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A b s t r a c t 

Most non-r igid mot ion is much simpler than 
is generally thought , having many fewer de­
grees of freedom than , for instance, 3-D shape. 
The relat ively circumscribed nature of non-
r ig id mot ion can be seen by examin ing i t f rom 
the perspective of vibration modes. The fact 
tha t a smal l number of parameters are suffi­
cient to describe non-r ig id mot ion mean that 
it is plausible to use sensory data to recover 
a nearly complete physical model of an ob­
ject , so tha t we can, for instance, predict its 
response to imp ing ing forces. One perceptual 
task of considerable interest is est imat ing ma­
ter ia l propert ies such as stiffness, s t rength, and 
mass by watch ing, touching or l istening to col­
lisions. We derive equations which allow es­
t imates of these mater ia l propert ies to be ex­
t racted f r om visual and tact i le data, and spec­
ulate on the use of aural data. 

1 I n t r o d u c t i o n 
Non-r ig id mot ion seems to be very complex. When an 
object is s t ruck so tha t it moves in a non-r ig id , elastic 
manner, each po in t on the surface goes off in a different 
d i rect ion. It seems, therefore, tha t a fu l l description of 
non-r ig id mot ion must have even more degrees of free­
dom than a fu l l descript ion of shape. Despite this ap­
parent complexi ty, however, people are often able to ac­
curately predict the t ime course of objects experiencing 
non-r ig id behavior, and are even able to infer mater ia l 
properties f rom observing such mot ion . 

For instance, people can watch a tree l imb swaying 
in the w ind and make a good estimate of i ts stiffness, 
st rength and mass. More commonly, when someone 
wants to determine the propert ies of an object they poke 
at i t to see and feel i t deform, and tap it to hear i t res­
onate. From these v isual , tact i le , and audi tory cues we 
are somehow able to ascertain mater ia l propert ies. 

In this paper we w i l l examine the f in i te element 
method of s imu la t ing the dynamics of collisions, and 
show tha t i t can be decomposed in to simple, closed-form 
differential equations describing the object 's vibration 
modes. We w i l l then show tha t for most objects under 
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most condit ions a relat ively small number of modes are 
required to accurately describe how the object deforms 
as a funct ion of t ime. F inal ly , we wi l l show that for 
simple collisions we can estimate the object's material 
propert ies by observing these v ibrat ion modes using vi­
sual, tact i le or even audi tory data. 

2 Backg round : T h e F in i te 
E lement M e t h o d 

The f in i te element method ( F E M ) is a technique for sim­
u la t ing the dynamic behavior of an object. In the F E M 
the continuous var iat ion of displacements throughout an 
object is replaced by a f in i te number of displacements 
at so-called nodal points. Displacements between nodal 
points are interpolated using a smooth funct ion. En­
ergy equations (or funct ionals) can then be derived in 
terms of the nodal unknowns and the result ing set of 
simultaneous equations can be i terated to solve for dis­
placements as a funct ion of imping ing forces. In the 
dynamical case these equations may be wr i t t en : 

Mu + D u + Ku = f (1) 

where u is a 3n x 1 vector of the (x , y, z) displacements 
of the n nodal points relat ive to the objects' center of 
mass, M, D and K are 3n by 3n matrices describing 
the mass, damping, and mater ia l stiffness between each 
point w i th in the body, and f is a 3n x 1 vector describ­
ing the ( x , y , z ) components of the forces act ing on the 
nodes. Th is equat ion can be interpreted as assigning a 
certain mass to each nodal point and a certain mate­
r ia l stiffness between nodal points, w i t h damping being 
accounted for by dashpots attached between the nodal 
points. The damping mat r i x D is normal ly taken to 
be equal to s\M + s2K for some scalars s1, s2. When 
S1≠ 0 S2 ≠ 0 this is called Raleigh damping, for s2 = 0 
it is called mass damping, and for s1 = 0 stiffness damp­
ing. 

