
Ref lect ive reasoning w i t h and between a
declarat ive meta theory and the

imp lemen ta t i on code
Fausto Giunchig l ia1 , 2 and Paolo Traverso1

1IRST - Istituto per la Ricerca Scientifica e Tecnologica
38050 Povo, Trento, Italy

2DIST, University of Genoa, Via Opera Pia 11 A, Genova, Italy
fausto@irst.it leaf@irst.it

A b s t r a c t

The goal of this paper is to present a theo-
rem prover where the underlying code has been
wr i t ten to behave as the p r o c e d u r a l m e t ­
a leve l of the object logic. We have then de­
fined a logical d e c l a r a t i v e m e t a t h e o r y MT
which can be put in a one-to-one relation w i th
the code and automatically generated from i t .
MT is proved correct and complete in the sense
that , for any object level deduction, the wff rep-
resenting it is a theorem of M T , and viceversa.
Such theorems can be translated back in the
underlying code. This opens up the possibil­
i ty of deriving control strategies automatically
by metatheoretic theorem proving, of mapping
them into the code and thus of extending and
modifying the system itself. This seems a first
step towards "real ly" self-reflective systems, it.
systems able to reason deductively about and
modify their underlying computation mecha­
nisms. We show that the usual logical reflec­
t ion rules (so called reflection up and down)
are derived inference rules of the system.

1 I n t r o d u c t i o n

Reflective and metatheoretic reasoning are well known
techniques applied in knowledge representation and au­
tomated deduction (see for instance [Bundy, 1988 , [Con-
stable et al., 1986], [Bowen and Kowalski, 1982], [Smith,
1983], [Gordon et al., 1979]). Roughly speaking, in the
past, metareasoning has been performed according to
two different paradigms. In the f irst, f rom now on called
p r o c e d u r a l , the metalevel consists of a programming
language and metareasoning is performed by computa-
tion in i t . One example in AI is [Smith, 1983], an­
other in theorem proving is LCF and its metalanguage
ML [Gordon et al., 1979]. In LCF the user can write
control strategies as programs (usually called tactics) in
ML to guide the search for a proof of a theorem. In
the second paradigm, f rom now on called dec la ra t i ve ,
the metalevel is a logical metatheory and metareason­
ing is performed by deduction on metalevel statements.
One example in AI is [Weyhrauch, 1980], one in theorem
proving is [Howe, 1988]. Both approaches are sometimes

incorporated and alternatively used; thus, for instance,
in NuPr l [Constable et al., 1986] and lsabelle [Paulson,
1989] both ML and a declarative logical metatheory can
be used to bui ld derived inference rules. In logic pro-
gramming, metainterpreters [Bowen and Kowalski, 1982]
can be seen both procedurally and declaratively.

In this paper, we present a system (called GETFOL 1)
wi th both a procedural and a declarative metalevel. In
this respect GETFOL is similar to NuPr l and lsabelle; on
the other hand GETFOL has features which make it very
different from any other system proposed so far:

(1) the metalevel programming language is the same
as the underlying implementation language and the code
implementing the object logic has been wr i t ten to be its
procedural metalevel.

(2) the logical declarative metatheory MT can be put
in a one-to-one relation w i th the code and automatically
generated from it (and viceversa).

(3) MT is correct and complete in the sense that , for
any object level deduction (performed by running the
code implementing the object level logic), the wff repre­
senting it is a theorem of M T 2 . Such theorems, possibly
proved automatically by metatheoretic theorem proving,
can be "mapped back" into the underlying code as new
reasoning modules. These modules, if executed, wi l l pro-
duce the proof represented by the theorem they have
been translated from.

