Solving "How to Clear a Block" with CONSTRUCTIVE MATCHING methodology

Marta Franova, Yves Kodratoff
CNRS & Universite Paris Sud,
LRI, Bat. 490,91405 Orsay, France

Abstract’

Constructive Matching is a methodology for proving by induc-
tion Specifications Theorems (ST), i.e., theorems of the form
Vx 32 (P(x) = Q{x,z)). ST formalize the problem of constructing a
program specifiod by given an input vaector x, an input condition P,
find an output vector z verifying Q{x,z}, whenever P(x) holds.

Til now, we have applied our method to the so-called
Constructible Domains, tor which one disposes of a unique way of
building any input and output data. The goal of this paper is to
enlarge our methodology to well-founded domains which are not
constructible. As a simple example, Manna and Walkdinger's "How
to Clear a Block™ problem® is solved. As opposed to theirs, our
method does consider strategic aspects of program dernvation
from a formal specification.

1 Introduction

In [Franova, 85]) we have developed a methodology, called
Constructive Matching (CHM), for proving by induction
Specification Theorems, i.e., theorems of the form
Vx 3z (P{x) = Q(x,z)). These theorems formalize program
synthesis as follows. Given input vector x verifying the
input condition P(x), find an output vector z such that the
iput-output relation Q(x,z) holds. Practical reasons, such as
the availability of examples and implementation limitations,
led us to restrict our method to particular inductively
constructed sets, called Constructible Domains (CD). These are
specified by their constructors, enabling new elements to be
built from old ones and, possibly, from elements of an
already defined domain. In CD each element has a unique
representation in terms of constructors. This amounts to
saying that we do not allow relations among constructors.

E.g.. the set of natural numbers (A2T) can be considared as a
CD with constructors 0 and 8. This gives us the domain Na7 = {0,
${0),8(8(0)), ...} which may be identified with the lamiliar sequence of
integers { 0, 1, 2, ... }. Each element x of A{47T is either 0 or can be
written as s(y), where y is an element of A/2T. In the following, we
shall call s{y), a represeniative of x, and y a subrepresentative of x.

More generally, we call y a subrepresentative of x if
it has the form x = Constructor(y).

' This research has been partly supported by the Programme de
Recherches Coordonées en Intelligence Ariificielle from the French
Ministére de la Recherche et de la Technologie. I is 3 shoriened
version of [Franova and Kodnatoff, 91a].

Using this problem, Manna and Waldinger show the interest of the
deductive approach for the synthesis of imperative programs that may
alier data structures or other side effects, and illustrate how
program synthesis can be carried over 1o the planning domain. Qur
B:nl is the same as theirs, i.e., illutrating that our methodology can

also carmied over o planning.

232 Automated Reasoning

Moreover, in CD, we have considered mainly recursive’
definitions given with respect to constructors.

For instance, the basic form of such a recursive definitions for a
tunction f defined on the natural numbers, is

ZUp if T = 0
f(z) = :

g(a.f(a)), if z = s(a) & H(a)
where z, is a constant, g is a suitable recursive function and H is
suitable recursive predicate. Note that this definition introduces an
existentially quantified variable 'a’, which is a subrepresentative of 2.

Therefore, no actual new variable has been introduced.

Another typical feature of CD is that definitions do not allow
the introduction of existentially quantified variables (EQV)
other than subrepresentatives of others. As we illustrate in
section 4, the introduction of new EQYV is typical of non CD.

For instance, let us consider a predicate P, the recursive case of
which is defined by the axiom P(f(u,v),¥}, If P(u,y)&Q(v).
where { is not a construcior. Then, this kind of axiom is not admissible
in CD, since it contains EQV* u and v, Note that the put-table-clear
axiom (section 4.3} is of this form.

In order to stress the difference between EQV met in the
theorem, and those met in definitions, we shall call the latter
ones unspecified variables (because they are indecd
"unspecified” in the definition).

In general, our method is able to prove a given theorem
only if the well-founded order necessary for proving this
theorem is expressed in the axioms.

For instance, let us define the addition of two natural numbers by:

{ u, ifv=20

ury = s(u+p(V), if v > 0
This definition calls recursively the predecessor {p) of given number
v. Therefore, the well-founded order determined by this definition
allows us to perform only proofs that require one-step induction, i.e.,
in order 10 prove, say, Vx F(x), we have to prove F(0) and
F(p(n)) = F(n}. If ¥x F(x) requires other kinds of weli-founded
ordatings, for instance, with respect 10 the quotient of n when divided
by a number m such that ${(0} < m < n, and if in the theory nane of the

functions or predicates call such an element, then our current method
fails (see details in [Franova, 91a)).