To calculate the result of apply ing some force f to 
the object one discretizes the equations in t ime, picking 
an appropriately smal l t ime step, solves this equation 
for the new u, and iterates un t i l the system stabilizes. 
Direct ( imp l ic i t ) solut ion of the dynamic equations re­
quires inversion the K ma t r i x , and is thus computat ion­
al ly expensive. Consequently expl ic i t Euler methods 
(which are less stable, but require no mat r i x inversion) 
are quite often appl ied. 

Even the expl ic i t Euler methods are qui te expensive, 
because the matrices M, D, and K are quite large: for 
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Figure 1: (a) A cyl inder, (b) a l inear deformat ion mode 
in response to compression, (c) a linear deformation 
mode in response to acceleration, (d) a quadrat ic mode 
in response to a bending force, (e) superposit ion of both 
linear and quadrat ic modes in response to compression, 
( f ) superposit ion of bo th linear and quadrat ic modes in 
response to acceleration. 

To obta in an accurate s imulat ion of the dynamics of 
an object one simply uses linear superposit ion of these 
modes to determine how the object responds to a given 
force. Because Equat ion 4 can be solved in closed fo rm, 
we have the result tha t for objects composed of l inearly-
deforming materials the non-rigid behavior of the object 
in response to an impulse force can be solved in closed 
form for any time t. The solut ion is discussed in Section 
4. In environments w i t h more complex forces, however, 
analyt ic solut ion becomes cumbersome and so numerical 
solut ion is preferred. Either expl ic i t or impl ic i t solution 
techniques may be used to calculate how each mode 
varies w i t h t ime. 

Non-l inear materials may be modeled by summing the 
modes at the end of each t ime step to fo rm the mater ia l 
stress state which can then be used to dr ive nonlinear 
plastic or viscous mater ia l behavior. 

4 Number Of Modes Required 
The moda l representation decouples the degrees of free­
dom w i t h i n the non-r igid dynamical system of Equat ion 
1, but it does not reduced the to ta l number of degrees 
of freedom. However once decoupled, we can separately 
analyze the various modes in order to determine which 
ones are required in order to obta in an accurate descrip­
t ion of an object 's non-r igid dynamic behavior. 

The most impor tan t observation is tha t modes asso­
ciated w i t h high resonance frequencies normal ly have 
l i t t le effect on object shape. Th is is because: 

• The displacement ampl i tude for each mode is in­
versely p ropor t iona l to the square of the mode's 
resonance frequency. Thus higher frequencies t yp i ­
cally have small ampl i tudes. 



1. 2. 

Figure 2: A ball coll 

• Damping is propor t iona l to the mode's resonance 
frequency. Thus higher frequency vibrat ions dissi­
pate quickly. 

• Frequencies are excited in propor t ion to the fre­
quency content of the inpu t force. The force gen­
erated by simple collisions typical ly have a roughly 
Gaussian t ime course, so tha t an ind iv idual reso­
nance frequency / receives energy propor t ional to 

e-J 1° Thus low frequencies typ ical ly receive more 
energy than high frequencies. 

The combinat ion of these effects is that high-
frequency modes have very l i t t le ampl i tude, and even 
less effect, in simple collisions. As a consequence much 
more efficient (and st i l l accurate) s imulat ion of an ob­
ject 's dynamics can be accomplished by discarding the 
smal l , high-frequency modes, and considering only the 
large-ampl i tude, low-frequency modes [5,6]. Exact ly 
which modes to discard can determined by examining 
their associated eigenvalue, which determines the reso­
nance frequency. 

Exper imenta l ly , we have found tha t most common-
place mu l t i - body interact ions can be adequately mod­
eled by use of only r ig id-body, l inear, and quadrat ic 
st ra in modes. Figure 2, for instance, shows a example 
of a s imulated non-r ig id dynamic in teract ion: a bal l col­
l id ing w i t h a two-by-four. As can be seen, the interac­
t ion and resul t ing deformations look realistic despite the 
use of only linear and quadrat ic modes.1 Figure 1 also 
i l lustrates how use of l inear and quadrat ic modes can 
accurately s imulate non-r ig id mot ion . Note, however, 
higher-order modes are required to accurately model the 
objects whose dimensions differ more than an order of 
magni tude. 

