of RlNCON 
The goal of RlNCON is to improve the efficiency of match­
ing instances. Since the system currently does no induc­
t ion, classification accuracy is irrelevant. Instead, the 
natural uni t of measure is the amount of work required to 
match or reject an instance. We measure work in terms 
of the number of j o i n operations performed in the match 
process. A j o i n occurs when two lists of bindings are 
combined to form a new consistent bindings list (which 
might be empty if the bindings are inconsistent). For 
attr ibute-value representations the jo in of N attr ibutes 
is N — 1, since mul t ip le bindings are never produced. 
The number of jo ins provides a reasonable measure of 
work since at least one jo in occurs whenever a concept 
node in the hierarchy is matched (see match-dis junct in 
Table 1). Also, the t ime required to perform a jo in is 
bounded by a constant for any given domain. 

As a baseline for comparison in all of our experiments 
we measured the work performed by a corresponding do­
main theory w i th no intermediate concepts.4 This ' f lat ' 
domain theory is simply an extensional description of all 
the observed instances. 

Our first experiment involved bui ld ing a domain the­
ory f rom instances of mushrooms [Schlimmer, 1987] in 
which each instance was described as a conjunction of 
23 attr ibute-value pairs. A total of 3,078 instances were 
available. The experiment began w i th an empty domain 
theory, to which RlNCON incrementally added randomly 
chosen instances. After every ten instances were incorpo­
rated into the domain theory, we computed the average 
amount of work required for matching each of the pre-

3 We have named the new concept bro ther only for clarity. 
4This is equivalent to a domain theory containing only 

'operational' definitions. 

viously seen instances. We also measured the average 
amount of work for matching the same number of mush­
room instances not described by the domain theory. Fig­
ure 2 presents the learning curves for the average work 
of matching an instance as a function of the number of 
instances stored in the domain theory. Each curve shows 
the average over 25 different runs. 

The figure shows that the domain theory containing 
intermediate concepts was on average more efficient at 
matching previously seen instances than was the corre­
sponding flat domain theory. Surprisingly, the flat the­
ory also required more match t ime to reject previously 
unseen instances than did the learned domain theory. 
This suggests that the learned theory contains interme­
diate concepts shared among all mushroom instances. 
Such intermediate concepts would save on the overall 
match t ime for unseen instances, since they would store 
bindings often needed in the match process. 

The results presented in Figure 2 seem to run counter 
to the notion that operational domain theories are more 
efficient to use than those containing intermediate con­
cepts. However, for some instances the flat domain the­
ory is more efficient. At the end of each of the 25 ex­
periments, for each 100 mushroom instances processed, 
we computed the percentage of work saved by using the 
learned domain theory over the flat one. Figure 3 shows 
the distr ibut ion of instances as a function of the percent­
age of work saved. Al though work is saved on average, 
intermediate concepts sometimes do reduce efficiency. 
This suggests a trade-off between retaining intermediate 
concepts and operationalizing concepts. 

The mushroom experiments measured the efficiency of 
learned domain theories as a function of the number of 
instances processed. The size of each mushroom instance 
was constant. Our second experiment measured the effi­
ciency of learned domain theories as a funct ion of the size 
of the instances matched while holding the number of in­
stances in the domain theory constant. This experiment 
involved using R I N C O N to organize the rules of a produc­
t ion system. In this case, the instances' used to bui ld 
the domain theory were the condit ion sides of produc­
t ion rules. Unlike the mushroom domain, these instances 
were relational and contained variables. The production 
system solved mul t i -column subtraction problems [Lang-
ley and Ohlsson, 1984] such as 128 - 39 using a set of nine 
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ru les . T h e ru l e set i n c l u d e d such ope ra to r s as s u b t r a c t ­
i n g t w o n u m b e r s i n a c o l u m n , s h i f t i n g a t t e n t i o n f r o m 
one c o l u m n t o a n o t h e r , a n d b o r r o w i n g t e n f r o m a co l ­
u m n . T h e p r o d u c t i o n ru les were w r i t t e n such t h a t o n l y 
one r u l e w i t h one set o f b i n d i n g s ever m a t c h e d aga ins t 
w o r k i n g m e m o r y . 

The experiment consisted of running the product ion 
system on sets of subtract ion problems of varying com­
plexity, measured as the max imum number of columns in 
the problem. Each problem was solved using the domain 
theory of rules bu i l t by RlNCON and the corresponding 
flat theory to find which rules matched against working 
memory. We computed the average work (number of 
joins) per product ion system cycle for both of the do­
main theories when solving each problem. Each cycle of 
the product ion system requires matching the rules in the 
domain theory against working memory. 