Moreover, if a recursive definition 1s of the form
f(x) = h(x,f)) |
we assume that there is a well-founded ordering in which t 1s
smaller than x. We have not yet studied the problem of
finding such a well-founded ordering. Presently, we propose
that the user uses the results of Boyer and Moore [79] in order
to check that his definitions are correct

’D. Barstow made available 1o vs an example for which we were unable
to find a recursive definition of one of the icates invoived in ST.
Dur method cannot be applied 10 that kind em.

In fact, the axiom P{f(uv),y), if Plu,y) & Q(v) should correctly be
written as P(x.y), if Ju v (x:&u,v} & Pluy) & Q(v)).

In this paper we enlarge our methodology to well-founded
domains (WFD) that are not necessarily constructed with a
help of constructors, and which may introduce EQV in the
definitions. We explain in [Franova, 88a] that finding a strat-
egy for a proof of an atomic formula is one of basic problems
of mechanizing inductive proofs. We therefore limit ourselves
here only to this particular problem, even if the simple
example we solve here (Manna&Waldinger's "How to Clear a
Block" problem [87]), illustrates our overall methodology.

2 CM-methodology

One of the main differences of our method, in comparison
with other approaches in inductive theorem proving [Boyer
and Moore, 79; Bundy et al, 90] is actually very deep since it
takes place in the basic step of any theorem proving
methodology, viz. in the way atomic formulae are proven. In
[Franova, 88a] we have shown the consequences of the
choices done at such a low level on the way subproblems are
generated during the course of a complete proof.

Classical methods for proving by induction atomic for-
mula can be classified as simplification’ (or rewrite) methods,
l.e., they attempt to transform the atomic formula into
simpler and simpler form, until the formula TRUE is reached.

Our method for proving atomic formulae can rather be
qualified as a "complication" method, stressing so that we
rather progressively build more and more large sets of con-
straints describing the condition at which the formula is
TRUE. The proof is completed when these conditions are
proven to be implied by those of the problem.

We call our way of proving an atomic formula a
Constructive Matching formula construction, or CM-
formula construction.

Let us give a brief motivation for this name. If F is an
n-ptace predicate symbol and t....t, are terms, then
F(t. tj is an atomic formula. This definition of an
atomic formula shows that an atomic formula is
"constructed”, or "build up”, from a predicate name and terms
in the following manner: We take an n-place symbol F
providing the syntactical scheme F(_,), where " "
represent empty positions (or arguments) to be filled up by
concrete terms, so that finally F(/....t, is obtained. In
classical thinking, this process of "filling up" empty
argument places is mentally performed in one step, i.e., we
start from F(_ ,...,) and reach immediately F(t;....1,).

As opposed to this one step operation, we consider a
piece-wise construction of an atomic formula. We start with
the syntactical scheme F(_,, . We then take the first
term t; and we fill up the first empty argument of our scheme
by this term, so we have F(t; _ __). Then, we fill up
the first empty argument in the last scheme by t,, obtaining
F(t1, tz, —_—), etc.

We thus construct (purely syntactically) in n steps Ge
formula F(t4...» Q. However, in theorem proving, we need
to speak of the validity of a given formula in a theory T made
from the axioms. This is why we will consider axioms
defining the predicate F. These axioms allow us to change the
above syntactical construction into a construction which, if
successfully performed, provides a proof for F(t4..., ;).

ritamHW

5 [Beyer and Moore, 79] is an example of a simplification method.

Let us show briefly how axioms are involved in the
process of our construction of an atomic formula F(t.t),
created from a predicate F and two terms t, and ¢, ie, n= 2.
The order of filling up arguments depends now on given
definitions. For simplicity, we suppose here that definitions
involved indicate that t, has to be filled up first. The CM-
formula construction can then be briefly described as follows.

We start by building an abstract formula F(t ,§) with an
abstract argument &, i.e., instead of considering an empty
argument place, we take a variable which has a special
character since it does not occur in F(1,.1,), and moreover it
represents (or, equivalently, is an abstraction of) all terms
which can fill up the empty argument of the scheme F(t,,)
in order to oblain an atomic formula. Therefore, we call it an
abstract argument in order to avoid confusing it with the
quantified vanables of the theorem.

Lat us give a very simple example which shows also a difterence
with the simplification approach, by proving the formula 8($(0)) <
s{s(s(8(0)))) (written 2«4, for brevity), and using the following
recursive definition of the predicate <:

(1) 0 < n ¥ n=sb)

(2) sm <« n, if n=spb)&m<b
The definition of “<" is recursive with respect to the first argument.
This Is why, In the formula 2<4, the second argument (i.e., non-
recursive) is replaced by an abstract argument . Uip to now, we have
consiructed purely syntactically the formula 2<£, without considenng
yet the valicity of this formula.

Now, the definition of F provides conditions for the
validity of the formula F(t,.E). Let us denote by (the set of
all § for which F(t, £} is true, i.e., C = [§ | F(1,.£) is true}.

