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Abstract

The goal of this paper is to present a theo-
rem prover where the underlying code has been
written to behave as the procedural met-
alevel of the object logic. We have then de-
fined a logical declarative metatheory MT
which can be put in a one-to-one relation with
the code and automatically generated from it.
MT is proved correct and complete in the sense
that, for any object level deduction, the wffrep-
resenting it is a theorem of MT, and viceversa.
Such theorems can be translated back in the
underlying code. This opens up the possibil-
ity of deriving control strategies automatically
by metatheoretic theorem proving, of mapping
them into the code and thus of extending and
modifying the system itself. This seems a first
step towards "really" self-reflective systems, it.
systems able to reason deductively about and
modify their underlying computation mecha-
nisms. We show that the usual logical reflec-
tion rules (so called reflection up and down)
are derived inference rules of the system.

1 Introduction

Reflective and metatheoretic reasoning are well known
techniques applied in knowledge representation and au-
tomated deduction (see for instance [Bundy, 1988 , [Con-
stable et al., 1986], [Bowen and Kowalski, 1982], [Smith,
1983], [Gordon et al., 1979]). Roughly speaking, in the
past, metareasoning has been performed according to
two different paradigms. In the first, from now on called
procedural, the metalevel consists of a programming
language and metareasoning is performed by computa-
tion in it. One example in Al is [Smith, 1983], an-
other in theorem proving is LCF and its metalanguage
ML [Gordon et al., 1979]. In LCF the user can write
control strategies as programs (usually called tactics) in
ML to guide the search for a proof of a theorem. In
the second paradigm, from now on called declarative,
the metalevel is a logical metatheory and metareason-
ing is performed by deduction on metalevel statements.
One example in Al is [Weyhrauch, 1980], one in theorem
proving is [Howe, 1988]. Both approaches are sometimes

incorporated and alternatively used; thus, for instance,
iIn NuPrl [Constable et al., 1986] and Isabelle [Paulson,
1989] both ML and a declarative logical metatheory can
be used to build derived inference rules. In logic pro-
gramming, metainterpreters [Bowen and Kowalski, 1982]
can be seen both procedurally and declaratively.

In this paper, we present a system (called GETFOL ')
with both a procedural and a declarative metalevel. In
this respect GETFOL is similar to NuPrl and Isabelle; on
the other hand GETFOL has features which make it very
different from any other system proposed so far:

(1) the metalevel programming language is the same
as the underlying implementation language and the code
iImplementing the object logic has been written to be its
procedural metalevel.

(2) the logical declarative metatheory MT can be put
In a one-to-one relation with the code and automatically
generated from it (and viceversa).

(3) MT is correct and complete in the sense that, for
any object level deduction (performed by running the
code implementing the object level logic), the wff repre-
senting it is a theorem of MT?. Such theorems, possibly
proved automatically by metatheoretic theorem proving,
can be "mapped back" into the underlying code as new
reasoning modules. These modules, if executed, will pro-
duce the proof represented by the theorem they have
been translated from.

As a consequence of these three facts, it is possible to
generate (parts of) MT automatically from the imple-
mentation language, to prove in MT "certain" theorems
and then to "transform" them into new code. The result
IS an extension or, possibly, a modification of the system
itself. The GETFOL underlying code is not a "black box",
fixed once and for all at the time ofthe development, but
can change over time. This seems a first step towards
"really" self-reflective systems, it. systems able to rea-
son deductively about and thus, possibly, modify, their

' GETFOL is a reimplementation/ extension of the FOL sys-
tem [Weyhrauch, 1980]. GETFOL has, with minor variations,
all the functionalities of FOL plus extensions, some of which
described here, to allow metatheoretic theorem proving.

°The notions of correctness and completeness here in-
volved are sometimes called adequacy and faithfulness,
respectively.
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underlying reasoning strategies. As a side effect of this
"reflective” relation existing between computation and
deduction, the usual logical reflection rules (reflection
up and reflection down) [Giunchiglia and Smaill, 1989]
can be proved to be (a form of) derived inference rules.