The graph in Figure 4 shows the average amount of 
work per cycle as a funct ion of instance size for both of 
the domain theories. Each point in the graph is the av­
erage over 25 different subtraction problems at a given 
level of problem complexity. The curves for the flat do­
main theory and for the domain theory bui l t by R lN­
CON suggest that the average work per cycle is a linear 
funct ion of the number of columns in the subtraction 
problem. This reflects the fact that the working mem­
ory increases l inearly in the number of columns. Overal l , 
the domain theory bu i l t by R I N C O N required about half 
as much work as the flat domain theory. 

4 Discuss ion 

T h e l e a r n i n g m e c h a n i s m used i n R I N C O N i s closely re­
l a t e d t o m e t h o d s used i n f o u r A I p a r a d i g m s t h a t have 
t r a d i t i o n a l l y been v iewed as q u i t e d iverse - e x p l a n a t i o n -
based l e a r n i n g , i n c r e m e n t a l concep t f o r m a t i o n , represen­
t a t i o n change, and p a t t e r n m a t c h i n g . Be low w e e x p a n d 
on these re la t i ons n o t i n g some d i r ec t i ons fo r f u t u r e re­
search. 

4 . 1 R e l a t i o n t o e x p l a n a t i o n - b a s e d l e a r n i n g 

O u r a p p r o a c h t o l e a r n i n g has m u c h i n c o m m o n w i t h 
w o r k on e x p l a n a t i o n - b a s e d l e a r n i n g [ M i t c h e l l e t a/., 
1986, D e J o n g a n d M o o n e y , 1986]. I n b o t h cases, do­
m a i n know ledge is o rgan i zed as a set of in ference ru les, 
r e c o g n i t i o n invo lves c o n s t r u c t i n g a p r o o f t ree by cha in ­
i n g o f f those ru les , and l e a r n i n g a l te rs t h e s t r u c t u r e o f 
t he d o m a i n t h e o r y by a d d i n g new in ference ru les. M o r e ­
over , in b o t h cases t h i s process m a y affect the eff ic iency 
o f r e c o g n i t i o n , b u t no i n d u c t i o n i s i n v o l v e d . 5 

However , t h e basic o p e r a t i o n s used i n t he t w o f r a m e -
w o r k s d i f fer r a d i c a l l y . E x p l a n a t i o n - b a s e d l ea rn i ng m o d ­
ifies the know ledge base t h r o u g h a ' know ledge c o m p i ­
l a t i o n * m e c h a n i s m . T h e s t r u c t u r e o f an e x p l a n a t i o n i s 
c o m p i l e d i n t o a new inference ru l e ; t h i s lets the per­
f o r m a n c e sys tem bypass i n t e r m e d i a t e t e rms on f u t u r e 
cases w i t h the same s t r u c t u r e , g i v i n g sha l lower exp la ­
n a t i o n s . In con t ras t , ou r a p p r o a c h creates new in ter ­
m e d i a t e t e r m s , l ead ing t o deeper e x p l a n a t i o n s t ruc tu res 
on f u t u r e cases. One can v i ew R I N C O N ' s m e c h a n i s m for 
c rea t i ng new t e r m s as a ' d e c o m p i l a t i o n ' process - the 
inverse o p e r a t i o n o f t h a t i n e x p l a n a t i o n - b a s e d systems. 

O u r e x p e r i m e n t a l resu l ts i n d i c a t e i t i s somet imes bet­
ter t o o p e r a t i o n a l i z e t h a n t o i n t r o d u c e i n t e r m e d i a t e con­
cepts. An obv i ous ex tens ion t o R lNCON w o u l d be t o 
i nc lude a m e c h a n i s m for know ledge c o m p i l a t i o n in a d d i ­
t i o n t o t h a t fo r new t e r m c r e a t i o n . U p o n encoun te r i ng 
a p r e v i o u s l y unseen s i t u a t i o n , t he sys tem w o u l d ex tend 
t he know ledge base, g e n e r a t i n g new t e r m s i n t he p r o ­
cess. U p o n recogn i z i ng a p rev ious l y seen case, i t w o u l d 
cons t ruc t a c o m p i l e d ru le for m a t c h i n g t he ins tance in a 
s ing le in ference s tep . To d e t e r m i n e w h e t h e r the c o m p i l e d 
o r u n c o m p i l e d k n o w l e d g e was m o r e ef f ic ient , t he sys tem 
w o u l d keep s ta t i s t i cs on each ru l e , e v e n t u a l l y e l i m i n a t i n g 
ones w i t h l ow u t i l i t y [ M i n t o n , 1988]. Such an ex tens ion 
w o u l d c o n s t i t u t e an i m p o r t a n t s tep t o w a r d s u n i f y i n g in -
d u c t i v e and a n a l y t i c approaches t o l e a r n i n g . 