Using the definition of the predicate “<" we 2<k

tee that any [that satisfies the formula 2<t P

must be of the form E=e{u), where 1<u, §=su) l<u
therefore, u must be of the form s(v} with G<v, N
and therefore, using (1), v must be of the form u=s(v} O<v
s(z). This yelds the final form of £ and so the . 1(:}

class of of all £ that satisfy the formula 2<£ is
C={ £/ there exists 2 such that E = s{s(8{2)))}. Note that we
obtain ¢ by unfolding [Burstall and Darlington, 77] the formulae 2<§ ,
1<u, O<v. For each of them we obtain conditions, that are collected
and combined. The final step is the withdrawal of the new “abstract
arguments” u, v which are recognized as being useless. This leaves £
expressed in relation with a new variable-argument z.

In other words, we solve our problem in a top-down
manner, pick up the final leaf (v=ol£‘z }, carry this bottom leaf
up 1o the root of the tree. During this last step, the final leaf
is applicd to all other leaves of the tree. The solution
obtained (in case of success) is given by the set of
independent leaves in which the final leaf has been applied.

In our axample, final leaf is v=8(2). It is applied succassively to
u=8(v) yielding u=8(s(z})), then to E=8(u), yielding E=8(8(3(2))).
Therefore we have that the solution of our problem 2<£ is
E=8(8(8(2))).

We are then left with checking if the replacement of & by

t, preserves the validity of F(t, £), i.e., we have 1o check
whether t, € C

In our example, we have to check whether 4 belongs to ¢ In fact,
it does, since 4 = 8(8(s(8(0)))), i.e., z = 8(0).

The same problem is tackled by the simplification

approach m a different manner:

Applying (2) to 2<4 leads to two subproblems. j,.‘..i\
Firstly, it is necessary to show that there is an 4.5 | <2
alement b such that 4=3(b). Here, we succeed 7N
since b=3. Then it is necessary 1o prove 1<3. In Iw-e() 0«2
this step, our original problem, proving the -
formula 2<4 is repiaced by another equivalent 2=u(1)
problem: Prove 1<3. One therefore “forgets” the TRUE

original problem. Applying (2) to 1<3 leads again

Franova and Kodrotoff 233

to two similar subproblems. Firstly, it is necessary to show that there
is an element b such that 3=a(b}. Mere, we succeed since b-2 Then
it is necessary to prove 0<2. Here, once again we "forget™ the formula
1<3 and we concentrate our effort to the formula 0<2 Using (1) this
simplifies to TRUE, because them is an element b (b=1) such that
2=(b). This prows our original formula.

This simplification approach proves the formula in a top-
down manner, but the final leaf is TRUE in the case of
success. Therefore, as opposed to our method, there are no
final bottom-up steps in the simplification approach.

It may seem that our "constructive” method makes the
proof more complicated (as compared to the simplification
methods) without anything to gain. Recall, however, that
simplification procedures have been developed for theorems
without EQV. Therefore, our method which is suitable for
specification theorems, is more powerful, even if it may
seem more awkward and non-useful for theorems with
universally quantified variables only. As compared to
classical simplification thinking, it may seem also more
artificial, because, by our method, we may generate an
existentially quantified lemma when proving a universally
guantified theorem. The simplification methods are built in
such a manner that all the subproblems generated are
universally quantified, while this restriction is not necessary
to our CM-methodology,

Program synthesis methodologies ([Manna and Waldinger,
80; Kodratoff and Picard, 83; Bibel and HOrnig, 84;
Dershowitz, 85; Smith, 85; Perdrix, 86; Biundo, 88]) do not
consider the problem of strategy for proving an atomic
formula as the main problem. In fact, these methods take the
whole specification, say Qq(x,z) & ... & Q,(x,z), where
Q1...,Q, are literals, and perform transformations on this
complex formula®. As opposed to such a treatment of a given
specification, our method deals firstly’ with Q4(x,z),
performing the CA-formula construction it finds conditions
for a validity of this formula. After this step has been
completed, arid assuming the conditions obtained, our method
starts taking care of Q»(x,z), and so on, until the last literal
Qn(X,2) is treated

Thus, as a summary, let us state that, in order to prove an
atomic formula F(t4,t2), created from a predicate F and two
terms t; and t,, we start by building an abstract formula
F(1,,£) with an abstract argument &. The definition of F
provides conditions for the validity of the formula F(ll,&,). Let
us denote by Cthe set of all § for which F(,,E) is true, i.e.,
C= {§ | F(l,.ﬁ) Is true}. We are then left with checking if the
replacement of § by t, preserves the validity of F(t,,E), i.e.,
we have to check whether t,€ C

3 CM-formula construction for WFD

In the previous section we pointed out that the main reason
for performing the CW-formula construction is its suitability
for proving specification theorems. We also described the way
to proceed when a given specification is a conjunction of
atomic formulae. Therefore, in this section, we shall

See (Franova. 91c] for mote detail* about differences between our
method and the other program synthesis methods.
" There are heuristics which suitably order literals in a given
specification, For instance, if x is an input and z is an output, then the
specification ordered(z) & permui(x,z) is reordered to permul(x,z) &.
ordered(z) Moreover, in such a reordered specification, Q4(x,z) must be
an atomic formula.