1 Perhaps the most impressive fact about this example, 
however, is the speed of computation: Using a SymboUcs 
3600 (with a speed of roughly one MIP) , it requires only one 
CPU second to compute each second of simulated time! 

3. 4. 

id ing wi th a two-by-four 

4 .0 .1 U s e o f F i x e d M o d e s 
Normal ly , in either the finite element or modal meth­

ods, the mass, damping, and stiffness matrices are not 
recomputed at each t ime step. The use of fixed M , D, 
and K (or, equivalently, fixed modes) is well- justif ied as 
long as the mater ial displacements are small . The defi­
n i t ion of " sma l l / ' however, is quite different for different 
modes. Because the eigenvalue decomposit ion in Equa­
t ion 2 performs a sort of pr incipal-components analysis, 
it is the gross object shape (e.g., its low-order moments 
of inert ia) determine the low-frequency modes, which as 
a consequence are quite stable. High-frequency modes 
are much less stable because they are determined by the 
fine features of the object 's shape. 

In the standard f inite element formulat ion the action 
of each mode is d is t r ibuted across the entire set of equa­
t ions, so that one must recompute the mass and stiff­
ness matrices as often as required by the very highest-
frequency v ibrat ion modes. When these high-frequency 
modes are discarded the mass, damping, and stiffness 
matrices need to be recomputed much less frequently. In 
most si tuat ions it is sufficient to use single, fixed set of 
low-frequency modes throughout an entire s imulat ion. 

5 Estimation of Material 
Properties 

Let us imagine that we have seen the image sequence 
shown in Figure 2, and have been able to compute a ful l 
3-D descript ion of the object 's shape at each instant. 
How can we estimate the mater ial properties of these 
objects? The first step is to compute for each object a 
description that decomposes the object mot ion in to its 
low-order modes. 

Th is can be accomplished by forming the vector p 
that describes each point on the object 's surface, and 
then comput ing the matrices M, D, and K matrices 
using uni t values for density and spring constant. Be­
cause these matrices are determined by the vector p up 
to an overall constant, the eigenvectors found by solving 
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Equat ion 2 w i l l be ident ical regardless of the mater ia l 
properties (except ing, of course, non- l inear ly-behaving 
mater ia ls) ; only the eigenvalues depend upon the mate­
r ia l propert ies. Thus given the object 's shape, we can 
direct ly determine Φ, the object 's deformat ion modes. 

In this s t ra ight forward approach the matrices M, D, 
and K can become quite large, so tha t solut ion to Equa­
t ion 2 becomes di f f icul t . A more efficient method of de­
termin ing Φ is be to fit either an eight or twenty point 
polygonal model to the sensed data (perhaps by use of 
the techniques described in reference [2]), and use the 
values of those points to construct a much smaller vector 
p. Given eight points we can fo rm M, D, and K ma­
trices that are 24 x 24 in size, and then solve Equat ion 
2 to obta in the object 's linear v ibra t ion modes. Given 
twenty points the matrices are 60 x 60, and produce 
both linear and quadrat ic v ibra t ion modes. 

A st i l l more efficient scheme can be obtained by not­
ing that the axes of the object can allow us to di rect ly 
disentangle the action of the various modes, so that by 
est imat ing axis shape and length we can avoid solving 
Equat ion 2. Th is approach is described in more detai l 
below. 

Given Φ and a description p(t) of the object 's shape 
over t ime, we can di rect ly decompose the object shape 
into a vector p ( to ) describing the object 's shape at t ime 
/ = t0

 a n d the ampl i tudes u(t) = Φ l ( p ( t ) — p ( t 0 ) ) of 
each of the ind iv idua l modes over t ime. The generic 
t ime behavior of each mode u i,(t) in response to an im­
pinging force is given by Equat ion 4. The solut ion to 
this equation is 

which is graphed in Figure 3(b) . 
Because the t ime behavior of u, is a funct ion of Mi,-, 

D i and K i, in simple si tuat ions we can recover the phys­
ical parameters of the object 's mater ia l by measuring u i 

over t ime. Th is is par t icu lar ly s t ra ight forward when the 
mode is underdamped, as in Figure 3, so tha t several cy­
cles of deformat ion occur, because in this case we need 
only measure the frequency and ampl i tude of the de­
format ion peaks. When the mode is cr i t ical ly damped 
or overdamped only one peak occurs; however it is st i l l 
possible to measure the mater ia l properties f rom peaks 
in the f irst derivat ive of the modal ampl i tude. 