The paper is structured as follows. Section 2 describes
how the implementation has been constructed to behave
as the procedural metalevel of the system. Section 3 de-
scribes MT and how it can be automatically generated
from the implementation code. In section 4, it is proved
that MT represents all the object level deductions and
that deduction in MT is the analogous operation of writ-
Ing tactics in the implementation language. This is the
fundamental property that allows the interpretation of
theorems of MT in terms of the underlying code (sec-
tion 5) via the use of reflection up and down. Finally,
section 6 gives some conclusions and a short discussion
of the related work.

Mapping up

-
-——“—

GETFOL code Reflect up

Semantc attach

Figure 1: The GETFOL system.

2 The system code as the procedural
metalevel

GETFOL allows the definition of multiple distinct the-
ories. Each theory 1s formally defined as a triple
(Language, Axioms, Set of inference rules). To simplify
things we consider here the case where we have only
one object theory OT=(L, Az,R) and one metatheory
MT=(ML , MAz,R) (see figure 1). MT and OT use a
first order classical sequent logic. By sequent we mean
here a pair (I', A), written also ' A, where A is a
formula and T' a set of formulas. For simplicity, in this
paper we suppose MT and OT use the same set of in-
ference rules R. The inference rules, which are a se-
quent version of Prawitz’ natural deduction (ND) cal-
culus [Weyhrauch, 1980)], allow introduction and elim-
ination only in the post-sequent A. In the following,
to simplify notation, when not relevant, we write A for
' A. Thus, for instance

AE ALB vl x; xg V% VE x t Y%“(‘-t%‘?l

are respectively one of the two conjunction elimina-
tion rules (AE) and the universal quantifier introduction
and elimination rules (VI,VE). The functions in the un-
derlying GETFOL code implementing these inference rules
are given 1n figure 2. Thus, for instance, when applica-
ble, (alli-fun A(z2) z; z3) returns Yz;A(z,) which
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Is then added (by proof-add-theorem) to the current
proof. Notice that, even if the underlying code has been
written to treat errors (fg. the application of (AE) to a
disjunction), this issue is not dealt with in this paper.

T—__—__—- e — S —
KDEFLAM ande (X)

(IF (AND (IS-A-THEOREM X) (CONJ X))
THEN (proof-add-theorem (ande-fun X))))

DEFLAM alli (X1 X2 X3)

(IF (AND (AND (IS-A-THEQOREM X1)
(AND (IS-A-VAR X2) (IS-A-VAR X3)))
(NO-FREE X3 X1))

THEN (proof-add-theorem (alli-fun X1 X2 X3))))

KDEFLAM alle (X1 X2 X3)
(IF (AND (AND (IS-A~-THEOREM X1)
(AND (IS-A-VAR X2) (IS-A-TERM X3)))
(FORALL X1))
THEN (proof-add-theorem (alle-fun X1 X2 X3))))

where IS-A-VAR and IS-A-TERM evaluate to TRUE if the
argument 18 a variable or a term of the object logic,
I1S-A-THEOREM evaluates to TRUE if the argument 18 an
asserted theorem in the proof and proof-add-theorem
adds its argument to the proof.

Figure 2. GETFOL implementation of Ae, VJ and VE.

Strategies and derived inference rules can be defined
in @ metalevel functional language, GET, which is a subset
of the implementation language of GETFOL. To preserve
correctness, the development environment is such that
the user can write tactics which fail but that never assert
a non-theorem. For instance, considering the code in
figure 2, proof-add-theorem, ande-fun, alli-fun and
alle-fun are not available to the user. In this respect,
GET is similar to ML as used in LCF, Nuprl or Isabelle.
For instance, the GET code implementing the (simple)
derived inference rule that corresponds to the deduction

Vz(A(z) A B(zx))
VL A(z) A B(z
ANE i
VI -

" VzA(zx
18:

(DEFLAM all-distr-con (x1 x2 x3)
(alli (ande (alle x1 x2 x3)) x2 x3))

Strategies can be defined by using conditionals and
iterations:

(DEFLAM strategyl (x1 x2 x3)

(IF (AND (FORALL x1) (CONJ (alle x1 x2 x3)))
THEN (all-distr-con x1 x2 x3)
ELSE (repeat ’tactic2 x1 x2 x3)))

where FORALL and CONJ are built-in GETFOL predi-
cates which evaluate to TRUE when their argument 1s,
respectively, a universally quantified formula and a con-
junction, (repeat ’tactic args) iterates the applica-
tion of tactic over args as many times as possible.
strategyl can be described as: “if x1 18 a universally
quantified conjunction, then derive the first conjunct



of x1, otherwise exhaustively apply tactic2", where
tactic2 is a previously defined tactic.

