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Abstract 
Perturbation analysis deals with the relation­
ships between small changes in a system's 
inputs or model and changes in its outputs. 
Reverse simulation is of particular interest, 
determining how to achieve desired outputs by 
perturbing inputs or model parameters. Some 
applications of this type of analysis are sug­
gested. Perturbation analysis is developed in 
the context of continuous systems whose 
dynamics, over small ranges of the system's 
behaviour, can be represented by linear models. 
A l l variables and signals are represented by 
intervals with qualitative end points. Qualita­
tive linear models are introduced to represent 
time-varying systems. These representations 
permit the use of network consistency algo­
rithms to solve perturbation analysis problems. 

This paper is dedicated to the memory of Dr . 
Murdoch McKinnon , late of C A R Electronics 
L td . and Concordia University, who faithfully 
supported this research since its beginning. 

1. Introduct ion: Qualitative Perturbation 
Analysis 

1.1 Reasoning about continuous systems 
Most work on qualitative physics [Bobr-84] has been 
device-centered (e.g. electric circuits, tanks and 
pipes) with models derived f rom component topol­
ogy [deKl-84]. Inferences about the behaviour of a 
device are made by constraint propagation. Qualita­
tive reasoning about processes [Forb-84], models the 
behaviour of a system as the combined effect of 
active processes which describe the relations and 
influences between objects. However, a system is 
still considered as a collection of objects and rela­
tions between them. In Q S I M [Kuip-86], continuous 
functions (over time) represent state variables and 
constraints model system structure. 

Components and interconnections are not the only 
models for dynamic systems. In some continuous 
systems, state variables depend on the aggregate 
behaviour of many elements. For example, the 
aerodynamic forces on an aircraft are the result of 

integrating the forces caused by airf low over the 
entire airframe. System models may be finite-
element approximations or differential equations; 
both types are useful for numerical simulations. 
Such models may be used in problem-solving, but 
are surely not the basis of human reasoning. When 
people design, control or diagnose such dynamic sys­
tems they use their understanding of physical pr inci­
ples and problem-solving skills. In particular, peo­
ple seem to reason about orders of magnitude of 
variables, and relations between variables and their 
rates of change. This paper considers how to make 
a computer program do the same. 

1.2 Outl ine of the paper 
This paper describes QPA and the representations 
and algorithms which it requires. References to 
related research are included throughout the paper. 
The remainder of this section introduces the not ion 
of a perturbation to a system, discusses the types of 
models to which QPA is applicable, and summarizes 
the contributions of this research. Section two 
describes the qualitative representation of variables 
and signals, and the qualitative calculus. An exam­
ple Q L M is introduced in section two. Perturbations 
of Q L M s and a transformation to a CSPs are dis­
cussed in section three. Section four concludes wi th 
a summary and ideas for future work . 

1.3 Perturbat ions and appl icat ions 
Engineers are frequently interested in how a system 
responds to perturbations. Consider a system A 
whose behaviour during a manoeuvre is described by 
a set M of init ial condit ions, inputs and outputs. 
Note that inputs and outputs are signals. One type 
of analysis is to change an input or init ial condit ion 
of a manoeuvre, or a parameter of the model , and 
perform a simulation to see the effects. A more dif­
f icult problem is to do the inverse. Given a desired 
perturbation on the outputs of a manoeuvre, how 
can this be achieved by perturbing inputs, ini t ial 
conditions or model parameters? The representa­
tions and algorithms used in answering these types 
of questions are called Qualitative Perturbation 
Analysis (QPA) and are the subject of this paper. 
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QPA can be used to find causes of discrepancies 
between systems and models. If output discrepan­
cies can be expressed as perturbations, any input, 
init ial condit ion or parameter modif ied by QPA can 
be considered a cause of the original discrepancies. 
There are many potential applications of QPA: 
Design: A design model is being used to design a 
system A with desired behaviour M. If simulations 
do not match M, QPA can determine design 
changes so that A wi l l meet its specification. 
Diagnosis: Let A be a real, malfunctioning system, 
let M contain symptoms. If QPA discovers causes 
for the symptoms, any perturbed parameters are 
possible faults in A. 
Validation: When A is a real system and M contains 
real measurements, QPA can be applied to perturb 
simulation parameters to improve their accuracy. 

