
Solving "How to Clear a Block" with CONSTRUCTIVE MATCHING methodology

Marta Franova, Yves Kodratoff
CNRS & Universite Paris Sud,

LRI, Bat. 490,91405 Orsay, France

232 Automated Reasoning

In this paper we enlarge our methodology to well-founded
domains (WFD) that are not necessarily constructed with a
help of constructors, and which may introduce EQV in the
definitions. We explain in [Franova, 88a] that finding a strat­
egy for a proof of an atomic formula is one of basic problems
of mechanizing inductive proofs. We therefore limit ourselves
here only to this particular problem, even if the simple
example we solve here (Manna&Waldinger's "How to Clear a
Block" problem [87]), illustrates our overall methodology.

2 CM-methodology

One of the main differences of our method, in comparison
with other approaches in inductive theorem proving [Boyer
and Moore, 79; Bundy et al, 90] is actually very deep since it
takes place in the basic step of any theorem proving
methodology, viz. in the way atomic formulae are proven. In
[Franova, 88a] we have shown the consequences of the
choices done at such a low level on the way subproblems are
generated during the course of a complete proof.

Classical methods for proving by induction atomic for­
mula can be classified as simplification1 (or rewrite) methods,
i.e., they attempt to transform the atomic formula into
simpler and simpler form, until the formula TRUE is reached.

Our method for proving atomic formulae can rather be
qualified as a "complication" method, stressing so that we
rather progressively build more and more large sets of con­
straints describing the condition at which the formula is
TRUE. The proof is completed when these conditions are
proven to be implied by those of the problem.

We call our way of proving an atomic formula a
Constructive Matching formula construct ion, or CM-
formula construction.

Let us give a brief motivation for this name. If F is an
n-ptace predicate symbol and t1 tn are terms, then
F(t1 tj is an atomic formula. This definition of an
atomic formula shows that an atomic formula is
"constructed", or "build up", from a predicate name and terms
in the following manner: We take an n-place symbol F
providing the syntactical scheme F(_ , _ _) , where "_"
represent empty positions (or arguments) to be filled up by
concrete terms, so that finally F(l1 tn is obtained. In
classical thinking, this process of "f i l l ing up" empty
argument places is mentally performed in one step, i.e., we
start from F(_ ,..., _) and reach immediately F(t1 tn).

As opposed to this one step operation, we consider a
piece-wise construction of an atomic formula. We start with
the syntactical scheme F(_ ,, _. We then take the first
term t1 and we f i l l up the first empty argument of our scheme
by this term, so we have F(t1, _ _). Then, we fill up
the first empty argument in the last scheme by t2, obtaining
F(t1, t2, ..„ _), etc.

We thus construct (purely syntactically) in n steps Che
formula F(t1 . . .»Q. However, in theorem proving, we need
to speak of the validity of a given formula in a theory T made
from the axioms. This is why we wi l l consider axioms
defining the predicate F. These axioms allow us to change the
above syntactical construction into a construction which, if
successfully performed, provides a proof for F(t1..., tn).

ritamHW

5 [Beyer and Moore, 79] is an example of a simplification method.

Franova and Kodrotoff 233

to two similar subproblems. Firstly, it is necessary to show that there
is an element b such that 3=a(b}. Mere, we succeed since b-2 Then
it is necessary to prove 0<2. Here, once again we "forget* the formula
1<3 and we concentrate our effort to the formula 0<2 Using (1) this
simplifies to TRUE, because them is an element b (b-=1) such that
2=(b). This prows our original formula.

This simplification approach proves the formula in a top-
down manner, but the final leaf is TRUE in the case of
success. Therefore, as opposed to our method, there are no
final bottom-up steps in the simplification approach.

