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Abstract

Most non-rigid motion is much simpler than
IS generally thought, having many fewer de-
grees of freedom than, for instance, 3-D shape.
The relatively circumscribed nature of non-
rigid motion can be seen by examining it from
the perspective of vibration modes. The fact
that a small number of parameters are suffi-
cient to describe non-rigid motion mean that
it is plausible to use sensory data to recover
a nearly complete physical model of an ob-
ject, so that we can, for instance, predict its
response to impinging forces. One perceptual
task of considerable interest is estimating ma-
terial properties such as stiffness, strength, and
mass by watching, touching or listening to col-
lisions. We derive equations which allow es-
timates of these material properties to be ex-
tracted from visual and tactile data, and spec-
ulate on the use of aural data.

1 Introduction

Non-rigid motion seems to be very complex. When an
object is struck so that it moves in a non-rigid, elastic
manner, each point on the surface goes off in a different
direction. It seems, therefore, that a full description of
non-rigid motion must have even more degrees of free-
dom than a full description of shape. Despite this ap-
parent complexity, however, people are often able to ac-
curately predict the time course of objects experiencing
non-rigid behavior, and are even able to infer material
properties from observing such motion.

For instance, people can watch a tree limb swaying
In the wind and make a good estimate of its stiffness,
strength and mass. More commonly, when someone
wants to determine the properties of an object they poke
at it to see and feel it deform, and tap it to hear it res-
onate. From these visual, tactile, and auditory cues we
are somehow able to ascertain material properties.

In this paper we will examine the finite element
method of simulating the dynamics of collisions, and
show that it can be decomposed into simple, closed-form
differential equations describing the object's wvibration
modes. We will then show that for most objects under
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most conditions a relatively small number of modes are
required to accurately describe how the object deforms
as a function of time. Finally, we will show that for
simple collisions we can estimate the object's material
properties by observing these vibration modes using vi-
sual, tactile or even auditory data.

2 Background: The Finite
Element Method

The finite element method (FEM) is a technique for sim-
ulating the dynamic behavior of an object. In the FEM
the continuous variation of displacements throughout an
object is replaced by a finite number of displacements
at so-called nodal points. Displacements between nodal
points are interpolated using a smooth function. En-
ergy equations (or functionals) can then be derived in
terms of the nodal unknowns and the resulting set of
simultaneous equations can be iterated to solve for dis-

placements as a function of impinging forces. In the
dynamical case these equations may be written:
Mu + Du+ Ku =f (1)

where u is a 3n x 1 vector of the (x, y, z) displacements
of the n nodal points relative to the objects' center of
mass, M, D and K are 3n by 3n matrices describing
the mass, damping, and material stiffness between each
point within the body, and fis a 3n x 1 vector describ-
ing the (x,y,z) components of the forces acting on the
nodes. This equation can be interpreted as assigning a
certain mass to each nodal point and a certain mate-
rial stiffness between nodal points, with damping being
accounted for by dashpots attached between the nodal
points. The damping matrix D is normally taken to
be equal to s\ M + s,K for some scalars s;, s, When
S# 0 S, # 0 this is called Raleigh damping, for s, = 0
it is called mass damping, and for s; = 0 stiffness damp-
Ing.

To calculate the result of applying some force f to
the object one discretizes the equations in time, picking
an appropriately small time step, solves this equation
for the new u, and iterates until the system stabilizes.
Direct (implicit) solution of the dynamic equations re-
quires inversion the K matrix, and is thus computation-
ally expensive. Consequently explicit Euler methods
(which are less stable, but require no matrix inversion)
are quite often applied.

Even the explicit Euler methods are quite expensive,
because the matrices M, D, and K are quite large: for
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instance, the simplest 3-D parabolic element produces
60 x 60 matrices, corresponding to the 60 unknowns in
the 20 nodal points (z;, i, 2;) which specify the element
shape. In most situations M, [, and K are very much
larger than 60 x 60, so that typically hundreds or thou-
sands of very large matrix multiplications are required
for each second of simulated time. For more details see
references [1,2].

3 Modal Analysis

Because M, D and K are normally positive definite
symmetric, and M and D are assumed to be related by
a scalar transformation, Equation 1 can be transformed
into 3n independent differential equations by use of the
whitening transform, which simultaneously diagonalizes
M, D, and K. The whitening transform is the solution
to the following eigenvalue problem:

Ao = M~ 1K¢ (2)

where A and ¢ are the eigenvalues and eigenvectors of
M-'K.