This research is part of a project studying AI 
techniques for validation of aerodynamic models 
(see [Prag-89] for an overview). A knowledge-based 
assistant system, called the Flite System, is being 
built for simulation engineers. QPA is designed for 
the key role of reasoning about discrepancies in 
simulations. 

1.4 Linear models of a system 
Models for qualitative reasoning about continuous 
systems should have several properties: 

(a) related to human mental models 
(b) represent a wide variety of systems 
(c) represent relations between variables 
(d) represent time-varying signals 
(e) amenable to aggregation by subsystem 
(f) can be instantiated given recorded signals 

An appropriate class of models is first order 
linear differential equations (FOLDEs) , which have 
many applications in modern control theory [Frie-85] 
(e.g. to model spring-coupled masses, disti l lation 
columns etc.). For example, equations to model 
small motions in an aircraft's longitudinal axes are 
given in Figure 1. For some M a single set of 
FOLDEs may not be accurate, in which case M can 
be segmented and modeled by a sequence of 
F O L D E s , one per segment (see [Prag-89]). QPA is 
applicable to systems whose behaviour, after seg­
mentation, can be modeled by F O L D E s with con­
stant coefficients. 

Qualitative models can be derived f rom analytic 
models by representing all terms by qualitative 
values and interpreting equations as constraints 
[deKl-84], [Will-88]. Qualitative Linear Models 
(QLMs) are versions of F O L D E s , wi th a qualitative 
representation for signals and gains (coefficients of 
the FOLDEs are called gains). Q L M s clearly satisfy 
properties (b), (c) and (d) above. Property (e) is 
discussed in [lwas-88]. Given the model structure 
and signals, gains can be estimated by system iden­
ti f ication techniques [Eykh-74], thus (f) is satisfied. 

Whether QLM's satisfy (a) is more diff icult to 
argue. It does seem to be useful to reason about 
decoupled sub-systems, relative influences between 
variables, and relative magnitudes of signals. QLMs 
support these types of reasoning. 

The relation between linear models and complex 
simulation models is discussed in [Prag-89]. A map­
ping f rom QLMs to complex models wi l l in general 
be possible by exploiting the structure of the 
domain. Since this is a domain dependent problem, 
QPA is concerned only with linear models in their 
general form. 

1.5 The QPA strategy 
Given A and M, the first step of QPA is to compute 
a Q L M L and the qualitative representation of sig­
nals in M. Knowledge of A is only used to deter­
mine the equations of L. Next, QPA uses L and a 
differentiation formula (see 2.4) to compute con­
straints on the derivatives of the Q L M . Derivative 
constraints are crit ical to Q P A since they constrain 
values of signals at successive t ime points. Th i rd , 
output perturbations are applied (usually all at the 
same time point) , making L inconsistent. The final 
step of QPA is to formulate a constraint satisfaction 
problem (CSP) and solve to f ind new values of sig­
nals, and possibly gains, consistent with the pertur­
bations. The transformation to a CSP is designed 
such that the general algorithms of [Mack-77] (see 
also [Mohr-86] and [Han-88]) can be applied. 

1.6 Contr ibut ions 
This work makes contributions in three areas. First, 
QPA addresses the problem of inverse qualitative 
simulation, inferring input or model changes f rom 
output perturbations, which is not covered in [Kuip-
86]. Comparative analysis [Weld-88] is also con­
cerned with forward simulation, taking a system 
behaviour and a perturbation to the model to predict 
output perturbations. QPA differs f rom difference-
based reasoning [Falk-88] since QPA is concerned 
with systems modeled by differential equations, not 
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examples described by sets of axioms. 
The second contribution is the use of QLMs to 

represent relations between qualitative variables. 
QLMs model system behaviour over time with a sin­
gle set of relations, rather than by a sequence of 
states (e.g. as in [Forb-87]). FOLDEs have many 
applications; their qualitative analogues may also be 
widely useful. Making useful inferences about per­
turbations requires a representation of real numbers 
with a finer granularity than the commonly used 
{-1, 0, + 1 } . Q ILs , with a qualitative calculus, are 
proposed as an appropriate representation. 