234 Automated Reasoning

concentrate on a specification theorem® Vx dz Q(x,z), where
Q(x,z) 18 an atomic formula.

Let us denote by ST, this theorem and by o, the

substitution {x « p}, where p is smaller than x. Using the
general induction principle and x being the induction vanable,
we have to prove { ¢,(3z Q(x.2)) } = 3z ((x.2).
For this general induction principle scheme, we do not have a
division into a base step and an induction step. From the
computational point of view, however, it 1s interesting 1O
"simulate” a base step for ST, since we then obtain the non-
recursive parts of the desired programs.

3.1 Base step (a general outline)

One way to simulate a base step is done by using the
tautology Q(x.t) = Q(x,t) as explained and exemplified in
[Franova and Kodratoff, 91a).

Let us consider now the induction step, i.c., we try 0 find
out recursive pars of the program.

3.2 Induction step solutions (a general outline)

During this step we shall perform the CM-formula construc-
tion presented In an intuitive way in section 2. For simplic-
ity, and in order to keep the notation of section 2, Q(x,z) will
be called F(t,,1,)’. We suppose that F is defined in T

recursively (at least) with respect to the first argument,

As pointed out in section 2, we start by building an
abstract formula F(t, £) with an abstract argument £. Then

tep 1: We evaluate the term ¢, 1.6, we apply to L,
axioms defining functions occurring in t, until no further
axioms can be applied. For brevity, we suppose here that t, 18
already evaluated, and that the evaluations yielded no
ondition

tep 2: We evaluafe F(1,,5) in order to find
conditions for the validity of the formula F(1..5).

With respect 10 the recursive definition of F this step gives a

composition of the recursive cail and some formula, say G.
We have F(t,E) if comp(G.F(LE)).

Here, it may that t in the recursive call 1s expressed 1n
terms of new EQV" that do not appear in ST,. For instance,

later we show that constructing the formula C fcar(é,b) (using
the put-table-clear axiom from section 4.2) leads to
Clear(§,b) if & = put'(w,x,table) & On(w,x,b) & Clear(w,x).
This formula sa)gs that Clear .Isg is valid only if there is a
stat¢ w and a block x such that ¢ can b¢ written as
Rgt?éw x.table) and moreover if On{w.x,b) & Clear(w,x)

1ds. lI‘hug x and w are existentially quanufied, i.e., x and w
are uns_.pecnﬁed variabies. The presence of such vanables i a
proof is not admissible, because it makes the proof to be a
nonconstructive one. Therefore, during an actual proof we
have to express unspecified variables in erms of variables
given in ST,. Whenever we express a variable in terms of
variables given in ST,, we say that we concretize this
variable, or, equivalently, we say that we try to make this
vanable more explicit. The following step is necessary
only when such unspecified variables appear.

tfﬂp : We try to concrefize unspecilied variables
until the recursive call formula contains vanables of ST, so
hat the applicanon of the induction hypothesis is possibl¢
We will try to concretize unspecified variables mn F(t,5)
exploring where the atomic formulae of comp(G,F(1.£)) may
come from. Thus, we apply our OM-formula constructuon w

: For simphicity, we asssume here that the input condition P(x) is TRUE.
Thus, we assume here that Q(x,z) is created from a binary predicate F
Hrl the terms t, and L.,
Remember that wé call such EQV "unspecified variables” and that
such variables are not poesible for CD.

the atomic formulae of comp(G ,F(1.£)). Clearly, in general,
heuristics have to be developed here to choose the order in
which the formulae from comp(G,F(1£)) are examined. In
section 4 we will follow one possible heuristic: The priority
of formulae with a larger number of variables of ST,

This concretization of unspecified variables changes F(LE)
to a new formula, say F(1'.£).

Step 3: We now try to apply induction hypotheses in
order to concretize' &,

Recall that o= { x « p }, where p is smaller than x.
The generic form of induction hypotheses (TH) is
Vu o F(1,(x,u),L,(x,u)).

The quantification here is due t0 a possible presence of
universally quantified variables other than x in ST,. Thus, if
ST, contains no other universally quantified variables, the
form of IH is o F(t (x),t(x)). Attempting to apply IH leads
to a comparison between F(1'5) and Vu ¢ F(t,(x,u),t(x,u)),
which, in general, yields the transformational problem
represented by the equations

Ju (=04 (x.u)) & (§=a.(x.u)).
The solution of this problem allows the replacement of € by
the more concrete element 0'8[2 x,u). Let us denote this

(
element by o. Therefore, the elements of the class for which
the theorem is true, C, are represented by o

Step 4: Our goal is now to verify if t, belongs 1o €, i,e.,J

we have (o check if we can replace a by t,.