Using the transformation u =
Equation 1 as follows:

T Mo+ ¢TDopin+ ¢ Kpu=¢T f . (3)

In this equation ¢T M ¢, éTDd) and ¢>TI\ ¢ are dlagonal
matrices, so that Iif we let M= ¢"M¢, D Do,
K = d)Tde) and f = ¢T f then we can write Equatlon
J as 3n independent equations:

Mu; + Dyw; + Ky = f; (4)

where M; is the #** diagonal element of M, and so
forth. Because the modal representation diagonalizes
these matrices it may be viewed as preconditioning the
mass and stiffness matrices, with the attendant advan-
tages of better convergence and numerical accuracy.

What Equation 4 describes is the time course of one
of the object’s vibration modes, hence the name modal
analysis [3]. 'The constant M; is the generalized mass
of mode 2, that 1s, it describes the inertia of this vibra-
tion mode Slmllarly, D;, and K; describe the dampmg
and spring stiffness associated with mode ¢, and f; is
the amount of force coupled with this vibration mode.
The i*" row of ¢ describes the deformation ‘the object
experlences as a consequence of the force f;, and the
eigenvalue \; 1s proportional to the natural resonance
frequency of that vibration mode.

Figure 1 illustrates the some of the first and second or-
der modes of a cylinder. Figure 1(a) shows the cylinder
at rest, (b) shows the cylinder experiencing a linear de-
formation in response to a compressive force, (¢) shows
the cylinder experiencing a linear shear deformation in
response to an accelerating force, (d) shows a quadratic
deformation in response to a centrally-applied (bend-
ing) force, and (e) and (f) show how both the linear
and second order deformations can be superimposed to
produce a more accurate simulation of the object’s re-
sponse to the compressive and accelerating forces shown

in (b) and (c).

¢u we can re-write
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Figure 1. (a) A cylinder, (b) a linear deformation mode
in response to compression, (c) a linear deformation
mode in response to acceleration, (d) a quadratic mode
in response to a bending force, (e) superposition of both
linear and quadratic modes in response to compression,
(f) superposition of both linear and quadratic modes in
response to acceleration.

To obtain an accurate simulation of the dynamics of
an object one simply uses linear superposition of these
modes to determine how the object responds to a given
force. Because Equation 4 can be solved in closed form,
we have the result that for objects composed of linearly-
deforming materials the non-rigid behavior of the object
in response to an Iimpulse force can be solved in closed
form for any time t. The solution is discussed in Section
4. In environments with more complex forces, however,
analytic solution becomes cumbersome and so numerical
solution is preferred. Either explicit or implicit solution
techniqgues may be used to calculate how each mode
varies with time.

Non-linear materials may be modeled by summing the
modes at the end of each time step to form the material
stress state which can then be used to drive nonlinear
plastic or viscous material behavior.

4 Number Of Modes Required

The modal representation decouples the degrees of free-
dom within the non-rigid dynamical system of Equation
1, but it does not reduced the total number of degrees
of freedom. However once decoupled, we can separately
analyze the various modes in order to determine which
ones are required in order to obtain an accurate descrip-
tion of an object's non-rigid dynamic behavior.

The most important observation is that modes asso-

ciated with high resonance frequencies normally have
little effect on object shape. This is because:

« The displacement amplitude for each mode is in-
versely proportional to the square of the mode's
resonance frequency. Thus higher frequencies typi-
cally have small amplitudes.



Figure 2: A ball colliding with a two-by-four

« Damping is proportional to the mode's resonance
frequency. Thus higher frequency vibrations dissi-
pate quickly.

« Frequencies are excited in proportion to the fre-
quency content of the input force. The force gen-
erated by simple collisions typically have a roughly
Gaussian time course, so that an individual reso-
nance frequency / receives energy proportional to

e~J 1° Thus low frequencies typically receive more
energy than high frequencies.

The combination of these effects is that high-
frequency modes have very little amplitude, and even
less effect, in simple collisions. As a consequence much
more efficient (and still accurate) simulation of an ob-
ject's dynamics can be accomplished by discarding the
small, high-frequency modes, and considering only the
large-amplitude, low-frequency modes [5,6]. Exactly
which modes to discard can determined by examining
their associated eigenvalue, which determines the reso-
nance frequency.