It may seem that our "constructive" method makes the
proof more complicated (as compared to the simplification
methods) without anything to gain. Recall, however, that
simplification procedures have been developed for theorems
without EQV. Therefore, our method which is suitable for
specification theorems, is more powerful, even if it may
seem more awkward and non-useful for theorems with
universally quantified variables only. As compared to
classical simplification thinking, it may seem also more
artificial, because, by our method, we may generate an
existentially quantified lemma when proving a universally
quantified theorem. The simplification methods are built in
such a manner that all the subproblems generated are
universally quantified, while this restriction is not necessary
to our CM-methodology,

Program synthesis methodologies ([Manna and Waldinger,
80; Kodratoff and Picard, 83; Bibel and HOrnig, 84;
Dershowitz, 85; Smith, 85; Perdrix, 86; Biundo, 88]) do not
consider the problem of strategy for proving an atomic
formula as the main problem. In fact, these methods take the
whole specification, say Q1(x,z) & ... & Qn(x,z), where
Q1...,Qa are literals, and perform transformations on this
complex formula*. As opposed to such a treatment of a given
specification, our method deals firstly7 with Q1(x,z),
performing the CA-formula construction it finds conditions
for a validity of this formula. After this step has been
completed, arid assuming the conditions obtained, our method
starts taking care of Q2(x,z), and so on, until the last literal
Qn(X,Z) is treated

Thus, as a summary, let us state that, in order to prove an
atomic formula F(t1,t2), created from a predicate F and two
terms t1 and t2, we start by building an abstract formula

with an abstract argument The definition of F
provides conditions for the validity of the formula Let
us denote by C the set of all for which is true, i.e.,
C= is true}. We are then left with checking if the
replacement of by t2 preserves the validity of i.e.,
we have to check whether t2 C

3 CM-formula construction for WFD

In the previous section we pointed out that the main reason
for performing the CW-formula construction is its suitability
for proving specification theorems. We also described the way
to proceed when a given specification is a conjunction of
atomic formulae. Therefore, in this section, we shall

See (Franova. 91c] for mote detail* about differences between our
method and the other program synthesis methods.
7 There are heuristics which suitably order literals in a given
specification, For instance, if x is an input and z is an output, then the
specification ordered(z) & permui(x,z) is reordered to permul(x,z) &.
ordered(z) Moreover, in such a reordered specification, Q1(x,z) must be
an atomic formula.

234 Automated Reasoning

11 Thus in thi i step we try to concretize the abstract argument by
expressing it in terms of variablesof the theorem under consideration
and/or of induction hypotheses corresponding to this theorem. It may
happen that a given theory allows a direct replacement of E by
lomething more explicit provided some condition C if verified. If C is
TRUE and we succeed in performing steps 4 and 5 of our procedure,
then it meant that the given theorem is provable without the use of
induction. If C if not TRUE, then we obtain a conditional solution
which, in the case of specification theorems, provides non-recursive
pans of programs (as illustrated in section 4).

It is assumed that we are in a world of bocks in which objects are a
table and blocks. These blocks are all the same size, so that only one
block can fit directly on top of another. It it also assumed that the
robot arm may lift only one clock at a time.

whether the block is already clear or, if it is known not to be
clear, how many blocks are above it. We adopt here the plan
theory developed by Manna and Waldinger [87] (further
referred to as the row-plan theory) for describing situational
logic events in terms of classical logics, and their notation.

4.1 Notations
For a given blocks a, u and v
clear (a) is true if the block a is clear
on (u, v) is true if the block u is on the object v
hat (a) is the block directly on a, if it exists
put(u,v) is the action which places block u on top of v

In situational logic we have to consider the value of a func­
tion or a predicate with respect to a state, i.e., we have to
introduce an explicit state argument w for them. For
example, for the predicate clear and the function hat we have
CIcar(w.a) is true if the block a is clear in state w
hat'(w,a) is the block on top of the block a in state w

Actions are represented as functions that yield states; for
example put'(w,u,v) is the state obtained from state w by
putting block u on object v.