As a consequence of these three facts, it is possible to
generate (parts of) MT automatically f rom the imple­
mentation language, to prove in MT "certain" theorems
and then to " t ransform" them into new code. The result
is an extension or, possibly, a modification of the system
itself. The GETFOL underlying code is not a "black box",
fixed once and for all at the t ime of the development, but
can change over t ime. This seems a first step towards
"really" self-reflective systems, it. systems able to rea­
son deductively about and thus, possibly, modify, their

1 GETFOL is a reimplementation/ extension of the FOL sys­
tem [Weyhrauch, 1980]. GETFOL has, with minor variations,
all the functionalities of FOL plus extensions, some of which
described here, to allow metatheoretic theorem proving.

2The notions of correctness and completeness here in­
volved are sometimes called adequacy and faithfulness,
respectively.

Giunchiglia and Traverso 111

underlying reasoning strategies. As a side effect of this
"reflective" relation existing between computation and
deduction, the usual logical reflection rules (reflection
up and reflection down) [Giunchiglia and Smaill, 1989]
can be proved to be (a form of) derived inference rules.

The paper is structured as follows. Section 2 describes
how the implementation has been constructed to behave
as the procedural metalevel of the system. Section 3 de­
scribes MT and how it can be automatically generated
from the implementation code. In section 4, it is proved
that MT represents all the object level deductions and
that deduction in MT is the analogous operation of wr i t -
ing tactics in the implementation language. This is the
fundamental property that allows the interpretation of
theorems of MT in terms of the underlying code (sec­
tion 5) via the use of reflection up and down. Finally,
section 6 gives some conclusions and a short discussion
of the related work.

is then added (by p roo f -add - theo rem) to the current
proof. Notice that , even if the underlying code has been
wr i t ten to treat errors (tg. the application of (AE) to a
disjunction), this issue is not dealt w i t h in this paper.

Figure 2: GETFOL implementation of Ae, VJ and VE.

Strategies and derived inference rules can be defined
in a metalevel functional language, GET, which is a subset
of the implementation language of GETFOL. To preserve
correctness, the development environment is such that
the user can wri te tactics which fail but that never assert
a non-theorem. For instance, considering the code in
figure 2, p roo f -add - theo rem, ande- fun , a l l i - f u n and
a l l e - f u n are not available to the user. In this respect,
GET is similar to ML as used in LCF, Nupr l or Isabelle.
For instance, the GET code implementing the (simple)
derived inference rule that corresponds to the deduction

112 Automated Reasoning

of x1, otherwise exhaustively apply t a c t i c 2 " , where
t a c t i c 2 is a previously defined tactic.

Wha t has been described so far suggests that GET can
be used as the procedural metalevel of GETFOL, analo­
gously to what happens w i th ML in LCF, NuPr l or Is-
abelle, or even wi th metainterpreters in Prolog. This
is, in fact, the case when wr i t ing tactics. The differ­
ence comes f rom the fact that (exploit ing that GET is
also GETFOL's implementation language), the bui l t - in GET
functions to perform logic inference are exactly those
used to implement the basic inference rules, eg. those
in figure 2. More generally, all the GETFOL code has
been carefully written to allow the identification of the
procedural metalanguage with the implementation lan-
guage. Thus, for instance, the implementation provides
GET wi th all the syntax manipulation routines (such as
FORALL, CONJ, ande), w i th all the proof manipulation
routines (such as IS-A-THEQREM), w i th all the theory ma­
nipulation routines and so on. Not only must the code
produce extensionally the r ight behaviour (satisfying the
usual correctness criteria), but it must also be wri t ten to
be at the same t ime the procedural metalevel of the logic
it implements. In other words, it must have the r ight
function and predicate symbols, the internal structure
of the function and predicate definitions must be such
that they can be put in a one-to-one relation w i th the
axioms describing their behavior (all of this is described
in section 3), and far harder, it must be such that com­
putat ion can be directly mapped into the metathereotic
"representation" of the deduction it produces (described
in section 4).