What has been described so far suggests that GET can
be used as the procedural metalevel of GETFOL, analo-
gously to what happens with ML in LCF, NuPrl or Is-
abelle, or even with metainterpreters in Prolog. This
Is, in fact, the case when writing tactics. The differ-
ence comes from the fact that (exploiting that GET is
also GETFOL's implementation language), the built-in GET
functions to perform logic inference are exactly those
used to implement the basic inference rules, eg. those

in figure 2. More generally, all the GETFOL code has
been carefully written to allow the identification of the
procedural metalanguage with the Implementation Ilan-

guage. Thus, for instance, the implementation provides
GET with all the syntax manipulation routines (such as
FORALL, CONJ, ande), with all the proof manipulation
routines (such as IS-A-THEQREM), with all the theory ma-
nipulation routines and so on. Not only must the code
produce extensionally the right behaviour (satisfying the
usual correctness criteria), but it must also be written to
be at the same time the procedural metalevel of the logic
it implements. In other words, it must have the right
function and predicate symbols, the internal structure
of the function and predicate definitions must be such
that they can be put in a one-to-one relation with the
axioms describing their behavior (all of this is described
in section 3), and far harder, it must be such that com-
putation can be directly mapped into the metathereotic
"representation” of the deduction it produces (described
In section 4).

We call the production of code satisfying the require-
ments above, "the mechanization ofthe logic" (to dis-
tinguish it from the process of producing an implemen-
tation of the logic). Mechanizing a logic is far harder
than implementing it. On the other hand, as the rest
of the paper will show, the mechanization of the logic
can be exploited to build really self-reflective systems,
it. systems able to reason deductively about and modify
their computation mechanisms. In fact it becomes then
possible to generate automatically a logical metatheory
MT from the code and, viceversa, to compile certain
theorems of MT as system implementation code. Mod-
ification of the system's underlying computation mech-
anism is achieved by re-writing already existing (parts
of) procedures. Note that this is not done in any of
the existing theorem provers or metainterpreters. From
this perspective, the work which most closely resembles
ours is Brian Smith's [Smith, 1983]. The fundamental
difference is that our metalanguage is a logical metathe-
ory; this allows us to generate provably correct computa-
tion procedures automatically by metatheoretic theorem
proving.

3 The declarative metatheory MT

MT's set of inference rules is fixed, being 7v. We need to
define MT's language MC and axioms MAx. MC, has
names for the elements of OT (axioms and assumptions
s, formulas w, variables x and so on); this is achieved by
having for any such element an individual constant ("s",

"w", "x" and so on) as part of MC. These constants are

the "quotation mark names" [Giunchiglia and Traverso,
1990] of the objects of OT.

[(DEFLAM <fun> (X1 ... Xn) <body>] =

V [X1] ... V [Xn] ([<body>])
[(IF <t1> THEN <t2>)] = [<t1>] — [<t2>]
[(IF <t1> THEN <t2> ELSE <t3>)] =

sf [<t1>] then [<t2>] else [<t3>]
LCAND <t1> <t2>)] = [<t1>] A [<t2>]
[ (IS-A-THEOREM <t>)] = T'({<t>])
[(proof-add-theorem <t>)] = T ([<t>])
[(CONJ X1)] = Conjy([X1])
[(FORALL X1)] = Forall([X1])
[(NO-FREE X1 X2)] = NoFree([X1],[X2])
[(IS-VAR X1)] = Var([X1])
[(IS-TERM X1)] = Term([X1])
[(ande~fun X1)] = ande([X1])
[(alli~fun X1 X2 X3)] = all:([X1], [X2], [X3])
[(alle-fun X1 X2 X3)] = alle([X1],[X2],[X3])

[X1] = =,

[Xn] = z,
where functions and predicates in ML (for instance
Forall, NoFree, Var, Term, ande, alls, alle and so on)
intuitively represent the computational operations per-

formed by the code they are mapped from. The T pred-
icate indicates “theoremhood”.