For example, in the sequence of Figure 2 we can ob­
serve the bending of the two-by-four in response to the 
impact of the bal l , as i l lust rated by Figure 4. If we plot 
the ampl i tude of this deformat ion mode in response to 
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5.1 E s t i m a t i o n of Mass 
By tracking geometry over t ime we can estimate the 
material properties up to an overall scale constant that 
depends upon the amount of mass involved in the par­
ticular v ibrat ion mode. The obvious question, then, is 
how much information is required to estimate the ma­
terial density? To answer this question we surveyed the 
CRC Handbook, which lists the density of several hun­
dred materials. We found that the listed densities could 
be clustered into four categories: metals, stones, bio­
logical materials, and woody (cellulose) materials. The 
range of densities for metals was roughly 7.0 to 10.0, 
for stone materials roughly 2.3 - 2.8, for biological ma­
terials (gums, resins, soap, etc.) roughly 0.9 - 1.2, and 
for woody materials (e.g., common woods, plant stems, 
etc.) roughly 0.4 - 0.6. 

Thus if the viewed material can be classified into one 
of these four categories, then it appears that the den­
sity can be estimated w i th an accuracy of roughly ±10 
percent. Consequently it appears that the force, mass, 
damping, and spring constants can also be estimated 
w i th similar accuracy. 

5.2 S ta t i c L o a d i n g 
When a static load is applied to an object, a fixed de­
formation occurs. By examining Equation 4 we see that 
the amount of static deformation u i, is a function only 
of the loading force f i, and the stiffness constant K i as­
sociated w i th the particular mode. Thus if we know the 
modes (either f rom analysis of the static shape or by the 

methods described in the next section) and the imping­
ing force then we can determine the material stiffness 
K i which is perhaps the most important of the basic 
material properties. In many situations, particularly 
when using a tacti le sensor, this method of estimating 
material properties is probably the most practical. 

5.3 Specu la t ion : E s t i m a t i o n f r o m 
O t h e r Moda l i t i e s 

The same ideas can be applied to the tactile and audi­
tory senses: the modal v ibrat ion can be sensed either 
by touch or by sound (via coupling between the air and 
the object surface). The notion of using a tactile sensor 
to produce a static measure of material stiffness has al­
ready been mentioned above. However a much stronger 
result can be achieved by using either tactile or audi­
tory data given that we can apply a force fi so as to 
excite single mode i. In this case, because we know 
the force, we can measure the modal mass M, directly 
( f rom Equation 8), and thus obtain D, and K i, without 
knowledge of object geometry, modes, or density. 

For instance, if we "poke" or " tap" an object - exert 
a sharp blow normal to the surface - we can transfer 
most of the energy into a single, localized compression 
mode. To the extent that we are able to isolate a single 
mode, we need no knowledge of object geometry, modes, 
or density in order to estimate the physical parameters. 
In experiments where the sound spectrum produced by 
tapping has been measured it appears that most of the 
energy is indeed transferred into a single mode if the 
object's geometry is uniform in the area of the tap — 
e.g., the object is not hollow, and the tap occurs far 
f rom any discontinuity. 

6 Direct Observation of Modes 
We have described a procedure of f i t t ing data points, 
computing M, D, K. and then solving for Φ in order to 
obtain the object's v ibrat ion modes. Al though mathe­
matically sound, this procedure seems too complex and 
expensive to be useful in some applications. Similarly, 
the procedure is complex to be an account of human ca­
pabilit ies. Thus it is desirable to develop a theory that 
is simpler even if less accurate. 

