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A b s t r a c t 

The goal of this paper is to present a theo-
rem prover where the underlying code has been 
wr i t ten to behave as the p r o c e d u r a l m e t ­
a leve l of the object logic. We have then de­
fined a logical d e c l a r a t i v e m e t a t h e o r y MT 
which can be put in a one-to-one relation w i th 
the code and automatically generated from i t . 
MT is proved correct and complete in the sense 
that , for any object level deduction, the wff rep-
resenting it is a theorem of M T , and viceversa. 
Such theorems can be translated back in the 
underlying code. This opens up the possibil­
i ty of deriving control strategies automatically 
by metatheoretic theorem proving, of mapping 
them into the code and thus of extending and 
modifying the system itself. This seems a first 
step towards "real ly" self-reflective systems, it. 
systems able to reason deductively about and 
modify their underlying computation mecha­
nisms. We show that the usual logical reflec­
t ion rules (so called reflection up and down) 
are derived inference rules of the system. 

1 I n t r o d u c t i o n 

Reflective and metatheoretic reasoning are well known 
techniques applied in knowledge representation and au­
tomated deduction (see for instance [Bundy, 1988 , [Con-
stable et al., 1986], [Bowen and Kowalski, 1982], [Smith, 
1983], [Gordon et al., 1979]). Roughly speaking, in the 
past, metareasoning has been performed according to 
two different paradigms. In the f irst, f rom now on called 
p r o c e d u r a l , the metalevel consists of a programming 
language and metareasoning is performed by computa-
tion in i t . One example in AI is [Smith, 1983], an­
other in theorem proving is LCF and its metalanguage 
ML [Gordon et al., 1979]. In LCF the user can write 
control strategies as programs (usually called tactics) in 
ML to guide the search for a proof of a theorem. In 
the second paradigm, f rom now on called dec la ra t i ve , 
the metalevel is a logical metatheory and metareason­
ing is performed by deduction on metalevel statements. 
One example in AI is [Weyhrauch, 1980], one in theorem 
proving is [Howe, 1988]. Both approaches are sometimes 

incorporated and alternatively used; thus, for instance, 
in NuPr l [Constable et al., 1986] and lsabelle [Paulson, 
1989] both ML and a declarative logical metatheory can 
be used to bui ld derived inference rules. In logic pro-
gramming, metainterpreters [Bowen and Kowalski, 1982] 
can be seen both procedurally and declaratively. 

In this paper, we present a system (called GETFOL 1) 
wi th both a procedural and a declarative metalevel. In 
this respect GETFOL is similar to NuPr l and lsabelle; on 
the other hand GETFOL has features which make it very 
different from any other system proposed so far: 

(1) the metalevel programming language is the same 
as the underlying implementation language and the code 
implementing the object logic has been wr i t ten to be its 
procedural metalevel. 

(2) the logical declarative metatheory MT can be put 
in a one-to-one relation w i th the code and automatically 
generated from it (and viceversa). 

(3) MT is correct and complete in the sense that , for 
any object level deduction (performed by running the 
code implementing the object level logic), the wff repre­
senting it is a theorem of M T 2 . Such theorems, possibly 
proved automatically by metatheoretic theorem proving, 
can be "mapped back" into the underlying code as new 
reasoning modules. These modules, if executed, wi l l pro-
duce the proof represented by the theorem they have 
been translated from. 

As a consequence of these three facts, it is possible to 
generate (parts of) MT automatically f rom the imple­
mentation language, to prove in MT "certain" theorems 
and then to " t ransform" them into new code. The result 
is an extension or, possibly, a modification of the system 
itself. The GETFOL underlying code is not a "black box", 
fixed once and for all at the t ime of the development, but 
can change over t ime. This seems a first step towards 
"really" self-reflective systems, it. systems able to rea­
son deductively about and thus, possibly, modify, their 

1 GETFOL is a reimplementation/ extension of the FOL sys­
tem [Weyhrauch, 1980]. GETFOL has, with minor variations, 
all the functionalities of FOL plus extensions, some of which 
described here, to allow metatheoretic theorem proving. 