L

Figure 3: m,, - mapping from the code to the metatheory.

Each inference rule of OT gets "mapped up" to a
distinct axiom of MAx. This mapping, called "my"
performs a one-to-one translation from the code into el-
ements of MT (see figure 3, my(x) is written as [x])
Thus, for instance, the axioms generated by applying
m,, to the GET code implementing AE, V7 and VE (see
figure 2) are listed in figure 4. A complete definition of
my and the code over which it can operate is outside
the goals of this paper. The important point to notice is
the fact that m,, (and its inverse) can be implemented
to do the translation in either direction automatically.

- -

(Aret) : Ve(T(z) AConj(z) — T(ande(z)))

(Avz) : VIV Vo3 (T(z1) A Var(z2) AVar(za)
ANoFree(zy,z,) — T(alls(z1,z2,23)))

(Avg) : VI,V Ve (1(zy) A Var(z2) ATerm(z;)

AForall(z,) — T(alle(zy.122,13)))

Figure 4: Metatheoretic axioms mapped from the code.

We can observe in figure 3 that the two GET op-
erations of testing if something is a theorem al-
ready asserted in the object theory (performed by
IS-A-THEOREM) and of asserting a proved theorem (per-
formed by proof-add-theorem) are translated into the
same metatheoretic predicate T°. This is because OT, as

° Notice that this seems to contradict our previous state-
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represented in MT, 18 the minimal set closed under the
application of the inference rules to the axioms. There-
fore, because MT 18 a metatheory of the transitive clo-
sure of OT, the procedural difference between a wif “be-
ing asserted” as a theorem and a wif “to-be asserted” as
a theorem 1s lost.

The assertion of the axioms generated by m,,, requires
adding function and predicate symbols to ML: for each
inference rule of OT we have a function symbol in ML
with the appropriate arity, for instance ande, alls and
alle for AE VI and VE respectively. MUL’s predicates
are Cony, Forall, Nofree, Var, Term and so on.

MT’s logic allows the use of the construct sf p then
t, else t,, where p 18 a wif and t,, t, are terms. The
i1f construct, very important in order to make the MT’s
axiomatization mirror very closely the underlying code,
1s actually not first order. On the other hand it can be
easily proved that if can be defined in a conservative
extension of classical ND. GETFOL allows the use of the
1f construct and has an introduction and an elimination
inference rule for 1t.

4 Deduction in MT versus program
definition

The goal of this section 1s to prove that, given a map-
ping between wfls iIn MT and deductions in OT, for any
object level deduction (performed by running the code 1m-
plementing the object level logic), the corresponding wff
1s a theorem of the metatheory and viceversa. To do
this we need to define how object level proofs are repre-
sented in the metatheory. This 1s achieved by defining
a mapping w from sequent trees II in OT to wils of
MT. Sequent trees are trees of sequents, each labeled by
an inference rule. Sequent tree leaves are axioms or as-
sumptions (sequents of the form A + A). Sequent trees
are not necessarily deductions as the rule labelling a se-
quent may not be applicable. We say that II 1s a sequent
tree of s if s 18 the endsequent of II. The endsequent is
the “root” of the sequent tree. The formulae mapped
from sequent trees are called sequent tree formulas
(in short twfls) and are of the form P — T'(t), where P
are the preconditions and ¢ the sequent tree term
of the twfl. P and t are inductively defined over the
complexity of II as follows:

Base: if Il = s, then w(Il) = T'(“s”);

Step: as examples, let us consider the cases of AF
and VI€n. Let w(Il;) =P, = T(t;) beatwfl. If 1 1s a
sequent tree built from II; by adding the rule label AE,
then w(Il) = Py AConj(t;) — T(ande(t;)). If the added
label is VIEn, then w(Il) = Py A Var(“€”) AVar(“n”) A
NoFree(ty, “n”) — T(alli(ty, “€”, “n”)).