This is equivalent to performing a unification of a and t,
modulo the theory 7. Our CM-term construction performs
this operation (soe {Franova, 88b]).

[Step 5: We have to perform final simplifications,

The reader can now see that our formula construction is an
algorithm which mechanizes a proof of an atomic formula,
because a successfully completed construction provides a
Beroof. On the other hand, this construction is an algorithm,

cause we know what we wani {0 obtain and how to
obhtain it.

0O Clearly, in order 1o find conditions for the validity of F(t,,E)

we evaluate F(t .E) using the definition of F in the same way
as the unfold operation [Burstall and Darlingion, 77).

O We know then that we have to apply induction hypotheses.

so we generate equations comparing IH and the
previously obtained expansion.

O The success of the last equation solving problem allows the
concretization of & by a more concrete o and allows at Jeast

the most trivial simplification, which is here eliminating
recursion formulae from the obtained expansion.

0O We have then to replace a by t,, so we generate an
equation between « and 1,.

4 Example: How to Clear a Block (HCB)

Here, a plan for the problem™ is specified as follows. The
pmbfem is to clear a given block, where we are not told

" Thus in thii step we try to concretize the abstract argument by
expressing it in terms of variablesof the theorem under consideration
and/or of induction hypotheses corresponding to this theorem. It may
happen that a given theory allows a direct replacement of E by
lomething more explicit provided some condition C if verified. If C is
TRUE and we succeed in performing steps 4 and 5 of our procedure,
then it meant that the given theorem is provable without the use of
induction. If C if not TRUE, then we obtain a conditional solution
which, in the case of specification theorems, provides non-recursive
pans of programs (as illustrated in section 4).

It is assumed that we are in a world of bocks in which objects are a
table and blocks. These blocks are all the same size, so that only one
block can fit directly on top of another. It it also assumed that the
robot arm may lift only one clock at a time.

whether the block is already clear or, if it is known not to be
clear, how many blocks are above it. \We adopt here the plan
theory developed by Manna and Waldinger [87] (further
referred to as the row-TpIan theory) for describing situational
logic events in terms of classical logics, and their notation.

4.1 Notations

For a given blocks a, uand v

clear (a) is true if the block a is clear

on (u, v) is true if the block u is on the object v

hat (a) is the block directly on a, if it exists
put(u,v) is the action which places block u on top of v

In situational logic we have to consider the value of a func-
tion or a predicate with respect to a state, i.e., we have to
introduce an explicit state argument w for them. For
example, for the predicate clear and the function hat we have

Clcar(w.a) is true if the block a /s clear in state w
hat'(w,a) is the block on top of the block a in state w

Actions are represented as functions that Tyield states; for
example put'(w,u,v) is the state obtained from state w by
putting block u on object v.

4.2 Axioms for mw-plan theory

THE FUNCTION ™"

If s is a state and e an object, then s;e denotes the object
designated by e in state s.

To any n-ary function symbol f a new n+1 -ary symbol f
Is associated with the property
w:f(uq....,u,) = f'(w,w:u, ..., w:u,) (object hap
for example, a fixed block w:hat(u) can be expressed
equivalenuy by hat'(w,w:u).

THE RELATION™"

This relation is analogous to ":", but the relation :: is for
predicates. If s is a state and e is a proposition, then s:e is a
proposition denoting the truth-value designated by e in state
s. Eg., s:.clear(d) is true if the block s:d is clear in state s.

Analogously to the object linkage, the propositioned iinkage

linkage axiom Is introduced. To any n-ary predicate symbol r
a new n+l-ary symbol R is associated with the property

wiir(uq....., u,) = R(wwuy,......w.u,) (prepositional Linkage)

for example, s:;clear(d) = Clear(s,s:d), i.e., s:xlear(d) is true
If the block s:d is clear in state s.

THE EXECUTION FUNCTION ;"

If s is a state and p a plan, s;p denotes the state obtained
bg executing plan p in state s. E.g., s;put(a,d) is the state
obtained by putting clock a on objectd in state s.

Analogously to the above linkage axioms, the plan linkage
linkage axiom is introduced. To any n-ary plan symbol g a
new n+l-ary symbol g' is associated with the property

w;g(uq¢...,up) = g'(w,w:U4, ..., W:iuy) (planLinkage)

for example, w;put(u,v) = put'(w,w:u,w:v).
The empty plan A is taken to be a right identity under the
execution function. This is formalized by the axiom.
w;A=w (empty plan)

There are objects that do not depend on states considered.
For instance, the constant table always denotes the same
object. These objects are called rigid designators, i.e., an
object u is arigid designator, if for all states w

wiu = u (rigid designator)

THE PLAN COMPOSITION FUNCTION "ii"

This notion of composing plans is introduced in the
following way. If p; and p, are plans, ps;;p., is _the
composition of p. and p, where it is understood that P4 is
executed first ana then only p, is executed. This is expressed
by the pirn composition axiom

Wi(P1;;P2) = (W;P4);P2

(plan composition)

Franova and Kodratoff 235

for all states w and plans p, and p,. For simplicity, the

distinction between the composition function ;; and the
execution function ; is i . We will write ; for both and
rely on context 10 make the meaning clear.