2The notions of correctness and completeness here in­
volved are sometimes called adequacy and faithfulness, 
respectively. 
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underlying reasoning strategies. As a side effect of this 
"reflective" relation existing between computation and 
deduction, the usual logical reflection rules (reflection 
up and reflection down) [Giunchiglia and Smaill, 1989] 
can be proved to be (a form of) derived inference rules. 

The paper is structured as follows. Section 2 describes 
how the implementation has been constructed to behave 
as the procedural metalevel of the system. Section 3 de­
scribes MT and how it can be automatically generated 
from the implementation code. In section 4, it is proved 
that MT represents all the object level deductions and 
that deduction in MT is the analogous operation of wr i t -
ing tactics in the implementation language. This is the 
fundamental property that allows the interpretation of 
theorems of MT in terms of the underlying code (sec­
tion 5) via the use of reflection up and down. Finally, 
section 6 gives some conclusions and a short discussion 
of the related work. 

is then added (by p roo f -add - theo rem) to the current 
proof. Notice that , even if the underlying code has been 
wr i t ten to treat errors (tg. the application of (AE) to a 
disjunction), this issue is not dealt w i t h in this paper. 

Figure 2: GETFOL implementation of Ae, VJ and VE. 

Strategies and derived inference rules can be defined 
in a metalevel functional language, GET, which is a subset 
of the implementation language of GETFOL. To preserve 
correctness, the development environment is such that 
the user can wri te tactics which fail but that never assert 
a non-theorem. For instance, considering the code in 
figure 2, p roo f -add - theo rem, ande- fun , a l l i - f u n and 
a l l e - f u n are not available to the user. In this respect, 
GET is similar to ML as used in LCF, Nupr l or Isabelle. 
For instance, the GET code implementing the (simple) 
derived inference rule that corresponds to the deduction 
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of x1, otherwise exhaustively apply t a c t i c 2 " , where 
t a c t i c 2 is a previously defined tactic. 

Wha t has been described so far suggests that GET can 
be used as the procedural metalevel of GETFOL, analo­
gously to what happens w i th ML in LCF, NuPr l or Is-
abelle, or even wi th metainterpreters in Prolog. This 
is, in fact, the case when wr i t ing tactics. The differ­
ence comes f rom the fact that (exploit ing that GET is 
also GETFOL's implementation language), the bui l t - in GET 
functions to perform logic inference are exactly those 
used to implement the basic inference rules, eg. those 
in figure 2. More generally, all the GETFOL code has 
been carefully written to allow the identification of the 
procedural metalanguage with the implementation lan-
guage. Thus, for instance, the implementation provides 
GET wi th all the syntax manipulation routines (such as 
FORALL, CONJ, ande), w i th all the proof manipulation 
routines (such as IS-A-THEQREM), w i th all the theory ma­
nipulation routines and so on. Not only must the code 
produce extensionally the r ight behaviour (satisfying the 
usual correctness criteria), but it must also be wri t ten to 
be at the same t ime the procedural metalevel of the logic 
it implements. In other words, it must have the r ight 
function and predicate symbols, the internal structure 
of the function and predicate definitions must be such 
that they can be put in a one-to-one relation w i th the 
axioms describing their behavior (all of this is described 
in section 3), and far harder, it must be such that com­
putat ion can be directly mapped into the metathereotic 
"representation" of the deduction it produces (described 
in section 4). 

We call the production of code satisfying the require­
ments above, " t h e m e c h a n i z a t i o n of the logic" (to dis­
tinguish it f rom the process of producing an implemen­
tation of the logic). Mechanizing a logic is far harder 
than implementing i t . On the other hand, as the rest 
of the paper wi l l show, the mechanization of the logic 
can be exploited to bui ld really self-reflective systems, 
it. systems able to reason deductively about and modify 
their computat ion mechanisms. In fact it becomes then 
possible to generate automatically a logical metatheory 
MT from the code and, viceversa, to compile certain 
theorems of MT as system implementation code. Mod­
ification of the system's underlying computation mech­
anism is achieved by re-wri t ing already existing (parts 
of) procedures. Note that this is not done in any of 
the existing theorem provers or metainterpreters. From 
this perspective, the work which most closely resembles 
ours is Br ian Smith's [Smith, 1983]. The fundamental 
difference is that our metalanguage is a logical metathe­
ory; this allows us to generate provably correct computa­
tion procedures automatically by metatheoretic theorem 
proving. 