4.2 Axioms for mw-plan theory

THE FUNCTION ":"
If s is a state and e an object, then s;e denotes the object

designated by e in state s.
To any n-ary function symbol f a new n+1 -ary symbol f

is associated with the property
w:f(u1....,un) = f'(w,w:u l , ..., w:u„) (object linkage)

for example, a fixed block w:hat(u) can be expressed
equivalenuy by hat'(w,w:u).

THE RELATION"""
This relation is analogous to ":", but the relation :: is for

predicates. If s is a state and e is a proposition, then s::e is a
proposition denoting the truth-value designated by e in state
s. E.g., s::clear(d) is true if the block s:d is clear in state s.

Analogously to the object linkage, the propositioned iinkage
linkage axiom is introduced. To any n-ary predicate symbol r
a new n+l-ary symbol R is associated with the property
w : : r (u 1 , u n) = R(w,w;u1,......,w.un) (prepositional Linkage)
for example, s:;clear(d) = Clear(s,s:d), i.e., s:xlear(d) is true
if the block s:d is clear in state s.

THE EXECUTION FUNCTION ";"
If s is a state and p a plan, s;p denotes the state obtained

by executing plan p in state s. E.g., s;put(a,d) is the state
obtained by putting clock a on object d in state s.

Analogously to the above linkage axioms, the plan linkage
linkage axiom is introduced. To any n-ary plan symbol g a
new n+l-ary symbol g' is associated with the property

w ; g (u 1 . . . , u n) = g ' (w ,w :U 1 , ..., w : u n) (planLinkage)
for example, w;put(u,v) = put'(w,w:u,w:v).

The empty plan A is taken to be a right identity under the
execution function. This is formalized by the axiom.

w ; A = w (empty plan)

There are objects that do not depend on states considered.
For instance, the constant table always denotes the same
object. These objects are called rigid designators, i.e., an
object u is a rigid designator, if for all states w

w:u = u (rigid designator)

THE PLAN COMPOSITION FUNCTION "ii"
This notion of composing plans is introduced in the

following way. If p1 and p2 are plans, p1;;p2, is the
composition of p. and p, where it is understood that P1 is
executed first ana then only p2 is executed. This is expressed
by the pirn composition axiom

W;(P 1 ; ;P 2) = (W;P1);P2 (plan composition)

Franova and Kodratoff 235

236 Automated Reasoning

5 Conclusion

In all our previous work we presented the CM-
construction of atomic formulae as a method which helps to
solve strategic aspects of inductive theorem proving applied
to program synthesis. This paper shows that our Constructive
Matching methodology can be applied and adapted to other
well-founded theories, not only to CD, even though the
present implementation works only for CD.

Summarizing, wc have illustrated in this paper the
following characteristic features of our CM methodology:
G It provides a couple (what has to be achieved; what it has to be
achieved from) at any step of an inductive proof. This is the main
characteristic. Mote that this feature reduces the search space of a proof,
the last is the main problem of deductive approach to program synthesis.

G For the induction step, it uses the general induction scheme and a kind
of 'forced' application of this scheme (more details are given in section 4).

G If necessary, it applies the Cm-formula construction to formulae
obtained as conditions lor the validity of F (see step 2').

CM methodology can be compared to the notion of a plan
in Bundy's reconstruction [Bundy, 88] of Boyer&Moore
methodology. Our methodology could create one of the most
general plans in Bundy's reconstruction, because it comprises
most of Bundy's "reconstructed" tactics14. A deep analogy
between Bundy's approach and our methodology is illustrated
by the importance of universally quantified induction
hypotheses acknowledged by both approaches [Franova, 85;
Bundy et al., 901

similar lo verifying the correctness of the given axioms. Besides, the
relation hat(b) < b seems to be a reasonable well-founded relation for
induction proofs in blocks world problems. However, analogously to
constructible domains, for particular problems, how the well-founded
relation looks, depends always on the given axioms (or the given
theory). In other words, we cannot know in advance the well-founded
relation which is lo be used in blocks world problems, since it depends
on the available definitions.