This composition is assumed 10 be associative,

Py;P2)iP3 =py;(P13P3) (associativity)
The empty plan A is taken to be the identity under
composition, 1.¢., for all plans p

Ap = P3A =p (identity)

4.3 Axioms for the blocks world
Facts about the block world and effects of actons are

expressed as plan theory axioms. For sim licilr. sort
conditions such as state(w) are omitied. Variables are
understood 10 be universally quantified.

if not Clear(w,y) them On(w,hat'(w,y),y) (hat)

The Aa: axiom describes the following situation: If {(in the
state w) the block y is not clear then there is & block directly

on vy,
Yf Clear(w,x)
then On(put'(w,x,table),x,table)

The put-table-on axiom allows to put a block x (in the state
w) on the table whenever x 1s a clear block, i.e., if there is no

(put-table-on)

block directly on x.
if On(w,x,y) & Clear(w,X) (pus-table-clear)
then Clear(put'(w,x,table),y)

The put-table-clear axiom describes the following situation; If
(in the state w) the block x is dircctly on the block y and if x
is a clear block, then y becomes a clear block when we put X
on the table.

Even if the given axioms could suggest that we might
define constructors hat (for objects) and put (for actions), the
given domain is nonconstructible, because the given axioms
introduce new EQYV (see section 1}, such as w and x.

4.4 Specification Theorem for HCB

The problem to clear a given block is expressed as:
Vs, Vb 3z, Clear(s,;z,,b).
As in [Manna and Waldinger, 87], we denote the Skolem

funcuon corresponding to this ST by makeclear, i.e., we try
to find a function makeclear such that z, = makeclear(s,,b).

4.4.1 Choice of induction variable
The variable b is chosen as the induction variable.

4.4.2 Generating IH

Using the general induction principle scheme, we generate
the induction hypothesis in the state s,
f u Z£ b then there is z such that

Clear(s,;z,(s5,;2):u) (H)

Here £ is an unspecified yet well-founded ordering.
During the actual proof, we shall need to assert that the
objects are indeed 1n such a relauon, thus defining the well-
founded ordering, on the fly, so 10 speak. If the recursive
functions we start from are really cumﬂputable. they should be
associated to an existing well-founded ordering, which is
exactly the one we are thus discovering,

Now, we will follow the algorithm described in section 3.
To F in the scheme corresponds Clear, to t, corresponds b, to

t, corresponds sz,
4.4.3 cM-construction of Clear(s,;z,,b)

4.4.3.1 Base step solutions

This means that we try to construct the formula
Clear(s,:z,,b) { i.e., find a value z, for which the Jast formula
IS true) using the tautology Cleartﬁ,b):Clcar(F,,b), The part

236 Automated Reasoning

of code we extract in this step [Franova and Kodratoff, 91a] is
makeclear(s,b) = A, if Clear(s,b).

4.4.3.2 Induction step solutions

We try to construct the formula Clear(s,;z,,b) (i.e., find a
value z, for which the last formula is true) using 1H.

Step 1: The term b is already evaluated.

; The definition of Clear gives conditions
or the validity of thc formula

~ Clean&b) (1)
The only axiom which leads to a formula of the form
Clear(...) is put-table-clear. In order to be able to apply i, we
have to compare (l? and Clw}pul‘(w,x,mble).y), where w, x,
E‘l ar¢ universally ?uanti ied. Comparing (1) and
ear(put’'(w x,table),y) leads to the equation solving
= put'(w.x,table), b = vy,
Let us denote by PrecondAx the precondition of the put-table-
clear axiom in which the variable y is replaced by b, i.e., the

formula
On(w,x,b)&Clear(w,x). (2)
Thus, using the put-table-clear axiom, the class of all § for
which Clear(§,b) holds is determined by
C={ £ & = put'(wx,table) & PrecondAx}. (3)

This reads: Any element € satisfyin% the formula C Iear(s,b)

must have the form put'(w,x.table), for any w and x

2). Nevertheless, variables w, x are still
ext sieps will deal with that.