3 The declarat ive metatheory MT 
MT's set of inference rules is fixed, being 7v. We need to 
define MT 's language MC and axioms MAx. MC, has 
names for the elements of OT (axioms and assumptions 
s, formulas w, variables x and so on); this is achieved by 
having for any such element an individual constant ("s", 
"w" , "x" and so on) as part of MC. These constants are 

the "quotation mark names" [Giunchiglia and Traverso, 
1990] of the objects of O T . 

Figure 3: mup - mapping from the code to the metatheory. 

Each inference rule of OT gets "mapped up" to a 
distinct axiom of MAx. This mapping, called "mup", 
performs a one-to-one translation from the code into el­
ements of MT (see figure 3, rnup(x) is wr i t ten as [x]) 
Thus, for instance, the axioms generated by applying 
mup to the GET code implementing AE, V7 and VE (see 
figure 2) are listed in figure 4. A complete definition of 
rnup and the code over which it can operate is outside 
the goals of this paper. The important point to notice is 
the fact that mup (and its inverse) can be implemented 
to do the translation in either direction automatically. 

Figure 4: Metatheoretic axioms mapped from the code. 

We can observe in figure 3 that the two GET op­
erations of testing if something is a theorem al­
ready asserted in the object theory (performed by 
IS-A-THEOREM) and of asserting a proved theorem (per­
formed by p roo f -add- theorem) are translated into the 
same metatheoretic predicate T3. This is because OT , as 

3 Notice that this seems to contradict our previous state-
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the procedural metalanguage the user can theorem prove 
them in M T . The user can thus wr i te the hardest steps 
and, interact ively, generate tactics by theorem proving. 
Th is amounts to g iv ing the user the possibi l i ty to derive 
not only the object level proofs but also the tactics ( this 
idea has some resemblance w i t h the work on proof plan­
n ing [Bundy, 1988], see [Giunchigl ia and Traverso, 1990] 
for a more in depth discussion). 

A different mat ter is whether the strategy is success­
fu l . In the programming language, a defined strategy 
may generate an object level proof or fa i l . Similar ly, the 
sequent tree may or may not be a proof. For instance, 
a twf f whose sequent tree te rm is ande("A AB") corre­
sponds to a proof, bu t tha t whose te rm is ande("A VB") 
does not . In metalevel programming languages (l ike ML 
[Gordon et al.,1979]), given two simple tactics corre­
sponding to the ones above, they need to be executed 
in order to know tha t the former succeeds whereas the 
latter fails. In M T , the derivabiliiy of preconditions de­
termines whether twffs correspond to proofs: 

distinguish three parts: the preconditions P, the pred­
icate T and the sequent tree te rm t. The assertion of 
the theorem in OT can be seen as the sequence of three 
steps: ( i ) prove V and obta in T(t) (subsection 5.1), ( i i ) 
f rom t generate the name of the endsequent s of I I , "s" 
(not described as very similar, in pr inciple, to step ( i ) ) , 
f inal ly ( i i i ) , f rom T ( V ) assert s in OT (subsection 5.2). 