Notice that there 1s an 1somorphism between twfls and
the sequent trees they represent. In particular the se-
quent tree term records the tree of applications of infer-
ence rules while the preconditions record precisely the

ment that the m,, is one-to-one. In certain cases (T is one
of these) myp and its inverse distinguish between occurrences
(in this case, corresponding either to IS~-A-THEOREM or to
proof-add-theorenm).
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tests which allow the applications of inference rules.

Now we concentrate on showing that MT (which can
be proved consistent) has the desired properties*:

Theorem 1 (MT correct and complete for OT) :
Let Tl be any sequent tree of s in OT. Lett be the sequent
tree term of the twff w(ll). Thenbygr T(t) <= Il s a

proof of s.

Proof [Hinted]: (<): corollary of theorems 2 and 3
below.

(=): similar to the proof of theorem 3. Q.E.D.

Theorem 1, guarantees that, for any provable T'(1),
there 1s a proof of a theorem in the object theory and
viceversa °. As a consequence, given a GET program that
succeeds in building an OT proof, theoremhood apphed
to a term corresponding to the proof itself can be proved
in MT. Notice that theorem 1 considers only derived in-
ference rules. This result can be generalized to deal with
an extension of MT, expressive enough to represent tac-
tics, written as programs with conditionals, iterations,
faillure detection and so on. This non-trivial issue, which
assures a complete translation of GET into MT and vicev-
ersa 18 not discussed here.

Theorem 1 does not tell us anything about how to
prove T'(t), 1n other words, about how to construct in
MT the derived inference rules. A possible technique 1s
suggested by the following two theorems.

Theorem 2 (Twff provability) For any sequent tree
formula P — T(t), yr P — T(2).

Prooffhinted]: The proof is performed by induction
over the complexity of Il. As an example of step case,
let us consider AE. Let us suppose that the induction
hypothesis 1s P — T(t). From it we can derive that
P+ T'(t). From the instantiation of axiom (Aag;) 1n fig-
ure 4 we obtain T(t)AConj(t) — T (ande(t)), from which
we can then derive (also considering the induction hy-
pothesis) P F Conj(t) — T(ande(t)). For the deduction
theorem we derive thus P — (Conj(t) — T(ande(t)))
which is equivalent to PAConj(t) — T'(ande(t)). Q.E.D.

The proof suggests how twffs can be deduced in the
metatheory: basic twflfs can be obtained directly as in-
stantiations of the axioms in figure 4; complex twfls can
then be composed out of simpler ones following the steps
hinted in the proof. This 1s not the only way to build
twfls, [Giunchiglia and Traverso, 1990] describes some
examples in detail.

The fact that all the twfls are provable in MT 1s ex-
actly what we should have expected. In fact, any twff
corresponds to a program that can be defined by the
user in the system code. To say that any twff can be
derived in the metatheory is equivalent to say that any
strategy can be written in the code. Derivation of a the-
orem in MT s the analogous operation of writing code 1n
the implementation language. Notice that this suggests
a new way to develop tactics: instead of coding them in

i

‘For lack of space, only proof outlines are given.

*If not desiderable, completeness can be easily dropped
by generating MT only partially; for instance, we may not
have the names of all the objects in OT.




the procedural metalanguage the user can theorem prove
them in MT. The user can thus write the hardest steps
and, interactively, generate tactics by theorem proving.
This amounts to giving the user the possibility to derive
not only the object level proofs but also the tactics (this
idea has some resemblance with the work on proof plan-
ning [Bundy, 1988], see [Giunchiglia and Traverso, 1990]
for a more in depth discussion).

A different matter is whether the strategy is success-
ful. In the programming language, a defined strategy
may generate an object level proofor fail. Similarly, the
sequent tree may or may not be a proof. For instance,
a twff whose sequent tree term is ande("A AB") corre-
sponds to a proof, but that whose term is ande("A VB")
does not. In metalevel programming languages (like ML
[Gordon et al,1979]), given two simple tactics corre-
sponding to the ones above, they need to be executed
in order to know that the former succeeds whereas the
latter fails. In MT, the derivabiliy of preconditions de-
termines whether twffs correspond to proofs:

Theorem 3 (Preconditions) : Let Il be any sequent
tree of s tn OT. Let P be the preconditions of the twff
w(ll). Then byt P <= 1l is a proof of s.