We call the production of code satisfying the require­
ments above, " t h e m e c h a n i z a t i o n of the logic" (to dis­
tinguish it f rom the process of producing an implemen­
tation of the logic). Mechanizing a logic is far harder
than implementing i t . On the other hand, as the rest
of the paper wi l l show, the mechanization of the logic
can be exploited to bui ld really self-reflective systems,
it. systems able to reason deductively about and modify
their computat ion mechanisms. In fact it becomes then
possible to generate automatically a logical metatheory
MT from the code and, viceversa, to compile certain
theorems of MT as system implementation code. Mod­
ification of the system's underlying computation mech­
anism is achieved by re-wri t ing already existing (parts
of) procedures. Note that this is not done in any of
the existing theorem provers or metainterpreters. From
this perspective, the work which most closely resembles
ours is Br ian Smith's [Smith, 1983]. The fundamental
difference is that our metalanguage is a logical metathe­
ory; this allows us to generate provably correct computa­
tion procedures automatically by metatheoretic theorem
proving.

3 The declarat ive metatheory MT
MT's set of inference rules is fixed, being 7v. We need to
define MT 's language MC and axioms MAx. MC, has
names for the elements of OT (axioms and assumptions
s, formulas w, variables x and so on); this is achieved by
having for any such element an individual constant ("s",
"w" , "x" and so on) as part of MC. These constants are

the "quotation mark names" [Giunchiglia and Traverso,
1990] of the objects of O T .

Figure 3: mup - mapping from the code to the metatheory.

Each inference rule of OT gets "mapped up" to a
distinct axiom of MAx. This mapping, called "mup",
performs a one-to-one translation from the code into el­
ements of MT (see figure 3, rnup(x) is wr i t ten as [x])
Thus, for instance, the axioms generated by applying
mup to the GET code implementing AE, V7 and VE (see
figure 2) are listed in figure 4. A complete definition of
rnup and the code over which it can operate is outside
the goals of this paper. The important point to notice is
the fact that mup (and its inverse) can be implemented
to do the translation in either direction automatically.

Figure 4: Metatheoretic axioms mapped from the code.

We can observe in figure 3 that the two GET op­
erations of testing if something is a theorem al­
ready asserted in the object theory (performed by
IS-A-THEOREM) and of asserting a proved theorem (per­
formed by p roo f -add- theorem) are translated into the
same metatheoretic predicate T3. This is because OT , as

3 Notice that this seems to contradict our previous state-

Giunchiglia and Traverso 113

114 Automated Reasoning

the procedural metalanguage the user can theorem prove
them in M T . The user can thus wr i te the hardest steps
and, interact ively, generate tactics by theorem proving.
Th is amounts to g iv ing the user the possibi l i ty to derive
not only the object level proofs but also the tactics (this
idea has some resemblance w i t h the work on proof plan­
n ing [Bundy, 1988], see [Giunchigl ia and Traverso, 1990]
for a more in depth discussion).

A different mat ter is whether the strategy is success­
fu l . In the programming language, a defined strategy
may generate an object level proof or fa i l . Similar ly, the
sequent tree may or may not be a proof. For instance,
a twf f whose sequent tree te rm is ande("A AB") corre­
sponds to a proof, bu t tha t whose te rm is ande("A VB")
does not . In metalevel programming languages (l ike ML
[Gordon et al.,1979]), given two simple tactics corre­
sponding to the ones above, they need to be executed
in order to know tha t the former succeeds whereas the
latter fails. In M T , the derivabiliiy of preconditions de­
termines whether twffs correspond to proofs:

distinguish three parts: the preconditions P, the pred­
icate T and the sequent tree te rm t. The assertion of
the theorem in OT can be seen as the sequence of three
steps: (i) prove V and obta in T(t) (subsection 5.1), (i i)
f rom t generate the name of the endsequent s of I I , "s"
(not described as very similar, in pr inciple, to step (i)) ,
f inal ly (i i i) , f rom T (V) assert s in OT (subsection 5.2).