Experimentally, we have found that most common-
place multi-body interactions can be adequately mod-
eled by use of only rigid-body, linear, and quadratic
strain modes. Figure 2, for instance, shows a example
of a simulated non-rigid dynamic interaction: a ball col-
liding with a two-by-four. As can be seen, the interac-
tion and resulting deformations look realistic despite the
use of only linear and quadratic modes.' Figure 1 also
iIllustrates how use of linear and quadratic modes can
accurately simulate non-rigid motion. Note, however,
higher-order modes are required to accurately model the
objects whose dimensions differ more than an order of
magnitude.

1Perhaps the most impressive fact about this example,
however, is the speed of computation: Using a SymboUcs
3600 (with a speed of roughly one MIP), it requires only one
CPU second to compute each second of simulated time!

4.0.1 Use of Fixed Modes

Normally, in either the finite element or modal meth-
ods, the mass, damping, and stiffness matrices are not
recomputed at each time step. The use of fixed M, D,
and K (or, equivalently, fixed modes) is well-justified as
long as the material displacements are small. The defi-
nition of "small/' however, is quite different for different
modes. Because the eigenvalue decomposition in Equa-
tion 2 performs a sort of principal-components analysis,
it is the gross object shape (e.g., its low-order moments
of inertia) determine the low-frequency modes, which as
a consequence are quite stable. High-frequency modes
are much less stable because they are determined by the
fine features of the object's shape.

In the standard finite element formulation the action
of each mode is distributed across the entire set of equa-
tions, so that one must recompute the mass and stiff-
ness matrices as often as required by the very highest-
frequency vibration modes. When these high-frequency
modes are discarded the mass, damping, and stiffness
matrices need to be recomputed much less frequently. In
most situations it is sufficient to use single, fixed set of
low-frequency modes throughout an entire simulation.

5 Estimation of Material
Properties

Let us imagine that we have seen the image sequence
shown in Figure 2, and have been able to compute a full
3-D description of the object's shape at each instant.
How can we estimate the material properties of these
objects? The first step is to compute for each object a
description that decomposes the object motion into its
low-order modes.

This can be accomplished by forming the vector p
that describes each point on the object's surface, and
then computing the matrices M, D, and K matrices
using unit values for density and spring constant. Be-
cause these matrices are determined by the vector p up
to an overall constant, the eigenvectors found by solving

Pentland and Williams 1567



T

Figure 3: Plot of vibration mode amphtude versus time.

Equation 2 will be identical regardless of the material
properties (excepting, of course, non-linearly-behaving
materials); only the eigenvalues depend upon the mate-
rial properties. Thus given the object's shape, we can
directly determine @, the object's deformation modes.

In this straightforward approach the matrices M, D,
and K can become quite large, so that solution to Equa-
tion 2 becomes difficult. A more efficient method of de-
termining @ is be to fit either an eight or twenty point
polygonal model to the sensed data (perhaps by use of
the techniques described in reference [2]), and use the
values of those points to construct a much smaller vector
p. Given eight points we can form M, D, and K ma-
trices that are 24 x 24 in size, and then solve Equation
2 to obtain the object's linear vibration modes. Given
twenty points the matrices are 60 x 60, and produce
both linear and quadratic vibration modes.

A still more efficient scheme can be obtained by not-
ing that the axes of the object can allow us to directly
disentangle the action of the various modes, so that by
estimating axis shape and length we can avoid solving

Equation 2. This approach is described in more detail
below.

Given @ and a description p(f) of the object's shape
over time, we can directly decompose the object shape
iInto a vector p(to) describing the object's shape at time
| = to 2"d the amplitudes ut) = ®'(p(t) — p(ty)) of
each of the individual modes over time. The generic
time behavior of each mode uj,(t) in response to an im-

pinging force is given by Equation 4. The solution to
this equation is
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Figure 4: The two-by-four of Figure 2 vibrating after
the collision, seen 1n canonical position.

i1, = Ae™* + Be"?",
for D? - 4]{’,M. >0, r,ro<(

1

4 = (A+ Bt)e(D/2M
for D? —4K;M; =0,

; = e(Di/2MIY( A cos ut + Bsin pt)__, i
for p= (4AK;M; — D})Y?/2M; > 0
(5)
for the overdamped, critically damped, and under-
damped cases, where

-—D,' ::\/52-4]?51\7!: (6)
2M,

and A and B depend on the initial conditions [11].
The third case, underdamped motion, occurs most com-
monly in mechanical systems and i1s referred to as
“damped vibration.” To see this we let A = [tcosd
and B = Rsiné in Equation 5 to obtain

ry, T2 =

a; = Re~(Ba/2MOt o5t — 6) , (7)

which is graphed in Figure 3(b).