The third contribution is an algorithm for re­
establishing consistency in a network of constraints 
after a perturbation which avoids the problems of 
label inference pointed out in [Davi-87]. 

2. Qualitative Representation and Calculus 

2.1 Representation of variables and signals 
Qualitative values are used to partit ion the real 
numbers [deK1-84]. In recent work (e.g. [Simm-86], 
[Davi-87], [Kuip-88]) intervals over the real numbers 
are discussed. QPA uses intervals to represent 
quantities which may be: estimated with a known 
variance; or measured with noise; or unknown but 
bounded. Another trend is to represent propor­
tionality between variables by a qualitative value. 
For example, [Kaim-86] has "orders of magnitude" 
and [Kuip-88] has "envelopes". In QPA gains are 
subject to modif ication and must be explicitly 
represented. 

A qualitative representation for QPA must be 
dense to allow perturbations and closed under the 
usual arithmetic operations. Intervals with real 
number endpoints are inappropriate due to problems 
with interval propagation (see 3.3) and problems of 
revising multi-variable constraints. Fndpoints could 
be chosen f rom an ordered space of qualitative 
values, using the techniques of [Kuip-86] to create 
new landmarks as needed. However this could lead 
to problems in keeping the qualitative space closed 
under arithmetic operations. 

Thus, a semi-quantitative approach seems 
appropriate. The representation of real-valued vari­
ables depends on a qualitative base where is a 
real number, Given the space 
of qualitative values is defined as all integer powers 
of . : 

large, a small x may force a new choice of and 
recomputing of all qualitative variables. Second, 
is better for domains wi th variables on different 
scales where relative changes are important (e.g. see 
Figures 2a, 2b). In {k }, choosing, say 
to represent changes in a would imply a small rela­
tive change in u (e.g. f rom 735 to 730) maps to a 
large change in the qualitative space (e.g. 73500 to 
73000). Th i rd , using allows a natural definit ion 
of small relative changes as perturbations (see 3.1). 

For Q P A , must be extended to intervals and 
more careful definitions of qualitative arithmetic are 
needed to ensure closure. 
Def in i t ion: A qualitative interval label (Q IL ) is an 
interval of the form [ q1 , q2 ] where 

► 

Def in i t ion: The function qual(x) maps a real number 
x to the minimal O I T [q1 ,q2 ] such that 
Def in i t ion: A Q I L [ q1 , q2 ] represents a variable x 
if 
Def in i t ion: Two basic selector functions on QILs are 
qmin([ql9 q2]) = q\, <j*nax([qu q2\) = q2 

Def in i t ion: The union and intersection of QILs are 
defined bv 

Notes: 1) Note that and can be easily general­
ized to more than two QILs . 
2) As in [Davi-87], union is actually the convex hul l . 

Recently, [Simm-86] and [Will-88] have pointed 
out the need for algebras which combine quantitative 
and qualitative aspects. Both these works rely on 
real numbers and algebra for part of the representa­
t ion task. QILs occupy an intermediate area, more 
quantitative than earlier systems (e.g. [Kuip-86] or 
[deKl-84]) and more qualitative than Ql [Will-88] 
and the Quantity Lattice of [Simm-86]. 

The base 4> determines how the real numbers are 
part i t ioned. For a particular appl icat ion,  can be 
chosen by analyzing the signals of a manoeuvre (e.g. 
examine init ial values, relative magnitudes of peaks) 
If a higher resolution is needed,  can be phanged 
dynamically A l l 

This representation is called Q-space 3 in [Murt-88]. 
It is convenient to choose since then larger k 
imply larger 

Another space of qualitative values can be defined 
by choosing and taking integer multiples of 

However, is has several 
advantages. can be arbitrarily small, 
while Thus, if is too 
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Q I L arithmetic can be performed exactly if  is a 
rational number or by simulating base <i> operations 
using integer exponents of . 