5 .1 P r o v i n g V

Theorem 3 tells us tha t the preconditions of any twf f rep­
resenting an object level proof can be proved by theorem
proving in M T . This is the "usual" approach taken so far
in theorem prov ing. A problem w i th this approach may
be the size of the search space in MT which, even drop­
ping the completeness requirement, can explode when
complex metareasoning is required. The correspondence
exist ing between MT and the GET code provides us wi th
an alternative technique for proving in MT facts about
O T . The idea is to avoid the expl ici t axiomatizat ion of
parts of OT and to perform computat ion instead of de-
duct ion. As shown above, having a mechanization of the
logic gives us a one-to-one mapping between elements of
the signature of MT and GET functions (section 3, fig­
ure 3) and opens up the possibi l i ty to see deductions
in MT in terms of computat ion in GET (section 4, the-
orems 1,2). For how twffs are defined, their syntactic
structure expl ic i t ly resembles the structure of the com­
putat ion tree they represent. As a consequence we can
compute in GET fol lowing the syntax of the twff. Let us
consider, as an example, the case where one of the con-
juncts of P is Conj("A B"). Conj has been mapped up
f rom the code funct ion CONJ and "A B" is the metathe-
oretic constant which denotes the theorem A B. Ex­
ecuting (CONJ A B) gives TRUE, this means that the
metatheoretic sentence Conj("A B") is t rue and can
be rewr i t ten to the constant for t r u t h , True.

Notice tha t , in order to implement the machinery de­
scribed above, GETFOL must keep track of the l ink be­
tween the funct ions and predicates of the signature of
MT and the GET funct ions they have been mapped from
(by mup). It must also remember which elements of
OT the constants in MC are names of. GETFOL has in
its code a data s t ructure where it memorizes the pairs
("o " ,o) , where "o " is an MT constant, name of o, a syn­
tact ic object in O T . The possibi l i ty to create pairs (
name, object) is implemented by the semantic attach­
ment funct ional i ty [Weyhrauch, 1980] shown in figure 1.

Let us give the formal def ini t ion of the interpreter im­
plemented in GETFOL, I , which maps twffs in to computa­
t ion. Let us restrict ourselves to terms and atomic wffs.
Let us suppose tha t , for any object in O T , "o" is a
constant in M T . Then 1 can be defined as follows 6:

means function composition. The notation should
be made precise, by explaining how to denote function com­
position wi th functions with more than one argument. Since
not relevant in this context, this issue is not faced.

Giunchiglia and Traverso 115

Notice that for any atomic wff or term wt, I(wt) is
the execution of the code c such that rnup(c) = wt.

Supposing that , for any n-ary function and predicate
symbol / p , fp computes the r ight extension (w i th n-
ary function symbols, the (n + l)-element of their set
theoretic definit ion; w i th predicate symbols, either TRUE
or FALSE) then J performs exactly the interpretation of
terms and atomic wffs in a first order model. This result
can be generalized to twffs and, more in general, to any
sentence in M T . Thus the correctness and completeness
of this translation of deduction in to computat ion can be
proved f rom the correctness and completeness results for
first order logic8.

What said above amounts to saying that OT is the
standard model for M T . This is, we th ink, a correct way
to see things and very much in agreement w i th Tarski's
original definit ion of interpretat ion [Tarski, 1956]. More
on seeing interpretat ion, from a computational point
of view (in terms of the recursive definition of J) , as
the process of extract ing objects f rom (quotation-mark
and structural- descriptive) names is in section 4 of
[Giunchiglia an d Traverso, 1990]).

5.2 M T - O T i n t e r a c t i o n v i a r e f l e c t i o n

We can prove the fol lowing lemma:

are (a sort of) derived inference rules between theories
in the mult i theory system M T - O T . Notice that the pro­
cedural dist inction between "being an already asserted

By (CON J Ai AB i,) we mean the result of the application
of the GET function CONJ to its arguments.