5 .1 P r o v i n g V 

Theorem 3 tells us tha t the preconditions of any twf f rep­
resenting an object level proof can be proved by theorem 
proving in M T . This is the "usual" approach taken so far 
in theorem prov ing. A problem w i th this approach may 
be the size of the search space in MT which, even drop­
ping the completeness requirement, can explode when 
complex metareasoning is required. The correspondence 
exist ing between MT and the GET code provides us wi th 
an alternative technique for proving in MT facts about 
O T . The idea is to avoid the expl ici t axiomatizat ion of 
parts of OT and to perform computat ion instead of de-
duct ion. As shown above, having a mechanization of the 
logic gives us a one-to-one mapping between elements of 
the signature of MT and GET functions (section 3, fig­
ure 3) and opens up the possibi l i ty to see deductions 
in MT in terms of computat ion in GET (section 4, the-
orems 1,2). For how twffs are defined, their syntactic 
structure expl ic i t ly resembles the structure of the com­
putat ion tree they represent. As a consequence we can 
compute in GET fol lowing the syntax of the twff. Let us 
consider, as an example, the case where one of the con-
juncts of P is Conj("A B"). Conj has been mapped up 
f rom the code funct ion CONJ and "A B" is the metathe-
oretic constant which denotes the theorem A B. Ex­
ecuting (CONJ A B) gives TRUE, this means that the 
metatheoretic sentence Conj("A B") is t rue and can 
be rewr i t ten to the constant for t r u t h , True. 

Notice tha t , in order to implement the machinery de­
scribed above, GETFOL must keep track of the l ink be­
tween the funct ions and predicates of the signature of 
MT and the GET funct ions they have been mapped from 
(by mup). It must also remember which elements of 
OT the constants in MC are names of. GETFOL has in 
its code a data s t ructure where it memorizes the pairs 
( "o " ,o ) , where "o " is an MT constant, name of o, a syn­
tact ic object in O T . The possibi l i ty to create pairs ( 
name, object ) is implemented by the semantic attach­
ment funct ional i ty [Weyhrauch, 1980] shown in figure 1. 

Let us give the formal def ini t ion of the interpreter im­
plemented in GETFOL, I , which maps twffs in to computa­
t ion. Let us restrict ourselves to terms and atomic wffs. 
Let us suppose tha t , for any object in O T , "o" is a 
constant in M T . Then 1 can be defined as follows 6: 

means function composition. The notation should 
be made precise, by explaining how to denote function com­
position wi th functions with more than one argument. Since 
not relevant in this context, this issue is not faced. 
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Notice that for any atomic wff or term wt, I(wt) is 
the execution of the code c such that rnup(c) = wt. 

Supposing that , for any n-ary function and predicate 
symbol / p , fp computes the r ight extension (w i th n-
ary function symbols, the (n + l)-element of their set 
theoretic definit ion; w i th predicate symbols, either TRUE 
or FALSE) then J performs exactly the interpretation of 
terms and atomic wffs in a first order model. This result 
can be generalized to twffs and, more in general, to any 
sentence in M T . Thus the correctness and completeness 
of this translation of deduction in to computat ion can be 
proved f rom the correctness and completeness results for 
first order logic8. 

What said above amounts to saying that OT is the 
standard model for M T . This is, we th ink, a correct way 
to see things and very much in agreement w i th Tarski's 
original definit ion of interpretat ion [Tarski, 1956]. More 
on seeing interpretat ion, from a computational point 
of view (in terms of the recursive definition of J ) , as 
the process of extract ing objects f rom (quotation-mark 
and structural- descriptive) names is in section 4 of 
[Giunchiglia an d Traverso, 1990]). 

5.2 M T - O T i n t e r a c t i o n v i a r e f l e c t i o n 

We can prove the fol lowing lemma: 

are (a sort of) derived inference rules between theories 
in the mult i theory system M T - O T . Notice that the pro­
cedural dist inction between "being an already asserted 

By (CON J Ai AB i,) we mean the result of the application 
of the GET function CONJ to its arguments. 

8Note that truth is tested in the standard model. It is well 
known that the set of wffs true in a model is larger than the 
set of valid wffs. On the other hand it can be proved that, 
the interpretation in GETFOL restricted to atomic ground wffs 
(the elements of V) returns TRUE iff the wff is valid in all 
models of MT and thus provable in MT. 

theorem" and " being a theorem to be asserted", lost 
by m u p , is brought back by the reflection rules. In fact, 
Rup can be executed only on theorems already asserted 
in OT, while, viceversa, Rdown can be executed to assert 
new theorems in O T . Occurrences of T that in the com­
pi lat ion down from MT to GET would be translated into 
IS-A-THEOREM correspond to applying RuP ; viceversa, 
the occurrences of T that would be compiled down into 
p roo f -add - t heo rem correspond to applying R d o w n . The 
use of reflection up and down allows us to give a declara­
t ive explanation of the interact ion between reasoning in 
OT and reasoning in MT and, in part icular, of how (and 
why) it is possible to assert theorems in OT as a result 
o f deduction in M T . 