4 . 2 R e l a t i o n t o i n c r e m e n t a l c o n c e p t f o r m a t i o n 

G e n n a r i , Lang ley , and F isher [1989] have rev iewed work 
o n i n c r e m e n t a l concept f o r m a t i o n . I n t h i s f r a m e w o r k one 
i n c r e m e n t a l l y induces a t a x o n o m y o f concepts , w h i c h can 
t hen be used in c lass i f y ing new ins tances and in m a k i n g 
p red i c t i ons . Each ins tance i s so r ted t h r o u g h the t a x o n ­
o m y , a l t e r i n g the k n o w l e d g e base in pass ing . 

Such l e a r n i n g can be charac te r i zed as an i nc remen ta l 
f o r m o f h i l l c l i m b i n g , i n t h a t o n l y a s ing le concept h ier-

r> ln incremental mode, one can view R lNCON as changing 
the deduct ive closure of i ts knowledge base, since it accepts 
new instances as i npu t . However, the system does not move 
beyond the instances it is given. 
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archy is retained in memory. Examples of concept for­
mat ion systems include Levinson's [1985] self-organizing 
system, Lebowitz's [1987] U N I M E M , Fisher's [1987] C O B ­
W E B , and Gennari et a/.'s [1989] C L A S S I T . 

The learning method in R I N C O N can be viewed as a 
fo rm of incremental concept format ion. The domain the­
ory constitutes a taxonomy, w i t h pr imi t ive predicates as 
the most general concepts, instances as the most specific 
concepts, and defined terms as concepts of intermediate 
generality. New instances are 'sorted' down this concept 
hierarchy, and new concepts are introduced in the pro­
cess. R I N C O N ' S search control is an incremental form of 
h i l l c l imbing, preferring new terms that w i l l be used by 
more existing concepts. 

However, there are also some impor tant differences be­
tween the two approaches. Research on concept forma­
t ion has typical ly focused on attr ibute-value representa­
t ions, whereas RiNCON employs a relational formalism. 
Most concept format ion methods construct disjoint tax­
onomies, whereas RiNCON forms a nondisjoint hierarchy 
in which a concept may have mul t ip le parents. Final ly, 
most earlier methods have employed part ia l matching 
techniques in the classification process, which let them 
make predictions about, unseen data. In contrast, our 
approach uses complete matching and thus only sum­
marizes the observed instances. 

The last difference suggests extensions to RiNCON that 
would let it move beyond the data to make predictions 
about unseen instances (i.e., to do induction). The cur­
rent system allows disjunctions only at the final level of 
the concept hierarchy, but the basic learning operator 
can be extended to create disjuncts at any level. The in­
t roduct ion of mul t ip le disjuncts into a concept definit ion 
leads to coverage of unseen instances. A more radical ap­
proach involves deleting these structures entirely, so one 
need not match against them at al l . In either case, the 
system would need to collect statistics to estimate the 
desirabil i ty of such drastic actions. 

4.3 R e l a t i o n t o r e p r e s e n t a t i o n change 

Another active area of machine learning research fo­
cuses on changing representations by introducing new 
terms into the language of concept descriptions. For in­
stance, given a pr imi t ive set of features, a learning sys­
tem might define new terms as conjunctions or disjunc­
tions of these features, and then at tempt to induce a con­
cept description over this extended language. A variety 
of researchers have taken this general approach to repre­
sentation change in induct ion [Fu and Buchanan, 1984, 
Schlimmer, 1987, Muggleton, 1987, Pagallo and Haus-
sler, 1988, Rendell, 1988]. 

RlNCON's learning method involves a variety of rep 
resentation change. When the system introduces a new 
concept into its domain theory, it redefines existing con­
cepts using this te rm. Also, it uses these intermediate 
terms dur ing the matching process to redescribe new in­
stances. The more concepts in which an intermediate 
term is used, the more efficiently the system matches or 
rejects new instances. Thus, the change in representa­
t ion has a definite impact on performance. 