Because the time behavior of u, is a function of M-,
D; and K;, in simple situations we can recover the phys-
ical parameters of the object's material by measuring u;
over time. This is particularly straightforward when the
mode is underdamped, as in Figure 3, so that several cy-
cles of deformation occur, because in this case we need
only measure the frequency and amplitude of the de-
formation peaks. When the mode is critically damped
or overdamped only one peak occurs; however it is still
possible to measure the material properties from peaks
in the first derivative of the modal amplitude.

For example, in the sequence of Figure 2 we can ob-
serve the bending of the two-by-four in response to the
iImpact of the ball, as illustrated by Figure 4. If we plot
the amplitude of this deformation mode in response to



the unknown impact force f; (which, without loss of
generality, we will take to be of unit time duration),
then we will obtain the graph shown in Figure 3. From
the succession of peak amplitudes a; = %,;(6 + j) and
the times t; = § 4+ jn at which these peaks occur we can
obtain the following relations:

fi/ M; = aon

M,

_ _ | 2
Ri/Mi = 4n* (1541 — )72 = § (£) = an?(tj41 1)

Di/M; = 2(log aj — log aj 1) (tj 41 — 1)~}

(8)

These relations are well-conditioned, so that the accu-
racy of the material property estimates will depend pri-
marily on the accuracy with which we can estimate the
a; and the ;.

Thus by observing modal amplhtude after a sharp im-
pacts we can estimate the force of collision and all of
the material’s physical parameters, up to a scale factor
which 1s the mass associated with that mode. We note
that except for non-linear, visco-plastic materials the
relationships in Equations 8 hold exactly for all materi-
als, all vibration modes, and all object geometries; they
are approximations only in the sense that finite element
analysis 1s an approximation.

5.1 Estimation of Mass

By tracking geometry over time we can estimate the
material properties up to an overall scale constant that
depends upon the amount of mass involved in the par-
ticular vibration mode. The obvious question, then, is
how much information is required to estimate the ma-
terial density”? To answer this question we surveyed the
CRC Handbook, which lists the density of several hun-
dred materials. We found that the listed densities could
be clustered into four categories: metals, stones, bio-
logical materials, and woody (cellulose) materials. The
range of densities for metals was roughly 7.0 to 10.0,
for stone materials roughly 2.3 - 2.8, for biological ma-
terials (gums, resins, soap, etc.) roughly 0.9 - 1.2, and
for woody materials (e.g., common woods, plant stems,
etc.) roughly 0.4 - 0.6.

Thus if the viewed material can be classified into one
of these four categories, then it appears that the den-
sity can be estimated with an accuracy of roughly £10
percent. Consequently it appears that the force, mass,
damping, and spring constants can also be estimated
with similar accuracy.

5.2 Static Loading

When a static load is applied to an object, a fixed de-
formation occurs. By examining Equation 4 we see that
the amount of static deformation u;, is a function only
of the loading force f;, and the stiffness constant K; as-
sociated with the particular mode. Thus if we know the
modes (either from analysis of the static shape or by the

methods described in the next section) and the imping-
ing force then we can determine the material stiffness
K; which is perhaps the most important of the basic
material properties. |In many situations, particularly
when using a tactile sensor, this method of estimating
material properties is probably the most practical.

5.3 Speculation: Estimation from
Other Modalities

The same ideas can be applied to the tactile and audi-
tory senses: the modal vibration can be sensed either
by touch or by sound (via coupling between the air and
the object surface). The notion of using a tactile sensor
to produce a static measure of material stiffness has al-
ready been mentioned above. However a much stronger
result can be achieved by using either tactile or audi-
tory data given that we can apply a force f; so as to
excite single mode /. In this case, because we know
the force, we can measure the modal mass M, directly
(from Equation 8), and thus obtain D, and K;, without
knowledge of object geometry, modes, or density.

