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Abstract

We investigate the relation between the notions
of knowledge and belief. Contrary to the well-
known slogan about knowledge being "justified,
true belief," we propose that belief be viewed
as defeasible knowledge. Specifically, we offer
a definition of belief as knowledge-relative-to-
assumptions, and tie the definition to the no-
tion of nonmonotonicity. Our definition has
several advantages. First, it is short. Sec-
ond, we do not need to add anything to the
logic of knowledge: the right properties of be-
lief fall out of the definition and the properties
of knowledge. Third, the connection between
knowledge and belief is derived from one fun-
damental principle, which is more enlightening
than a collection of arbitrary-seeming axioms
relating the two notions.

1 Introduction

Epistemic notions such as knowledge, ignorance, belief
and awareness play an important role in Al. The ac-
tions available to an intelligent agent depend partly on
his knowledge - for example, opening a safe depends
on knowing the combination. Conversely, the effects of
some actions are to change the state of knowledge - for
example, informing another agent of a new fact. The no-
tion of belief is similarly involved in intelligent action -
to use the same speech-act example above, agent A will
only inform agent B of the new fact if agent A believes
that agent B does not already know that fact, and as a
result of the speech act agent B will believe that agent
A indeed knows that fact.

In recent vears there has been much interest in formal
reasoning about knowledge and belief, in both the Al
community and the distributed computation community.
Motivated by the need to represent the knowledge of
Intelligent agents, and drawing on Hintikka's work iIn
philosophy [6], Moore was the first to introduce the logic
of knowledge to Al [I0]. Further work in Al on formal
modeling of agents' epistemic states includes [7, 9, I]
(the latter two concerned with distinguishing between
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explicit and implicit belief). An introduction to modal
epistemic logic in Al can be found in [3]. (Motivated by
the need to represent the local knowledge of individual
processors, the distributed computation community too
has taken great interest in the topic. There has been a
tremendous amount of work there, best represented by
the proceedings of the two conferences devoted to the
subject [5, 13].) This is by no means an exhaustive list
of references, either in Al or in distributed computation.

QOur aim in this paper is to clarify the relation be-
tween knowledge and belief, probably the two most cen-
tral epistemic notions in Al. The old slogan is that
"knowledge is justified, true belief," suggesting that be-
lief should be taken as basic, and knowledge defined in
terms of it. In fact, we know of few attempts to capture
the two notions in the same formal system, and none
which take this particular tack.

One could imagine a second way of combining the no-
tions of knowledge and belief, which starts by defining
them each separately. It has become standard to define
epistemic notions through Kripke models, (although see
[2] for an alternative to Kripke semantics). In the case of
knowledge, one usually uses the simple S5 system (but
see, e.g., [12] for arguments against the S5 system and
for the S4 system). This yields intuitive properties for
knowledge: if | know ¢ then @ is true, if | know ¢
then | know that | know it, and (in the case of S95) if
1 don't know ¢ then | know that | don't know it. As is
well known, these three properties are achieved by the
axioms K¢ D ¢, K¢ DO KKy, and ~ K¢ O K-Kp,
respectively (or, equivalently, by the requirement that
the accessibility relation on possible worlds be reflexive,
transitive and Euclidean). In addition one has the 'nor-
mality' condition, K(p D ¢)AKp D Kqg: An agent knows
the tautological consequences of his knowledge.

Of these properties, the first one is clearly inappro-
priate for belief: | may believe something false. Indeed,
since this seems to be the property distinguishing knowl-
edge from belief, the common logic for belief is so-called
K45, in which the K¢ D ¢ axiom (equivalently, the re-
flexivity requirement) is omitted. Sometimes another
axiom is then added, 7K false (which corresponds to
the requirement that the accessibility relation be serial:
from every state there is at least one accessible state), re-
sulting in the system called KD45. Both K45 and KD45
have been called also weak S5.



One could thus imagine combining knowledge and be-
lief as follows: create two modalities, one (say) regular
S5, the other (say) weak S5, and write enough axioms
relating them to one another. Indeed, we know of at
least one such attempt [8]. Although reasonable, this
approach suffers a serious disadvantage: there is no the-
oretical basis for those added axioms, and therefore we
have no guarantee that we have indeed captured the full
connection between the two notions.