Prooffhinted]. The proof is performed over the com-

plexity of II. As an example of the step case let us con-
sider AE. Let Il be:

II,
S
S

AE

Let W(“l) be P] - T(tl)

(=) {11 1s a proof then AE is applicable and the wif
of s; 1s a conjunction. This implies hyr Conj(t,). By
the mnduction hypothesis we conclude by P,. Then as
P is Py AConj(ty) we have hyr P.

(<) If gy P1 AConj(t,), then by induction hypothe-
ses we prove Il is a proof. We prove that iy Conj(t;)
implies that s; i1s a conjunction. Then the AE rule 1s
applicable and II 1s a proof. Q.E.D.

Notice that, because of theorem 3, the success of tac-
tics can be stated without executing them.

5 Metatheory interpretation as system
code execution

Theorem 1 guarantees that, for any successful GET strat-
egy, the corresponding twfl can be deduced. The 1dea 1s
to map any twff into GET code and use it to prove the
goal. This idea of mapping back can be seen in two ways:

(1) The inverse of m,, can be defined and used to
compile twffs back in the code (the “mapping down”
arrow in figure 1). For any twff, the result 1s a strategy
available to the user.

(2) Twfls can be interpreted in terms of the GET
code. The result i1s the assertion of the sequent as a
theorem in OT.

In the remainder of the paper we concentrate on the
interpretation of twfis. In w(Il) = P — T(t) we can

distinguish three parts: the preconditions P, the pred-
icate T and the sequent tree term t. The assertion of
the theorem in OT can be seen as the sequence of three
steps: (i) prove V and obtain T(f) (subsection 5.1), (ii)
from t generate the name of the endsequent s of |I, "s
(not described as very similar, in principle, to step (i)),
finally (iii), from T (V) assert s in OT (subsection 5.2).

5.1 Proving V

Theorem 3 tells us that the preconditions of any twff rep-
resenting an object level proof can be proved by theorem
provingin MT. This is the "usual” approach taken so far
In theorem proving. A problem with this approach may
be the size of the search space in MT which, even drop-
ping the completeness requirement, can explode when
complex metareasoning is required. The correspondence
existing between MT and the GET code provides us with
an alternative technique for proving in MT facts about
OT. The idea is to avoid the explicit axiomatization of
parts of OT and to perform computation instead of de-
duction. As shown above, having a mechanization of the
logic gives us a one-to-one mapping between elements of
the signature of MT and GET functions (section 3, fig-
ure 3) and opens up the possibility to see deductions
in MT in terms of computation in GET (section 4, the-
orems 1,2). For how twffs are defined, their syntactic
structure explicitly resembles the structure of the com-
putation tree they represent. As a consequence we can
compute in GET following the syntax of the twff. Let us
consider, as an example, the case where one of the con-
juncts of P is Conj("AAB"). Conj has been mapped up
from the code function CONJ and "AAB" is the metathe-
oretic constant which denotes the theorem A A B. Ex-
ecuting (CONJ A A B) gives TRUE, this means that the
metatheoretic sentence Conj("A N\ B") is true and can
be rewritten to the constant for truth, True.

Notice that, in order to implement the machinery de-
scribed above, GETFOL must keep track of the link be-
tween the functions and predicates of the signature of
MT and the GET functions they have been mapped from
(by m,). It must also remember which elements of
OT the constants in MC are names of. GETFOL has in
its code a data structure where it memorizes the pairs
("o",0), where "o" is an MT constant, name of o, a syn-
tactic object in OT. The possibility to create pairs (
name, object ) is implemented by the semantic attach-
ment functionality [Weyhrauch, 1980] shown in figure 1.