*: Let us consider PrecondAx, 1.e., formula (2).
we have explained in section 3, we will try 1o concretize
w and x in (2% exploring where the atomic formulae of
PrecondAx may come from. Thus, we have Lo apply our OM-
formula construction to (some of) the atomic formulae of (28;
The formula On{w,x,b) contains a known value, namely b,
this is why this formula is first examined. The application of
put-table-on is not possible, if we supposc that we cannot
identify the table and an object, which 18 here the element b.
The only axiom we can apply is thereforc the Aa: axiom. The
gg}licauon of this axiom requires comparing On(w,x,b} and
(v,hat'(v,q),q). The solution we obtain is
v &« w, q &« b, x « hat'(w,b).
The Rrecnndition of the fat axiom reads then not(Clear(w,b)).
(3) changes here 1o
C={ §1& = put'{w,hat'{w,b),table) & Clear{w,hat'(w,h)) & 4
not(Clear(w,b))} . ()
Next step will concretize w,

Step 3. As we have mentioned already in footnote 11, this
step consists of two subproblems:

Step 3.1: Trivial Transformations
_In [Franova and Kodratoff, 91a] we explain in detail that
this step succeeds to find the following conditional non-
recursive of the ;ro'fhraalln we want to synthesize:
makeclear(s,,b) = 8u (b),tqblel)
if Clear(s,hat'(s,,b)) & not(Clear(s,b))

Step 3.2: Non - trivial Transformations
We try to apply induction hypotheses 10 (4). Comparing

satisfying
unspecified.

IH and formulae in (4) we can see that IH (with z =
makeclear(s,,u)) can be compared to the formula
Clear(w,lmt‘(w,%')). 15 leads to the equations
w = somakeclear(s,u), u = haib)
However, the application of IH 1s justified only if we are

able to prove that hat(b)£b." Let us assume that we have
means to confirm this relation. This leads to

¥ Some complementary knowledge is necessary to estsblish this
relation. Presently, when we check that such a relation holds during
the m;ﬁon the induction h is, we assume a priori that
this on holds, in order 10 svoid interrupting the theorem proving
process. The validity of such an assumption can be verified by the
user. We are planning to automatize this process. This problem is

W so;ma.kec]ear(sﬂ,hal{b)).
Using plan (inkage, we have put'(w,hat'(w,b},table)
w;put(hat(b),table). Finally, the class ¢ changes 10
€ ={ & 1§ = s;makeciear(s,hat(b));put(hat(b),table) & (5)
not(Clear(s ;makeclear(s,,hai(b)),b))],

i.e., we can replace the abstract argument € by the more
concrete one
samakeclear(s, hat(b));put(hai(b),lable).

We denote it, as in the general scheme, by a.
. Our goal is now to verify if s;z, belongs to C in
, L&, we have 10 check if we can rep‘lace o by s,

nvially, we obtain
z, <« makeclear(s;hat(b));put(hat(b),table).

Step 3. No simplifications are necessary.

ﬂ"i

In conclusion, we have the program

makcclcar(s b) =
l(i(il(ﬁrggﬁlb), if Clear(s, .hat'(s, b))¬(Clear(s,.b
t(ha [n)
ﬁuiakcclcar(f;u,hgt(b)) plff(rhgf(b?lmbﬂ ouf-leartsob))

5 Conclusion

In all our previous work we presented the CM-
construction of atomic formulae as a method which helps to
solve strategic aspects of inductive theorem proving applied
to program synthesis. This paper shows that our Constructive
Matching methodology can be applied and adapted to other
well-founded theories, not only to CD, even though the
present implementation works only for CD.

Summarizing, wc have illustrated in this paper the
following characteristic features of our CM methodology:

G It provides a couple (what has to be achieved; what it has to be
achieved from) at any step of an inductive proof. This is the main
characteristic. Mote that this feature reduces the search space of a proof,
the last is the main problem of deductive approach to program synthesis.

G For the induction step, it uses the general induction scheme and a kind
of 'forced' application of this scheme (more details are given in section 4).

G If necessary, it applies the Cm-formula construction to formulae
obtained as conditions lor the validity of F (see step 2').

CM methodology can be compared to the notion of a plan
in Bundy's reconstruction [Bundy, 88] of Boyer&Moore
methodology. Our methodology could create one of the most
general plans in Bundy's reconstruction, because it comprises
most of Bundy's "reconstructed" tactics™. A deep analogy
between Bundy's approach and our methodology is illustrated
by the importance of universally quantified induction
hypotheses acknowledged by both approaches [Franova, 85;
Bundy et al., 901

similar lo verifying the correctness of the given axioms. Besides, the
relation hat(b) < b seems to be a reasonable well-founded relation for
induction proofs in blocks world problems. However, analogously to
constructible domains, for particular problems, how the well-founded
relation looks, depends always on the given axioms (or the given
theory). In other words, we cannot know in advance the well-founded
relation which is lo be used in blocks world problems, since it depends
on the available definitions.

For instance, all examples presented in fBundy et al, 90] are
successfully solved by our methodology. This shows that our way of
constructing a formula provides a solution for the problem of making
possible the application of induction hypotheses, this problem being
the topic of Bundy's "rippling-out" tactics. Since we prove also
theorems containing existential quantifiers, our approach is clearly
more general than Bundy's.