8Note that truth is tested in the standard model. It is well
known that the set of wffs true in a model is larger than the
set of valid wffs. On the other hand it can be proved that,
the interpretation in GETFOL restricted to atomic ground wffs
(the elements of V) returns TRUE iff the wff is valid in all
models of MT and thus provable in MT.

theorem" and " being a theorem to be asserted", lost
by m u p , is brought back by the reflection rules. In fact,
Rup can be executed only on theorems already asserted
in OT, while, viceversa, Rdown can be executed to assert
new theorems in O T . Occurrences of T that in the com­
pi lat ion down from MT to GET would be translated into
IS-A-THEOREM correspond to applying RuP ; viceversa,
the occurrences of T that would be compiled down into
p roo f -add - t heo rem correspond to applying R d o w n . The
use of reflection up and down allows us to give a declara­
t ive explanation of the interact ion between reasoning in
OT and reasoning in MT and, in part icular, of how (and
why) it is possible to assert theorems in OT as a result
o f deduction in M T .

5.3 D e d u c i n g i n O T v i a r e a s o n i n g i n M T

In this section we show how a twff can be interpreted to
prove a theorem in O T . As a prototypical example, let
us consider the fol lowing twff:

The code performing the above steps is implemented
in GETFOL and can be run by the command REFLECT
[Giunchiglia and Smail l , 1989]. Notice that running the
code compiled by the "mapping down" would give the
same result as running REFLECT. The inverse of mup is
to REFLECT exactly what compilat ion is to interpreta-
t ion: execution of code generated by the inverse of m u p

produces the same results as interpret ing metalevel the-
orems via REFLECT.

6 Conc lus ions a n d re l a ted w o r k

In this paper we have presented a theorem prover,
GETFOL, where the underlying code has been wr i t ten to

116 Automated Reasoning

behave as the procedural rnetalevel of the logic it im ­
plements. Th is approach seems a f irst step towards the
development of systems able to modi fy deductively and
automat ica l ly their under ly ing computat ion machinery.
In fact:

(a) a logical metatheory MT can be automat ical ly
generated f rom the code;

(b) (some o f) the theorems of MT represent object
level computat ions;

(c) these theorems can be automat ical ly compiled
back in the system code to extend or to modi fy i t (mod i ­
f icat ion is achieved by redefining GET funct ion symbols);

(d) these theorems can be automat ical ly interpreted
to assert object level theorems. In this case, as a side
effect, we have a proven correct way to mix , at run time,
object and rnetalevel theorem prov ing v ia the use of re­
flection up and down. More on th is issue can be found
in [Giunchigl ia and Traverso, 1990] which also has a long
section on the related work , in part icular w i t h [Bundy,
1988; Weyhrauch, 1980].

As far as we know, this approach is new and has never
been proposed before. However, some comparisons w i t h
exist ing systems can nevertheless be made.

The idea of a metatheory mapped direct ly f rom the
system code is somehow simi lar to the idea underly­
ing the work on metafunct ions [Boyer and Moore, 1981]
(in the Boyer and Moore theorem prover the code is
the metatheory) . In [Boyer and Moore, 1981], user de­
fined term-rewr i t ing funct ions can be checked to verify
whether they preserve the "meaning" of terms. Aside
f rom the technical differences, a fundamental difference
is tha t we provide a metatheory in which we can perform
automatic deduct ion to build correct control strategies,
while Boyer and Moore verify the correctness of the user
defined strategies.

Besides Boyer and Moore's work [Boyer and Moore,
1981], none of the exist ing theorem provers, has the pos­
sibi l i ty of using the results of deduct ion in the metathe­
ory to produce modif icat ions of the under ly ing system
code. Th is is, for instance, the case also in NuPr l [Con­
stable et a l . , 1986; Howe, 1988], even if in NuPr l the
synthesis of new tactics can be obtained by metatheo-
retic theorem prov ing (v ia the "proposit ions-as-types"
paradigm). Analogously, metainterpreters can control
the Prolog search strategy but cannot modify i t . T h a t
is, the user can wr i te a metainterpreter for any desired
search strategy, however the metainterpreter w i l l be ex­
ecuted by using the Prolog bu i l t - in search strategy.