Let us give the formal definition of the interpreter im-
plemented in GETFOL, |, which maps twffs into computa-

tion. Let us restrict ourselves to terms and atomic wffs.
Let us suppose that, for any object in OT, "o" s a
constant in MT. Then 7 can be defined as follows °:

I(“0”")=o
I(g(ola "t OP)) — I(g)(Z(o1), “‘11(0}’))
I((hm ©...0 hy)(01...0p)) =

(Z(hp) 0 ... 0 Z(h))(Z(0y),---, I(0p))

6«s” means function composition. The notation should
be made precise, by explaining how to denote function com-
position with functions with more than one argument. Since
not relevant in this context, this issue is not faced.
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Thus, for instance, instead of proving infinitely many
metatheoretic theorems of the form Conj(“A; A B;”), we
can apply Z to Conj(“A; A B;”) to obtain Z(Conj(“A; A
B;”)) = I(Con;j 7)(I (“A; A B;”)) = I(Conj)(A; A B;) =
(CONJ A /\ B;)'.

Notice that for any atomic wff or term wt, [I(wt) is
the execution of the code ¢ such that my(c) = wt.

Supposing that, for any n-ary function and predicate
symbol /p, fp computes the right extension (with n-
ary function symbols, the (n + |)-element of their set
theoretic definition; with predicate symbols, either TRUE
or FALSE) then J performs exactly the interpretation of
terms and atomic wffs in a first order model. This result
can be generalized to twffs and, more in general, to any
sentence in MT. Thus the correctness and completeness
of this translation of deduction into computation can be

proved from the correctness and completeness results for
first order logic®.

What said above amounts to saying that OT is the
standard model for MT. This is, we think, a correct way
to see things and very much in agreement with Tarski's
original definition of interpretation [Tarski, 1956]. More
on seeing interpretation, from a computational point
of view (in terms of the recursive definition of J), as
the process of extracting objects from (quotation-mark
and structural- descriptive) names is in section 4 of
[Giunchiglia an d Traverso, 1990]).

5.2 MT-OT interaction via reflection

We can prove the following lemma:

Lemma 1 (Name equality) Letll be any sequent tree
of s in OT. Let “s” be the quotation mark name of s.
Let t be the sequent tree term of the twff w(ll). Then
vy t = “s” <> Il 1s a proof of s.

A sequent tree term ¢, when corresponding to a proof
IT in OT, can be proved equal to the quotation mark
name of the theorem proved by Il and viceversa. From

theorem 1 and lemma 1 we can thus derive the following
result:

Corollary 1 (Reflection) : Let Il be any sequent lree
of s in OT. Let “s” be the quotaltion mark name of s.
Then by T(“s”) <= I 1s a proof of s.

In other words hyr T'(“s”) <= bor s.
reflection rules [Giunchiglia and Smaill, 1989]

l'MT T(“
Rdown }DT S

Then the

S_l [{up meT( « n

are (a sort of) derived inference rules between theories
In the multitheory system MT- OT. Notice that the pro-
cedural distinction between "being an already asserted

By (CON J A; AB,;,) we mean the result of the application
of the GET function CONJ to its arguments.

°Note that truth is tested in the standard model. It is well
known that the set of wffs true in a model is larger than the
set of valid wffs. On the other hand it can be proved that,
the interpretation in GETFOL restricted to atomic ground wffs
(the elements of V) returns TRUE iff the wff is valid in all
models of MT and thus provable in MT.
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theorem” and " being a theorem to be asserted”, lost
by m,,, is brought back by the reflection rules. In fact,
R.,, can be executed only on theorems already asserted
in OT, while, viceversa, Ry,w, can be executed to assert
new theorems in OT. Occurrences of T that in the com-
pilation down from MT to GET would be translated into
IS-A-THEOREM correspond to applying Rup ; viceversa,
the occurrences of T that would be compiled down into
proof-add-theorem correspond to applying Rgown. The

use of reflection up and down allows us to give a declara-
tive explanation of the interaction between reasoning in
OT and reasoning in MT and, in particular, of how (and
why) it is possible to assert theorems in OT as a result
of deduction in MT.