Moreover, a "rational reconstruction” of our methodology
would allow the introduction of existential quantifiers into
Bundy's improved system, thus recognizing program
synthesis as an inductive theorem proving problem, or, in
other words, bringing program synthesis back where it
belongs classically - inductive theorem proving.

In [Franova, 91c] wc describe in detail the strengths and
weaknesses of our methodology viewed as a program
synthesis methodology.

Acknowledgments

We express our thanks lo an anonymous referee for many
constructive critics.

References

JBbel and Horn®, 84] W. Bibel, K. M. Hdmig; LOPS - A System Based on a
Strategical Approach to Program Synthesis: in A. Biermann, G. Guino.Y. Kodnaioff
(ed): Automatic Program Construction Techniques, Macmillan Publishing Company,
London. 1984,69-91.

[Biundo, 68] S Biundo: Automated synthesis of recursive algorithms as a theorem
proving tool: in [Kodratoff. 88], 56563-558

(Boyer and Moore, 791 R. S. Boy, J S Moore: A Computational Logic, Academic
Press, 1979.

[Bundy, 88] A Bundy: The use of Explicit Plans to Guide Inductive Proofs: in E. Lusk,
R. Overbook, (ed): 9th International Conference on Automated Deduction] LNCS
310, Springer-Verlafl. Berlin, 1988, 111-120.

Bundy et al., 90] A. Bundy, F. van Harmelen, A. Smaill, A. Ireland: Extensions to the
Rippling-Out Tactic for Guiding Inductive Proofs; in M E. Siickel. {ed.}: (ed)
International Conference on Automated Deduction; Proceedings, Lecture Notes in
Artificial Intelligence No. 449, Springer-Veriag, 1990, 132-146

[Burstall and Darlington, 77] R M. Burstall, J.Darlington: A trans formation system
for developing recursive programs; J ACM 24,1, January, 1977.44-67 .
[Dershowitz, 85] N. Dershowitz: Synthesis by Completion; in [Joshi, 85], 208-214.
[Franova and Kodratoff, 91a] M. Franova, Y. Kodratoff: Solving "How to Clear a
Block" with CONSTRUCTIVE MATCHING methodology, extended version of this
paper, Rapport de Recherche LRI., July, 1991.

[Franova and Kodratoff, 91b] M. Franova, Y. Kodratoff: Program Synthesis is
Theorem Proving; Rapport de Recherche LR. [., July, 1991.

[Franova, 85] M Franova: CMstrategy : A Methodology for Inductive Theorem
Proving or Constructive Well-Generalized Proofs; in [Joshi, 85], 1214-1220
[Franova, 88a] M. Franova: Fundamentals for a new methodology for inductive
theorem proving: CM-construction of atomic formulae; in [Kodratoff, 88], 137-141.
[Franova, 88b] M. Franova: Fundamentals of a new methodology for Program
Synthesis from Formal Specifications: CM-constructton of atomic formulae; Thesis,
Universite Paris-Sud, November, Orsay, France, 1988.

[Franova, 91a] M. Franova: Generating induction hypotheses by Constructive
Matching methodology for Inductive Theorem Proving and Program Synthesis
revisited; Rapport de Recherche No.647, L R|, Universite de Paris-Sud, Orsay,
France, February, 1991.

[Franova, 91b] M. Franova: Failure analysis in Constructve Matching methodology;
Rapport de Recherche LRI., July, 1991.

[Franova, 91c] M. Franova: Constructive Matching methodology for Inductive
Theorem Proving and Program Synthesis revisited; RR L.R.I., July, 1991.

[Joshi, 85] A. K. Joshi, (ed): Proceedings of the Ninth International Joint
Conference on Artificial intelligence. August, Los Angeles, 1985.

[Kodratoff and Picard, 83} Y. Kodratoff, M. Pcard: Completion de sysiemes de
reecriture et synthase de programmes a partir de leurs specifications; Bigre No 35,
October, 1983.

[Kodratoff, 88] Y. Kodratoff, (ed): Proceedtngs of the 8th European Conferance
on Aificial Intelligence, August 1-5, Pitman, London, United Kingdom, 1988.
[Manna and Waldinger, 80) Z. Manna, R.Waidinger: A Deductive Approach to
Program Synthesis; ACM Transactions on Programming Languages and Systems,
Vol. 2., No.1, January, 1980,90-121.

[Manna and Waldinger, 87] Z Manna, R. Waldinger: How to Clear a Block: A Theory
of Plans; Journal of Automated Reasoning 3,1987,343-377

[Perdrix, 86] H Perdnx: Program synthesis from specifications; in ESPRIT'8S,
Status Report of Continuing Wort, North-Holland, 1986, 371-385.

[Smith, 85) 0. R. Smith: Top-Down Synthesis of Simple Divide and Conquer
Algorithm; Artificial Intelligence, vol. 27. no. 1,1985,43-96.

Franova and Kodratoff 237