In this paper we offer a simple alternative: start with
only a definition of knowledge, any definition that you
find acceptable, and define belief as a defeasible version
of it. Roughly speaking, we will translate each occur-
rence of "the agent believes that ¢” into "the agent
knows that either ¢, or else something specific unusual
Is the case." For example, if the robot's vision system
reports an obstacle then the robot believes that an obsta-
cle exists, since it knows that either the obstacle indeed
exists, or else its vision system is malfunctioning (the
latter considered unusual). The full definition we will
adopt is only slightly more complex.

This definition of belief has several advantages. First,
it is short. Second, we do not need to add anything to
the logic of knowledge: the right properties of belief fall
out of the definition and the properties of knowledge.
Third, not only do we get a connection between knowl-
edge and belief, but we get it from one fundamental prin-
ciple, in a way that is more enlightening than a collection
of arbitrary-seeming axioms relating the two notions. Fi-
nally, and most surprisingly, we note an added benefit
of our definition: it suggests a close connection between
the notion of belief and, of all things, nonmonotonic rea-
soning.

The paper is organized as follows. In Section 2 we give
our definition of belief. In fact, we will give two such def-
initions, of which we will adopt one. Both are a general
reduction of the notion of belief to that of knowledge,
and do not assume any particular definition of knowl-
edge. In Section 3 we explore a particular instance of
our definition, the one in which knowledge is taken to
be defined by the S5 system. In Section 4 we tie the
discussion to the notion of nonmonotonicity. We end in
Section 5 with some concluding remarks and discussion
of related work.

2 Defining belief

As was said in the introduction, we will reduce the no-
tion of belief to that of knowledge. We will not assume
anything about the definition of knowledge, only that we
have a language for describing the world, and that if @
Is a wff in that language then so is K¢, meaning "the
agent knows that ¢” (we restrict the discussion in this
article to a single agent, but the extension to multiple
agents is straightforward).

Each formula that is believed will be believed only
with respect to some other "assumption"” formula. We
start with a definition that is close to the one we will
actually adopt. This initial definition is a direct trans-
lation of the sentence given in the introduction: we say
that ¢ is believed just in case it is known that either ¢
holds or else that the assumption is violated.

Definition 1 B'(, gpa“) =dec/ K(cpa” D @)

We will see later that this simple definition actually has
some attractive properties. However, it also has some
properties that, under certain circumstances, we might
not find acceptable. In particular, most logics of knowl-
edge allow us to derive K —wq,s O B'(w, wass): Whenever
we know that our assumption is violated, we must be-
lieve ¢.

This motivates our final definition of belief. In the fol-
lowing definition, we add the condition that beliefs can-
not be grounded in assumptions that are actually known
to be violated. Specifically, we require that a formula be
believed relative to an assumption that is known not to
hold, only if that formulamisexplicitly known.

Deﬁnition 2 B(‘p, Lp(u:g) —dcf K(‘yoass D
(K-“pu.u i K‘P)

We first note the following easily-seen connection be-
tween the two definitions of belief:

p) A

Proposition 1 ﬂK“’Wﬂ.M i, (B'(SO, ‘Paas) = B(‘P, Wuss))

Indeed, as we explore the ramifications of our definition
of B in the next section, we will also see that the dif-
ference between B and B' hinges on the possibility of
knowing the negation of one's assumptions.

3 Properties of belief

Our definition of belief in the previous section was jus-
tified on intuitive grounds, if at all. Indeed, it was this
intuition alone that originally led us to the definition.
We now put it to a test by verifying that it has formal
consequences that make sense. We have not discovered
any undesirable consequences of our definition (but see
discussion in the summary section). On the other hand,
many desirable properties do follow from them. These
include all the properties of belief that we have seen in
previous formalisms, and some new ones.

In order to present crisp results, we will explore the
ramification of our definitions in the context of a par-
ticular logic of knowledge, the S5 system described in
the introduction. As was said, S5 is the most popu-
lar system for defining knowledge. Although it is very
well known, for completeness we repeat the definition of
(single-agent, propositional) S5 here. (Throughout this
article we will restrict the discussion to the single-agent,
propositional case, but it will be apparent that the dis-
cussion extends easily to the multiple-agent, first-order
case.)

Definition 3

Syntax. Given a set of primitive propositions P, the for-
mulas of the logic consist of the members of P, their
boolean closure (closure wunder AN and ~—), and their clo-
sure under the modal operator K.