2.2 A Q L M example 
Figure 1 shows the equations of a linear model 
which applies to small motions in an aircraft's longi­
tudinal axes [Frie-85]. Figure 2 shows certain signals 
recorded during a "short period" manoeuvre, QILs 
representing the signals at crit ical points are super­
imposed on the signals in Figure 2 (QILs which 
would extend beyond the axes are drawn with an 
outward arrowhead). The segment f rom t = 1.0 
seconds to t = 4.8 seconds is the most interesting. 
Selected gains for this segment are shown in Table 3 
(to 2 significant decimal places) assuming  = 1.2. 

This example is based on near-real-world data and 
wi l l be referred to in the remainder of the paper. 

2.3 Basic Q I L arithmetic 
Ar i thmet ic on QILs , except for addit ion, follows the 
definitions of [Alef-83] and [Simm-86]. is clearly 
closed under the operations x,÷ and unary —, but 
not under the usual -f. Thus it is necessary to define 
Q I L addit ion, denoted by using the functions 
qual, qmin and qmax. 
Defini t ion: The sum of is 
defined by 

2.4 Qualitative derivatives 
A simplif ication typical of qualitative reasoning is 
that not all measured points of a signal are explicitly 
represented. An important decision is whether to 
represent time using intervals or a subset of meas­
ured points. The key problem is how to express the 
relation between consecutive qualitative values of a 
signal. In [Kuip-86], derivatives are known (either 
inc, std or dec) and all functions are "reasonable", 
therefore all transitions can be enumerated. Simi­
larly, [Forb-87] assumes the existence of a complete 
envisionmcnt to predict future behaviours. In both 
cases fi l tering techniques are used to prune 
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inconsistent behaviour sequences. 

Derivatives in Q P A can be any value, therefore 
relations between consecutive values in a qualitative 
signals must be qualitative equations. For an inter­
val t ime representation, there is no apparent way to 
relate the values of signals and derivatives over an 
interval to their values over the next, or previous, 
interval. However, for a point-based representat ion, 
the derivative at a point can be defined in terms of 
adjacent points. Therefore, Q P A uses the fo l lowing 
def in i t ions. 

Def in i t ion : A signal x(t) is a sequence of N equally 
spaced measurements of x, x(t) = < x 0 ' 

These constraints are used, for example, to force 
a(2.5) to be smaller ( i .e. in the interval [0.13,0.16]). 
QPA must determine Q I L s for qa(2.Q), qa(2.0) and 
q'a(2.5) wh ich satisfy a derivative constraint of the 
fo rm of (2.2) w i th qa(2.5) = [0.13,0.16]. 

Rquation (2.2) is valid even though q'x(t) does not 
necessarily represent the derivative of the real signal 
represented by qx(t). For example, in Figure 2a, 
the qualitative signals representing the state variable 
u has constant derivatives equal to [0, 0] . ( In most 
cases tested, the qualitative derivative does in fact 
bound the real derivative.) 

The points t0 , ti , . . . , tn at wh ich the qualita­
tive signal is defined are called cut-points. Cut-
points are chosen where the slope of x(t) changes 
(e.g. at maxima and minima) so that between cut-
points slopes are nearly constant. This ensures (2.1) 
wi l l be a reasonable approximat ion to derivatives. 
The cut-points of a manoeuvre are the union of cut-
points of signals. A simple segmentation-
approx imat ion algori thm is used to select cut-points 
(see [Pavl-73]). Table 4 shows the cut-points and 
qualitative representation for some of the signals of 
Figure 2, again w i th 2 significant digits and = 1.2. 

2.5 In terpre t ing Q L M s as constraints 

In Q P A , Q L M equations are interpreted as con­
straints on val id labels. 

Def in i t ion : A constraint has the f rom 
<exp ress ion> , where the expression involves only 
the operations 

Def in i t ion : A constraint is satisfied or consistent if 
the O I L resulting f rom evaluating the <exprcss ion> 
part contains the O I L labeling the <va r iab le> part. 