5.3 D e d u c i n g i n O T v i a r e a s o n i n g i n M T 

In this section we show how a twff can be interpreted to 
prove a theorem in O T . As a prototypical example, let 
us consider the fol lowing twff: 

The code performing the above steps is implemented 
in GETFOL and can be run by the command REFLECT 
[Giunchiglia and Smail l , 1989]. Notice that running the 
code compiled by the "mapping down" would give the 
same result as running REFLECT. The inverse of mup is 
to REFLECT exactly what compilat ion is to interpreta-
t ion: execution of code generated by the inverse of m u p 

produces the same results as interpret ing metalevel the-
orems via REFLECT. 

6 Conc lus ions a n d re l a ted w o r k 

In this paper we have presented a theorem prover, 
GETFOL, where the underlying code has been wr i t ten to 
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behave as the procedural rnetalevel of the logic it im ­
plements. Th is approach seems a f irst step towards the 
development of systems able to modi fy deductively and 
automat ica l ly their under ly ing computat ion machinery. 
In fact: 

(a ) a logical metatheory MT can be automat ical ly 
generated f rom the code; 

( b ) (some o f ) the theorems of MT represent object 
level computat ions; 

( c ) these theorems can be automat ical ly compiled 
back in the system code to extend or to modi fy i t (mod i ­
f icat ion is achieved by redefining GET funct ion symbols); 

( d ) these theorems can be automat ical ly interpreted 
to assert object level theorems. In this case, as a side 
effect, we have a proven correct way to mix , at run time, 
object and rnetalevel theorem prov ing v ia the use of re­
flection up and down. More on th is issue can be found 
in [Giunchigl ia and Traverso, 1990] which also has a long 
section on the related work , in part icular w i t h [Bundy, 
1988; Weyhrauch, 1980]. 

As far as we know, this approach is new and has never 
been proposed before. However, some comparisons w i t h 
exist ing systems can nevertheless be made. 

The idea of a metatheory mapped direct ly f rom the 
system code is somehow simi lar to the idea underly­
ing the work on metafunct ions [Boyer and Moore, 1981] 
( in the Boyer and Moore theorem prover the code is 
the metatheory) . In [Boyer and Moore, 1981], user de­
fined term-rewr i t ing funct ions can be checked to verify 
whether they preserve the "meaning" of terms. Aside 
f rom the technical differences, a fundamental difference 
is tha t we provide a metatheory in which we can perform 
automatic deduct ion to build correct control strategies, 
while Boyer and Moore verify the correctness of the user 
defined strategies. 

Besides Boyer and Moore's work [Boyer and Moore, 
1981], none of the exist ing theorem provers, has the pos­
sibi l i ty of using the results of deduct ion in the metathe­
ory to produce modif icat ions of the under ly ing system 
code. Th is is, for instance, the case also in NuPr l [Con­
stable et a l . , 1986; Howe, 1988], even if in NuPr l the 
synthesis of new tactics can be obtained by metatheo-
retic theorem prov ing (v ia the "proposit ions-as-types" 
paradigm). Analogously, metainterpreters can control 
the Prolog search strategy but cannot modify i t . T h a t 
is, the user can wr i te a metainterpreter for any desired 
search strategy, however the metainterpreter w i l l be ex­
ecuted by using the Prolog bu i l t - in search strategy. 

For what concerns the issue of self-modif icat ion, the 
work which most closely resembles ours is Br ian Smith 's 
[Smi th, 1983]. The substant ial difference is tha t , in 
GETFOL, metatheoret ic statements are generated by rnet­
alevel deduct ion and not by computat ion and tha t the 
tactics derived are provably correct. No non-theorems 
can be proved. 
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