Axiom system. Beside the axiom schemas of prop-
sotional calculus, the S5 axiom schemas consist of
(K(p1 D w2) A K1) D Koz, Ko D o, K¢ D KKop,
and ~ Ko O K~K¢. The rules of inference are modus
ponens and generalization; from ¢ infer K.

Semantics. S5 Kripke Structures are pairs (M,w), where
M is a set of (total) valuations of P, and w is a member
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of M. The notion of a formula being satisfied in a Kripke
structure 1s defined as follows. For primitive propositions
p, (M,w)= p ff w = p, where the latier = denotes
standard propositional satisfaction. (M, w)l= @1 N @2
ff (M, w)E= ¢ and (M, w)E p2. (M,w)E @ iff it s
not the case that (M, w)kE= ¢. Finally, (M, w)l= K¢ (or
simply M = Kop) iff ( M,w')i= ¢ foralluw € M.

As has been discussed extensively in the literature, K
can be viewed as the knowledge operator, and thus Kp
is read “@ is known" (or, in the genera] case, K,¢ is read
"agent i knows ¢”).

Notational convention. When ¢,,, can be inferred by
context, or when it is not important what the particular
assumption is, we will replace B(y, ¢a.,s) by B(y), or
simply By. We will do the same for B'. When several
belief operators occur in the same sentence with omitted
assumption arguments, we assume that all the assump-
tion formulas are the same. For example, Bp/\Bq stands
for B(p,r) A B(q,r), where r is either understood from
context, or else is any arbitrary formula.

We will concentrate on the properties of B, although
at some points, when some properties of B' are illumi-
nating, we will make reference to B' too. We start by
noting an equivalent definition of B. The definition reads
"p is believed iff it is known that either p is indeed true,
or else the assumption is violated without this violation
being known":

Proposition 2 B(¢, Yass) = K(oV(~@ass A K 20ass))

K(Wa.aa 2 ‘P) A (K‘_’ﬁoau 2 K‘P) =

K((,O \2 ““pau) A (K'P \4 ﬁK—’@aas)

K(‘P v _W‘pa.u) N K(‘P \ —'K*’@asa)

I{(((P A —“pau) A (‘P Vv —WK_"Pasa))

K((pv(_‘@aas /\—‘K_“Pa.ss)) u
It is also easy to see that one cannot believe in contra-

dictory statements (and recall the notational convention

of suppressing the assumption argument):

LI TTIT

Proposition 3 —~(By A B-yp)

Proof.

Bp AB-yp =

K((,O \4 (—’@aaa A\ _‘K““Pau))/\ K(“N,O vV (—“‘Pa.u N

""K""pau)) =

I{((‘P A —"P) N (ﬁ(Pau A “‘K—"Soa.as)) =

K(“‘Waas A _‘K_“Pa.u) =

K—pass N '"‘K—"‘Paas) =

false B
Interestingly, for B’ we get the following:

Proposition 4 B'(p, @ass) A B (—@, 0ass) = K @aqs

Proof.

Bl(‘Pa ‘pa.ss) N B’(_'(,O, ‘pass) =

K(‘P v “"Pau) N K(—“p \% -—“pau) =

K((¢V—p) A =pa,,) =

K_'(Pass B
We now begin to explore the connection between

knowledge and belief. The first connection is obvious:

Proposition 5 K¢ O By
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The converse implication of course does not hold. Note
that this proposition is true of B' too. Note also that
the validity of the generalization inference rule, from (p
infer By, follows from the last proposition.

Proposition 6 BKy = Ky

Proof.
BKyp =
K(Kw v(_":oass A K _“paas)) =
Ko \/K(“u,oa” AN K Pass)) =
Ky V false =
Ko
The transitivity property of belief, or the property of
"positive introspection,” follows immediately:

Corollary 7 BBy = By
Proposition 8 B~Ky = -Kyp

Proof.

B-Ky =

K“‘!(K@ v(m‘W(zss A "‘}{““pau)) =

~ Ky VK("’SO:LM A “‘K'“'(Pass)) =

- KV false =

K a
As a corollary we get the “negative introspection”

property:

Corollary 9 BBy = By

Recall that knowledge was defined essentially by the
four axioms of S5. The last two corollaries show that
two of the axioms hold for belief too. Another axiom,
that of distributivity, also holds:

Proposition 10 B(p; D v2) A By O Beps

Proof.