For what concerns the issue of self-modif icat ion, the
work which most closely resembles ours is Br ian Smith 's
[Smi th, 1983]. The substant ial difference is tha t , in
GETFOL, metatheoret ic statements are generated by rnet­
alevel deduct ion and not by computat ion and tha t the
tactics derived are provably correct. No non-theorems
can be proved.

Aknow ledgmen ts

The authors thank the Mechanized Reasoning Group at
I R S T and the Mathemat ica l Reasoning Group in Edin­

burgh, in part icular A lan Bundy, Dav id Basin, Alessan-
dro C i m a t t i , Luciano Serafini, Alex Simpson and Alan
Smai l l . Vanni Criscuolo, Bob Kowalsk i , Carolyn Ta l -
cot t , Frank VanHarmelem and Richard Weyhrauch are
also thanked.

References
[Bowen and Kowalsk i , 1982] K.A. Bowen and R.A.

Kowalsk i . Amalgamat ing language and meta-language
in logic programming. In S. Ta r lund , edi tor, Logic
Programming, pages 153-173, New York, 1982. Aca­
demic Press.

[Boyer and Moore, 1981] R.S. Boyer and J.S. Moore.
Metafunct ions: prov ing them correct and using them
efficiently as new proof procedures. In R.S. Boyer and
J.S. Moore, editors, The correctness problem in com­
puter science, pages 103-184. Academic Press, 1981.

[Bundy, 1988] A. Bundy. The Use of Expl ic i t Plans to
Guide Induct ive Proofs. In R. Luck and R. Overbeek,
editors, CADE9. Springer-Verlag, 1988. Longer ver­
sion available as D A I Research Paper No. 349, Dept.
of Ar t i f i c ia l Intel l igence, Ed inburgh.

[Constable et al . , 1986] R.L. Constable, S.F. Al len,
I I . M . Bromley, et a l . Implementing Mathematics with
the NuPRL Proof Development System. Prentice Hal l ,
1986.

[Giunchigl ia and Smai l l , 1989] F. Giunchig l ia and
A. Smai l l . Reflection in construct ive and non-
constructive automated reasoning. In J. L loyd , editor,
Proc. Workshop on Meta-Programming in Logic Pro­
gramming. M I T Press, 1989. I R S T Technical Report
8902-04. Also available as D A I Research Paper 375,
Dept. of Ar t i f i c ia l Intel l igence, Ed inburgh .

[Giunchigl ia and Traverso, 1990] F. Giunchig l ia and
P. Traverso. Plan format ion and execution in a uni ­
form architecture of declarative metatheories. In
M. Bruynooghe, editor, Proc. Workshop on Meta-
Programming in Logic. M I T Press, 1990. Also avail­
able as I R S T Technical Report 9003-12.

[Gordon et al, 1979] M.J . Gordon, A . J . Mi lner , and
C.P. Wadswor th . Edinburgh LCF - A mechanised logic
of computation, volume 78 of Lecture Notes in Com-
puter Science. Springer Verlag, 1979.

[Howe, 1988] D. J. Howe. Computa t iona l metatheory in
Nupr l . In R. Lusk and R. Overbeek, editors, CADE9,
1988.

[Paulson, 1989] L. Paulson. The fundat ion of a generic
theorem prover. Journal of Automated Reasoning,
5:363-396, 1989.

[Smi th, 1983] B.C. Smi th . Reflection and Sematincs in
L ISP. In Proc. 11th ACM POPL, pages 23-35, 1983.

[Tarski , 1956] A. Tarsk i . Logic, Semantics, Metamathe-
matics. Ox fo rd Universi ty Press, 1956.

[Weyhrauch, 1980] R.W. Weyhrauch. Prolegomena to
a theory of Mechanized Formal Reasoning. Artificial
Intelligence. Special Issue on Non-monotonic Logic,
13(1), 1980.

Giunchiglia and Traverso 117