6.1 E s t i m a t i o n v ia s y m m e t r y axes 
The first approach to direct observation of the modes 
depends on the observation that the object's axes of 
symmetry have a special status in modal analysis: they 
are the singular lines (and planes) of the various vibra­
tion modes, i.e., the places along which various vibra­
tion modes cause no deformation. Thus along the axes 
of symmetry the actions of the different vibrat ion modes 
become part ial ly decoupled. 

Thus one direct way to estimate material properties 
is track the shape of symmetry axes over t ime. Time 
variation in the length of an axis is a function primari ly 
of linear compression modes, while the time variation 
in axis curvature is pr imar i ly a function of quadratic 
bending modes. Either the axis length or curvature can 
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be tracked over t ime to produce a graph such as shown 
in Figure 3, and the mater ia l properties calculated by 
use of Equat ions 8. The s impl ic i ty of this method is 
i ts greatest v i r tue , however, in complex collisions the 
presence of many active v ibrat ion modes may destroy 
the accuracy of the approach. 

6.2 D i rec t es t ima t i on of moda l 
amp l i t udes 

A second approach is to f i t the available shape data w i th 
a simple volumetr ic model which can be parametr ical ly 
deformed in any of the expected deformat ion modes. 
F i t t i ng the parameters of such a model to the sensor 
data provides a direct, simultaneous estimate of all of 
the modal ampl i tudes. Several variat ions on this ap­
proach to ext ract ing object geometry have been suc­
cessfully demonstrated on range data [7,8,9,10]. As w i th 
symmetry axes, the values of such a model 's deforma­
tion parameters can be tracked over t ime and mater ia l 
properties est imated by use of Equations 8. The advan­
tage of this somewhat more computat ional ly expensive 
approach is tha t is more l ikely to produce good esti­
mates of modal ampl i tudes in relat ively complex situa­
t ions. 

6.3 E s t i m a t i o n f r o m stat ic imagery 
In recent years both Pent land [11] and Ley ton [12] have 
suggested that an object 's stat ic shape can be analyzed 
to produce an abstract causal account of the object 's 
history. T h a t is, tha t a object 's shape can be de­
composed in to a simple pro to typ ica l shape (a cube, a 
sphere) that has been modif ied by a sequence of forces 
or fo rming operations to achieve its present state. The 
advantage of this type of descript ion is that produces a 
prototype-based representation tha t can simpl i fy object 
recognit ion [9] and which fits human psychological data 
[13]. 

It can be seen, in retrospect, that both of these theo­
ries were a t tempt ing to capture the not ion that objects 
have a l imi ted repertoire of modal deformations. T h a t 
is, if one starts w i t h a f ixed proto typ ica l shape (a cyl in­
der, sphere, or cube for instance) an applies a series of 
forces to elastically deform tha t object, then in general 
the simplest possible descript ion of the result ing shape 
is exactly the or iginal shape plus the modal amplitudes 
that were produced by the imping ing forces. Further, 
this descript ion of object shape has considerable pre­
dict ive power, for i t contains most of the informat ion 
needed to estimate mater ia l propert ies, determine what 
forces were appl ied, and to predict the object 's future 
dynamic behavior. 

7 S u m m a r y 
Non-r ig id behavior is normal ly simpler than it appears 
f rom cursory examinat ion of the F E M equations that 
describe such behavior. By breaking such mot ion into 
v ibra t ion modes, we can show tha t most of the degrees 
of freedom have very l i t t le energy or ampl i tude. Thus 
quite accurate descriptions of non-r igid behavior can be 

obtained by knowing the ampl i tude and phase of rela­
t ively few v ibrat ion modes. 

Using standard machine vision techniques the param­
eters of these modes can be estimated f rom sensory data. 
By t racking modal ampl i tudes across t ime (or, perhaps, 
even f rom analysis of static imagery!) we can then mea­
sure mater ia l properties, predict fu ture behavior, and 
perform other ecologically impor tan t tasks. 
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