B(y1 D w2) A By, =

K((Wl i, 992) v (_‘ﬁaau A _'K““pau))/\ K((Pl N (-"pau 2
ﬁI{__‘Wa.u!)) =

K(((‘Pl ) 992) N ‘Pl) v('—“ﬂass A ""K'“Pass)) 2

K(¢’2 vV (_“Pau A "‘K"“Pasa)) =

B‘,Oz B

Thus, through our one definition of B, we have ob-
tained a weak-S5& logic of belief!

The one remaining axiom S5, K¢ D ¢, we would not
want belief to have, and indeed it does not. We do,
however, have that if our assumptions hold, then indeed
our beliefs are correct:

Proposition 11 B(@, ®ass) N Cass O @

This is true of B' too, and in both cases the proof is
Immediate.

We now continue to explore the connection between B
and K. We have seen that BK and B~K collapse to K
and -k, respectively. We now show that KB and K-B
collapse to B and —B, respectively.

Proposition 12 KBy = By
Proof.

KBy =

KK(@ V("“Pa,“ A _‘K_“‘Pa.u) =
K(W V(*“Pau A ""K"“Paas)) =
By

Proposition 13 K-Byp = ~Byp



By 0

4 Knowledge, beliefand nonmonotonic
reasoning

So far we have paid little attention to the second argu-
ment to the belief operator. It turns out to be instructive
to look at the assumptions more closely.

We first note the "belief weakening" property (some
of the easy proofs below are omitted):

Proposition 14 B(p, q) A K(p ) 7‘) D B(”:Q)

This property holds also for B'. One might have ex-
pected an analogous "assumption strengthening" prop-
erty. For B' this expectation is met:

Proposition 15 K(g D r)AB'(p,7) D B'(p,q)

The same fact, however, does not hold for B. Indeed,
the way to understand the role of the assumption in B is
as an assumption in nonmonotonic logics. On the basis
of certain assumptions we are willing to adopt certain
beliefs, but given more evidence we may discard some of
them.

This point is further made when we examine the con-
ditions under which one can believe Iin, or even know,
the very assumption in which the belief is grounded. In
the following we assume a specific implicit assumption
formupge,,. 1us, Bp stands for By, @ass). In par-
ticular, Byg,,, stands for B(@a,s, Cass)-

The B’ operator holds few surprises in this regard. We
have the following two easy facts:

Proposition 16 B'@a,.
Proposition 17 B =g = K 0ass

Thus, according to B’, we always believe in the truth
of our assumption, and the only time we believe in the
negation of our assumption is also the only time beliefs
can become inconsistent - when we actually know the
assumption to be violated.

As far as believing the negation of the assumption, the
B operator behaves identically:

Proposition 18 B—@gss = K —@ass

Proof.

B_"Pans =

K(—"Pa.u V (—‘(Pa.u A K _’¢’aas)) =

K—©a,s n
When it comes to believing that the assumption does

hold, however, B behaves quite differently from B’ Ob-

viously, if we know that our assumption holds then we

also believe that it does (knowledge entails belief), but

in fact we believe in the assumption even under weaker

conditions:

Proposition 19 Byp,,, = K @as,

Proof.
B(pﬂﬂﬂ E
K(@ass V (70ass A K —ass))

1l

K(Soass VK “'900.”) =
K(—~K-@ass) =
*'Kﬁ‘\paas

Now, this is an eminently honmonotonic inference: as
long as you don't know your assumption to be false, be-
lieve it to be true. Notice, however, that our logic is
entirely monotonic.’

As a corollary of the last two propositions, we get that
we always take a stance towards our assumption; we ei-
ther know that it does not hold, or we believe that it
does:

Corollary 20 B@ass V K Qass

Of course, this last property does not hold for arbitrary
p's. Nor can we replace the B by a K, we do not nec-
essarily have complete knowledge about the truth of our
assumptions. Intuitively speaking, if we know whether
our assumption is true or false, it is no longer an assump-
tion. Indeed, we have the following property:

Proposition 21 (Bo A (K @as vV K@a,,)) D Ko

Proof.