A Q L M can be viewed as a network of constraints 
wi th two kinds of variables, basic and intermediate. 
Basic variables are those which can be measured or 
est imated, ( i .e. gains, terms qual{ti— t i -1) and each 
qx j of a qualitative signal). Intermediate variables 
are computed by evaluating expressions containing 
only basic variables and previously computed inter­
mediate variables (e.g. qualitative derivatives). 

When a Q L M is ini t ial ly computed, all constraints 
are consistent since the Q I L labeling the <va r i ab le> 
is the result of evaluating the <express ion> part. 
When variables in a Q L M are modi f ied ( i .e. labeled 
wi th a dif ferent Q I L ) some constraints may become 
inconsistent. Re-establishing consistency in a Q L M 
after some ini t ial modif icat ions is called a compensa­
tion problem. 

3. Consistency after Perturbations 

3.1 Perturbat ions of Q I L s 

A perturbat ion is by def in i t ion a small change in a 
quantity. This is formal ized for Q I L s as fo l lows: 

Def in i t ion : A perturbation is a part ial funct ion 
f rom Q I L s to Q ILs determined by a pair of integers 

Notes: 1) A perturbat ion may be undef ined on some 
Q I L s , for example is undef ined. 
2) A perturbat ion can never change the sign of an 
end-point of a Q I L . 

Def in i t ion : The order of a perturbat ion Pr,s is 
max 

A compensation problem is defined by a Q L M 
and a set of ini t ial perturbat ions. Q P A must solve 
the compensation problem by perturbing some of 
the remaining variables in the Q L M . For example, 
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There are a number of technical diff icult ies in 
compensating individual constraints. In particular, 
compensating addit ion and mult ip l icat ion constraints 
can lead to mult ip le solutions (some heuristics can 
be used to reduce the number of solutions). It is 
not necessary to discuss all the details, since there 
are deeper problems with propagating perturbations 
and an elegant approach to compensation which 
overcomes these problems. 

3.3 Problems with compensat ion 

( l i ven a perturbed Q L M , O P A must compensate all 
perturbed constraints to re-establish consistency. 
Compensation is a special case of interval propaga­
t ion [Davi-87], since a perturbation re-labels a vari­
able wi th a new O I L . This suggests a control struc­
ture similar to the Waltz algori thm [Walt-75j could 
be used. 

The Waltz algori thm is based on an operat ion, 
tradit ional ly called R E V I S E , applied to a constraint 
C which removes any value v f rom the set of possi­
ble values of x if C cannot be satisfied with x = v. 
For some perturbat ions, compensation may have to 
enlarge a Q I L ( i .e. permit more values of x). Con­
sider the constraint [1,16] = [1/2,2] X [2,8], and sup­
pose the left side is f ixed. A perturbation 
P0-1( [2,8]) forces a compensation P0-1( [1/2,2]). 
Thus for compensation problems in Q P A there is no 
analogue to the R E V I S E operat ion. 

Several problems wi th using the Waltz algorithm 
to propagate intervals are analyzed in [Davi-87]. In 
part icular, for systems of constraints wi th linear 
relations the Waltz algor i thm "tends to go into in f in­
ite loops even for well behaved sets of constraints" 
[Davi-87, p. 305]. Yet the constraints in a Q L M are 
not at al l wel l behaved, as they contain many loops. 
For example, in figure 1, α(t i) —> q(t i) —> q{ti) —> 
α(ti) —> α(t i), where —> is read as "appears in a con­
straint w i t h " . In f in i te loops are also possible if the 
starting state is inconsistent, which is precisely the 
case in a compensation prob lem. A problem 
inherent in interval ari thmetic is the value of an 
expression depends on the order of evaluation of 
sub-expressions [Alef-83, ch . 3]. Thus the order in 
which constraints are selected can affect the 

eventual solution and not just the running t ime. 