For instance, if we "poke" or "tap" an object - exert
a sharp blow normal to the surface - we can transfer
most of the energy into a single, localized compression
mode. To the extent that we are able to isolate a single
mode, we need no knowledge of object geometry, modes,
or density in order to estimate the physical parameters.
In experiments where the sound spectrum produced by
tapping has been measured it appears that most of the
energy is indeed transferred into a single mode if the
object's geometry is uniform in the area of the tap —
e.g., the object is not hollow, and the tap occurs far
from any discontinuity.

©6 Direct Observation of Modes

We have described a procedure of fitting data points,
computing M, D, K. and then solving for @ in order to
obtain the object's vibration modes. Although mathe-
matically sound, this procedure seems too complex and
expensive to be useful in some applications. Similarly,
the procedure is complex to be an account of human ca-
pabilities. Thus it is desirable to develop a theory that
IS simpler even if less accurate.

6.1 Estimation via symmetry axes

The first approach to direct observation of the modes
depends on the observation that the object's axes of
symmetry have a special status in modal analysis: they
are the singular lines (and planes) of the various vibra-
tion modes, Ii.e., the places along which various vibra-
tion modes cause no deformation. Thus along the axes
of symmetry the actions of the different vibration modes
become partially decoupled.

Thus one direct way to estimate material properties
Is track the shape of symmetry axes over time. Time
variation in the length of an axis is a function primarily
of linear compression modes, while the time variation
in axis curvature is primarily a function of quadratic
bending modes. Either the axis length or curvature can
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be tracked over time to produce a graph such as shown
In Figure 3, and the material properties calculated by
use of Equations 8. The simplicity of this method is
Iits greatest virtue, however, in complex collisions the
presence of many active vibration modes may destroy
the accuracy of the approach.

6.2 Direct estimation of modal
amplitudes

A second approach is to fit the available shape data with
a simple volumetric model which can be parametrically
deformed in any of the expected deformation modes.
Fitting the parameters of such a model to the sensor
data provides a direct, simultaneous estimate of all of
the modal amplitudes. Several variations on this ap-
proach to extracting object geometry have been suc-
cessfully demonstrated on range data [7,8,9,10]. As with
symmetry axes, the values of such a model's deforma-
tion parameters can be tracked over time and material
properties estimated by use of Equations 8. The advan-
tage of this somewhat more computationally expensive
approach is that is more likely to produce good esti-
mates of modal amplitudes in relatively complex situa-
tions.

6.3 Estimation from static imagery

In recent years both Pentland [11] and Ley ton [12] have
suggested that an object's static shape can be analyzed
to produce an abstract causal account of the object's
history. That is, that a object's shape can be de-
composed into a simple prototypical shape (a cube, a
sphere) that has been modified by a sequence of forces
or forming operations to achieve its present state. The
advantage of this type of description is that produces a
prototype-based representation that can simplify object
recognition [9] and which fits human psychological data
[13].

It can be seen, in retrospect, that both of these theo-
ries were attempting to capture the notion that objects
have a limited repertoire of modal deformations. That
is, if one starts with a fixed prototypical shape (a cylin-
der, sphere, or cube for instance) an applies a series of
forces to elastically deform that object, then in general
the simplest possible description of the resulting shape
Is exactly the original shape plus the modal amplitudes
that were produced by the impinging forces. Further,
this description of object shape has considerable pre-
dictive power, for it contains most of the information
needed to estimate material properties, determine what
forces were applied, and to predict the object's future
dynamic behavior.

/ Summary

Non-rigid behavior is normally simpler than it appears
from cursory examination of the FEM equations that
describe such behavior. By breaking such motion into
vibration modes, we can show that most of the degrees
of freedom have very little energy or amplitude. Thus
quite accurate descriptions of non-rigid behavior can be
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obtained by knowing the amplitude and phase of rela-
tively few vibration modes.

Using standard machine vision techniques the param-
eters of these modes can be estimated from sensory data.
By tracking modal amplitudes across time (or, perhaps,
even from analysis of static imagery!) we can then mea-
sure material properties, predict future behavior, and
perform other ecologically important tasks.
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