BQD A (K‘p(us v K—“‘Pass) =

Bo A K(‘Pa.ss v K_“Pass) =

By A K_'(_“:Oa,sﬁ A _ﬁ-l{_-'cpass) =

K((p V (——‘Wa.ss N\ ‘“‘K—‘@ass)) N\ R""(_"foass N K "‘990.55) D
Ko a

5 Summary and Discussion

We have offered a definition of belief as a defeasible form
of knowledge, or as knowledge-relative-to-assumptions.
The definition is short, and, we find, intuitive, deriving
the connection between knowledge and belief from one
basic principle. The definition, which was based on in-
tuitive understanding of knowledge and belief, turns out
to be very robust. We have shown it to have formal
consequences that one would expect from the concept
of belief. We have also shown that the notion of belief
strongly exhibits properties of honmonotonic reasoning.

Our notion of belief originates from a definition given
by the second author in [Il] for belief in the context of
distributed computation. There the definition for pro-
cessor i believing in to was K;({(z: € N} D ¢), where IS
the set of nonfaulty processors. This is clearly a special
case of our B Otherwise, we know of little previous
work on incorporating knowledge and belief within the
same framework, and none which takes our approach.
The most closely related work of which we are aware is
by Kraus and Lehmann [8], who indeed introduce two
modal'aes and relate them through axioms. Their ax-
ioms turn out to be a proper subset of the propositions
proved in this paper. In addition, Halpern has recently
proposed a probabilistic account of both knowledge and
belief, in which knowledge is equated with certainty and
belief with "almost certainty” [4]. Although on the one
hand Halpern's account does not explicate the assump-
tion underlying belief, and on the other hand we do not
explain the connection between statistical information

' Who was it that once said: "nonmonotonicity - -st non-
monotonic logics - no!"
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and belief, there appears to be full compatibility between
the two accounts.

Finally, we note that our definition of belief does not
rely on assuming a particular logic of knowledge. In this
article we adopted the S5 system for two reasons: it is
by far the most widely adopted system, and we needed
some system in order to present crisp results. There
are those who object to an S5 definition of knowledge.
Some objections are mild, for example to the axiom of
negative introspection (-wKtp D, K‘\K(p). Other objec-
tions are more extreme, for example to the assumption
of deductive closure (the axiom (K (¢; DO ¢2) A Ky;)
D Kgz). However, our definition of B(®, Qass) =dej
K (@ass O ) N (K pass O Kp) holds regardless of the
meaning assigned to the K operator. For example, one
could drop the axiom of negative introspection (and thus
adopt the S4 system), and remain with our definition
of belief. Or, one might adopt the notion of resource-
bounded knowledge in [IlI]. Of course, the specific prop-
erties of belief will change as we assume different logics
of knowledge.

Indeed, several fascinating issues remain to be inves-
tigated:

- It will be interesting to explore the properties of belief
that result from other notions of knowledge.

- We are interested in repercussions of our definition
on notions such as common belief. It can be shown
to be be both intuitive and useful to base the no-
tion of common belief on the definition of belief as
defeasible knowledge.

- We have not given completeness results for the dervied
notion of belief. For example, we have not shown
that if we start with an 55 logic of knowledge, then
the resulting notion of belief is complete for, e.g,
weak S5. We believe that such a result will be rel-
atively easy to attain.

- All formal theories of commonsense leave open prag-
matic questions. For example, the theory of circum-
scription does not tell us which predicates to min-
iImize and vary. Similarly, we have not presented
guidelines for choosing which assumptions to make.
Although these are not questions about logic itself,
answers are crucial if we hope to integrate our re-
sults with other work in Al.
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a technical framework for
Starting with a branch-
ing structure, | generalized the picture to set of par-
allel time lines, which can be thought of as represent-
ing knowledge at a particular point the real course of
events.1 defined the notion of evolving time-line struc-
tures (ETS's), which describe the increase of knowledge
with time, and showed that they were closed under in-
tersection and union. | also showed that a certain view
of agents' action itself induces an ETS. | concluded by
showing that the closure of ETS's provides a natural
mechanism for representing and combining knowledge of
observers with different detail of knowledge.

| am not familiar with previous work that ties time,
action and knowledge so tightly. Partial ties do exist.
The view of action as choice making, and the use of par-
allel time lines to capture this, is most closely related to
Pelavin and Allen's development in [Pelavin and Allen,
1987, Pelavin, 1988]. They choose to view action as a
function mapping a time line and an interval to set of
other time lines, in a way based loosely on a "closest
world" construction. | have explained why there is no
need to view action as changing the actual world, and
how as a result we can account in the same framework for
the knowledge of different observers. Combining knowl-
edge and time has not been done extensively in Al, prob-
ably the main example being [Shoham, 1987]. There has
been some work on combining knowledge and action,
most notably by Moore in [Moore, 19735].