5.3 Deducing in OT via reasoning in MT

In this section we show how a twff can be interpreted to
prove a theorem in OT. As a prototypical example, let
us consider the following twff:

T(“s”) A Forall(“s”) A Conj(alle(“s”, “z”, “x”))A
NoFree(“z” ande(alle(“ ", “x”, “z”)))
——+T(allz(and6(aue(“ B “ b} u n)) cc )) « »))

Let us take s as a shorthand for Vz(A(z) A B(z)).
In this case the above twff 1s a theorem 1n MT and
“represents” the proof mmplemented by the program
(all-distr-conj 8 x x) (see section 2). Given the
sequent s asserted in OT we can apply R,, to obtain

T(“s”) in MT. T(“s”) can be used to derive

F OTGII( N ”) A CO"](GIIL(“ UL S ”))/\
NOFree(u » andff(alle (“5”, ‘@ ” « ”)))
- 7(0“2((171616((1”?(“ ” “op » “I‘ )) cc n « n))

The interpretation of Forall(“s”) leads to the ex-
ecution of (FORALL s) which evaluates to TRUE. The
same happens with all the other conjuncts. Thus, by
simple propositional reasoning, 1t 1s possible to derive

(allz(ande(alle (“ ” “p? ch”)), “1'” “.’E”)).

) ?

The interpretation of alle(“s”, “z”, “x”) leads to the
execution of (alle-fun s zr z) Wthh evaluates to
A(z) A B(z). The result of the interpretation of the
whole term 1s then Yz A(z). Reflection down can thus be
used to assert the new theorem in OT:

tmr  T(“VzA(z)”)
tor VzA(z)

The code performing the above steps is implemented
in GETFOL and can be run by the command REFLECT
[Giunchiglia and Smaill, 1989]. Notice that running the
code compiled by the "mapping down" would give the
same result as running REFLECT. The inverse of m,, Is
to REFLECT exactly what compilation is to interpreta-
tion: execution of code generated by the inverse of my,

produces the same results as interpreting metalevel the-
orems via REFLECT.

Rdaw ”

6 Conclusions and related work

In this paper we have presented a theorem prover,
GETFOL, where the underlying code has been written to



behave as the procedural rnetalevel of the logic it im-
plements. This approach seems a first step towards the
development of systems able to modify deductively and
automatically their underlying computation machinery.
In fact:

(a) a logical metatheory MT can be automatically
generated from the code;

(b) (some of) the theorems of MT represent object
level computations;

(c) these theorems can be automatically compiled
back in the system code to extend or to modify it (modi-
fication is achieved by redefining GET function symbols);

(d) these theorems can be automatically interpreted
to assert object level theorems. In this case, as a side
effect, we have a proven correct way to mix, at run time,
object and rnetalevel theorem proving via the use of re-
flection up and down. More on this issue can be found
in [Giunchiglia and Traverso, 1990] which also has a long
section on the related work, in particular with [Bundy,
1988; Weyhrauch, 1980].

As far as we know, this approach is new and has never
been proposed before. However, some comparisons with
existing systems can nevertheless be made.

The idea of a metatheory mapped directly from the
system code is somehow similar to the idea underly-
ing the work on metafunctions [Boyer and Moore, 1981]
(in the Boyer and Moore theorem prover the code is
the metatheory). In [Boyer and Moore, 1981], user de-
fined term-rewriting functions can be checked to verify
whether they preserve the "meaning" of terms. Aside
from the technical differences, a fundamental difference
Is that we provide a metatheory in which we can perform
automatic deduction to build correct control strategies,
while Boyer and Moore verify the correctness of the user
defined strategies.

Besides Boyer and Moore's work [Boyer and Moore,
1981], none ofthe existing theorem provers, has the pos-
sibility of using the results of deduction in the metathe-
ory to produce modifications of the underlying system
code. This is, for instance, the case also in NuPrl [Con-
stable et al., 1986; Howe, 1988], even if in NuPrl the
synthesis of new tactics can be obtained by metatheo-
retic theorem proving (via the "propositions-as-types”
paradigm). Analogously, metainterpreters can control
the Prolog search strategy but cannot modify it. That
Is, the user can write a metainterpreter for any desired
search strategy, however the metainterpreter will be ex-
ecuted by using the Prolog built-in search strategy.

For what concerns the issue of self-modification, the
work which most closely resembles ours is Brian Smith's
[Smith, 1983]. The substantial difference is that, in
GETFOL, metatheoretic statements are generated by rnet-
alevel deduction and not by computation and that the
tactics derived are provably correct. No non-theorems
can be proved.
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