Muggleton's [1987] D U C E system employs constructive 

induction in much the same way as RiNCON, but has 
more operators for introducing new concepts. However, 
before a new concept is actually retained, the user is 
required to either accept or reject the concept. D U C E ' S 
main goal is to maximize the symbol reduction of the rule 
base while creating meaningful intermediate concepts. 
On the other hand, R I N C O N ' S main goal is to improve the 
domain theory's efficiency of recognizing instances. Also, 
RiNCON processes instances incrementally and handles 
relational input whereas D U C E is non-incremental and 
is l imited to propositional calculus. 

W i t h the exception of Fu and Buchanan [1984], most 
earlier research on representation change has empha­
sized classification accuracy rather than efficiency. An­
other difference between RiNCON and other approaches 
involves its use of a relational formalism rather than 
a feature-based language. However, our work to date 
has dealt only w i th introducing new conjunctive terms. 
Future versions of R I N C O N should introduce disjunctive 
relational terms as well, as do most other methods for 
representation change. 

4.4 R e l a t i o n t o p a t t e r n m a t c h i n g 

Research on production-system architectures has led 
to algorithms and data structures for efficient pattern 
matching. One of the best-known schemes involves rete 
networks [Forgy, 1982], a memory organization that al­
lows sharing of redundant conditions and storage of par­
t ial matches. This technique leads to significant reduc­
tions in the match t ime required for certain large pro­
duction systems.6 

The rete network approach to matching has many sim­
ilarities to R I N C O N ' S scheme. In both cases, the perfor­
mance element stores part ial matches at nodes in the 
network. More important , both methods construct in­
ternal nodes for this purpose, based on shared structures 
in the inputs. Finally, in both cases the resulting 'do­
main theory' is purely conjunctive, in that internal nodes 
have only one definit ion. 

However, RINCON also differs in some significant ways 
f rom systems based on rete networks. First, Forgy's 
framework assumes a binary network, in which each in­
ternal node is defined as the conjunction of two other 
nodes. In contrast, our system can use an arbitrary 
number of nodes in its definitions. Second, methods 
for constructing rete networks typical ly detect shared 
structures only if they occupy the same positions in the 
condit ion sides of productions, and they automatical ly 
create nodes when they are found. RiNCON carries out 
a more sophisticated search for shared structures, and it 
employs an evaluation function to select among alterna­
tive concepts that it might construct. Thus, our scheme 
can be viewed as a heuristic approach to constructing 
generalized rete networks, and future work should com­
pare the two methods empirically. 

Levinson's [1985] work on self-organizing retrieval for 
graphs also extends Forgy's idea of improving retrieval 

6 Miranker [1987] has presented evidence tha t , in some 
cases, using intermediate nodes leads to slower matching. 
Th is corresponds to the ' f la t ' domain theory we used in our 
experiments; thus, our i n i t i a l results side w i t h rete networks. 
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efficiency by creating intermediate concepts. As in 
RINCON, intermediate concepts correspond to common 
structures found among the relat ional examples stored 
in the database. They may be added or deleted accord­
ing to a heuristic information-theoret ic measure of re­
tr ieval efficiency. Levinson's experiments in the retrieval 
of chemical structures show that in t roducing intermedi­
ate concepts results in only a fract ion of the database 
(on the order of the log of the number of elements in the 
database) being compared to the query structure dur­
ing retr ieval. He also provides theoretical just i f icat ion 
for this increase in efficiency. Th is reduction in search 
is cr i t ical in structured domains, in which the cost of 
comparison is potent ia l ly exponential in the size of the 
objects being compared. 

5 Conc lus i on 

RiNCON incremental ly learns domain theories f rom ex­
amples w i th the goal of maximiz ing classification effi­
ciency. The version described in this paper is only an 
in i t ia l step toward our goal of integrat ing inductive and 
explanation-based learning. We have focused here on as­
pects of the efficient use of knowledge, but future work 
should also address induct ion and the associated goal of 
maximiz ing classification accuracy. 

Our prel iminary results indicate that introducing in ­
termediate concepts in to a domain theory can increase 
overall match efficiency. Th is result seems counter to the 
work on explanation-based learning, which holds that 
operat ional izat ion is the key to efficiency. However, our 
results suggest that both views are correct. By adding 
an operat ional izat ion component to RiNCON, we w i l l be 
able to explore the efficiency tradeoff between opera­
t ional izat ion and int roducing new intermediate concepts. 

Final ly , the RINCON framework is also closely related 
to research in the areas of incremental concept forma­
t ion , representation change, and pattern matching. Our 
work impacts each of these areas and provides a frame-
work for integrat ing these diverse fields. 
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