The analysis here is incomplete in many ways. Here
are two glaring examples.

« Actions were defined to depend only on what is true
and false, not on knowledge. This should clearly be
generalized to allow for actions such as dialing a
phone number or opening a safe, which are dealt
with by Moore in [Moore, 1975].

| have said that an advantage of actions is that they
allow us to employ other intensional notions such as
goals and beliefs, but | have not dealt with these no-
tions at all. | believe that they can be given intuitive
meaning in the framework of time-line systems, in a
way that extends the work in [Cohen and Levesque,
1987].

References

Allen, 1984] J. F. Allen. Towards a general theory of
action and time. Aftificial Intelligence, 23(2): 123-154,

July 1984.

[Cohen and Levesque, 1987]
P.R. Cohen and H.J. Levesque. Intention = choice
-r commitment. In Proc. of aaai-87, pages 410-415.
AAAI, 1987.

[Dennett, 1984] D.C. Dennett. Elbow Room: The vari-
eties of free will worth wanting. The MIT Press, 1984.

[Georgeff and Lansky, 1985] M. P. Georgeff and A. L.
Lansky. A procedural logic. In Proceedings 9th I|JCAI,
pages 516-523, Los Angeles, CA, 1985.

Goldman, 1970] A. Goldman. A Theory of Human Ac-
tion. Princeton U. Press, 1970.

Halpern and Moses, 1985] J. Y. Halpern and Y. Moses.
A guide to the modal logics of knowledge and belief:
Preliminary draft. In Proc. UCAI-85, pages 480-490,
1985.

Kowalski and Sergot, 1986] 6R. Kowalski and M. Ser-
got. A logic-based calculus of events. New Generation
Computing, 4:67-95, 1986.

Lin et al, 1987] F. Lin, Y. Shoham, and M.R.
Young. Evolving beliefs about temporal knowledge,
manuscript, 1987.

[McCarthy and Hayes, 198l] J. M. McCarthy and P. J.
Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Readings in Artifi-
cial Intelligence, pages 431-450. Tioga Publishing Co.,
Palo Alto,CA, 1981.

McDermott, 1982] D. V. McDermott. A temporal logic

for reasoning about processes and plans. Cognitive
Science, 6:101-155, 1982.

[Moore, 1975] R.C. Moore. Reasoning about Knowledge
and Action. PhD thesis, M.|I.T. Artificial Intelligence
Laboratory, 1975.

[Pelavin and Allen, 1987] R. N. Pelavin and James F.
Allen. A model for concurrent actions having temporal
extent. In Proc. of AAAI, 1987.

Pelavin, 1988] R. N. Pelavin. A Formal Logic for Plan-
ning with  Concurrent Actions and External Events.
PhD thesis, University of Rochester, Computer Sci-
ence Department, 1988.

[Piaget, 1951] J. Piaget. The Child's Conception of
Physical Causality. Humanities Press, 1951.

[Pnueli, 1977] A. Pnueli. A temporal logic of programs.
In Proc. 18th FOCS, pages 46-57. |IEEE, October
1977.

[Pratt, 1976] V. R. Pratt. Semantical considerations on
Floyd-Hoare logic. In Proc. 17th FOCS, pages 109-
121. IEEE, October 1976.

Rosenschein and Kaelbling, 1986] S.J. Rosenschein and
L.P. Kaelbling. The synthesis of digital machines with
provable epistemic properties. In J.Y. Halpern, editor,
Proc. of the First Conference on Theoretical Apsects
of Reasoning about Knowledge, pages 83-98. Morgan-
Kaufmann, May 1986.

[Shoham an d Goyal, 1988] Y. Shoh am and N. Goyal.
Temporal reasoning in artificial intelligence. In
H. Shrobe, editor, Frontiers of Artificial Intelligence.
Morgan-Kaufmann, 1988.

[Shoham, 1987] Y. Shoham. Reasoning about Change.
MIT Press, Boston, MA, 1987.

Shoham and Moses 1173