3.4 Transformat ion to a CSP 

A constraint satisfaction prob lem is specified by giv­
ing a set of variables, each wi th an associated 
domain, and a set of constraints. In O P A the con­
straints are the equations of the Q L M and section 
2.5 defines when a constraint is satisfied. The key 
idea in the transformation is to view Q I L s as atomic, 
not subject to modi f icat ion dur ing propagat ion. 
Then the domain of a variable is not its Q I L , but the 
set of possible Q I L s wi th which it may be labeled 
during compensation. This t ransformat ion avoids 
the above mentioned problems wi th interval propa­
gation and permits QPA to use the consistency algo­
ri thms of [Mack-77], [Mohr-86] and [Han-88]. In 
particular, compensation cannot go into inf in i te 
loops since it is based on solving a f ini te CSP. 

The important part of the t ransformat ion is def in­
ing the domain of each variable. In Q P A there is a 
trade-off between the resolution the size of per­
turbations and the complexity of compensat ion. A 
finer discretization can be defined by setting  
closer to 1, but then larger order perturbations may 
be required. This increases the complexi ty of com 
pensation, since there wi l l be more solutions for a 
perturbed constraint. 

When using QPA in a part icular domain , the 
choice of the maximum order of perturbations must 
depend on . Let Kb be the maximum order of a 
perturbation for a basic variable. 

Def in i t ion: Let x be a basic variable labeled by A. 
Then A 'S compensation domain is 

For intermediate variables, the def in i t ion of a 
compensation domain is problemat ic . Perturbations 
on inputs to a mult ip l icat ion constraint could force a 
higher order perturbat ion as compensat ion on the 
output. A second constant determines the 
order of perturbations al lowed on intermediate vari­
ables. 
Def in i t ion: Let y be an intermediate variable labeled 
by B. Then y's compensation domain is 

The mapping f rom a compensation prob lem to a 
CSP, as defined so far, makes each compensat ion 
domain a set of Q I L s . To f ind consistent quali tat ive 
solutions for the compensation p rob lem, the 
domains of basic variables which are ini t ia l ly per­
turbed are set to be exactly the perturbed Q I L . Th is 
guarantees the solut ion of the CSP, i f i t exists, w i l l 
include, and be consistent w i t h , the perturbat ions 
input to Q P A . In the CSP there is no d ist inct ion 
between input and output variables, therefore com­
pensating perturbations on outputs ( i .e . reverse 
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consistent wi th the new label on qα(2.6). 

3.2 Consistency of indiv idual constraints 



simulation) is no more dif f icult than solving for per­
turbed inputs. Network consistency algorithms use 
search to find consistent solutions. The possibility 
of multiple solutions, shows the possible trade-offs 
between different compensations. The solution of 
the CSP is the qualitative solution for OPA. 

Finally, note that specifying the domain as a finite 
set of QILs would be impossible without a qualita­
tive (i.e. discretized) representation for cndpoints. 

4. Summary 

4.1 Summary 
This paper has presented the family of qualitative 
linear models, which is applicable to reasoning 
about dynamic systems with feedback and external 
control . QLMs are qualitative versions of f irst-order 
linear differential equations, as opposed to device-
centered models. An important problem when rea­
soning about dynamic systems is reasoning about 
perturbations. By using a qualitative interval label 
representation, perturbations to a system can be pre­
cisely defined. Since the Q I L representation is qual­
itative, it is possible to reason about perturbations 
using network consistency algorithms whose com­
plexity is well known. Thus the qualitative represen­
tation avoids problems of propagating interval 
labels. 

Most of QPA has been implemented and tested, 
including the basic qualitative calculus, operations 
on signals, and compensating perturbed constraints. 
Constraint satisfaction is presently implemented by a 
simple breadth-first search. 

4.2 Future work 
There are some areas for further research suggested 
by QPA and its application to dynamic systems. 
First, it would be interesting to extend QPA to more 
general differential equations. Second, the use of 
QPA in reasoning about discrepancies should be 
pursued. A possible analogy with mathematical 
optimization is under investigation, based on the 
idea of introducing perturbations to minimize 
discrepancies. 
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