For instance, all examples presented in fBundy et al., 90] are
successfully solved by our methodology. This shows that our way of
constructing a formula provides a solution for the problem of making
possible the application of induction hypotheses, this problem being
the topic of Bundy's "rippling-out" tactics. Since we prove also
theorems containing existential quantifiers, our approach is clearly
more general than Bundy's.

Moreover, a "rational reconstruction" of our methodology
would allow the introduction of existential quantifiers into
Bundy's improved system, thus recognizing program
synthesis as an inductive theorem proving problem, or, in
other words, bringing program synthesis back where it
belongs classically - inductive theorem proving.

In [Franova, 91c] wc describe in detail the strengths and
weaknesses of our methodology viewed as a program
synthesis methodology.

Acknowledgments

We express our thanks lo an anonymous referee for many
constructive critics.

References
JBbel and Horn®, 84] W. B ibe l , K. M. Hdmig; LOPS - A System Based on a
Strategical Approach to Program Synthesis: in A. Biermann, G. Guino.Y. Kodnaioff
(ed): Automatic Program Construction Techniques, Macmillan Publishing Company,
London. 1984,69-91.
[Biundo, 68] S Biundo: Automated synthesis of recursive algorithms as a theorem
proving tool: in [Kodratoff. 88], 553-558
(Boyer and Moore, 79] R. S. B o y , J S Moore: A Computational Logic, Academic
Press, 1979.
[Bundy, 88] A Bundy: The use of Explicit Plans to Guide Inductive Proofs: in E. Lusk,
R. Overbook, (ed): 9th International Conference on Automated Deduction] LNCS
310, Springer-Verlafl. Berlin, 1988, 111-120.
Bundy et al., 90] A. Bundy, F. van Harmelen, A. Smaill, A. Ireland: Extensions to the
Rippling-Out Tactic for Guiding Inductive Proofs; in M E. Siickel. {ed.}: (ed)
International Conference on Automated Deduction; Proceedings, Lecture Notes in
Artificial Intelligence No. 449, Springer-Veriag, 1990, 132-146
[Burstall and Darlington, 77] R M. Burstall, J.Darlington: A trans formation system
for developing recursive programs; J ACM 24,1, January, 1977.44-67.
[Dershowitz, 85] N. Dershowitz: Synthesis by Completion; in [Joshi, 85], 208-214.
[Franova and Kodratoff, 91a] M. Franova, Y. Kodratoff: Solving "How to Clear a
Block" with CONSTRUCTIVE MATCHING methodology, extended version of this
paper, Rapport de Recherche LRI., July, 1991.
[Franova and Kodratoff, 91b] M. Franova, Y. Kodratoff: Program Synthesis is
Theorem Proving; Rapport de Recherche LR. I., July, 1991.
[Franova, 85] M Franova: CMstrategy : A Methodology for Inductive Theorem
Proving or Constructive WelI-Generalized Proofs; in [Joshi, 85], 1214-1220
[Franova, 88a] M. Franova: Fundamentals for a new methodology for inductive
theorem proving: CM-construction of atomic formulae; in [Kodratoff, 88], 137-141.
[Franova, 88b] M. Franova: Fundamentals of a new methodology for Program
Synthesis from Formal Specifications: CM-constructton of atomic formulae; Thesis,
Universite Paris-Sud, November, Orsay, France, 1988.
[Franova, 91a] M. Franova: Generating induction hypotheses by Constructive
Matching methodology for Inductive Theorem Proving and Program Synthesis
revisited; Rapport de Recherche No.647, L R l , Universite de Paris-Sud, Orsay,
France, February, 1991.
[Franova, 91b] M. Franova: Failure analysis in Constructve Matching methodology;
Rapport de Recherche LRI., July, 1991.
[Franova, 91c] M. Franova: Constructive Matching methodology for Inductive
Theorem Proving and Program Synthesis revisited; RR L.R.I., July, 1991.
[Joshi, 85] A. K. Joshi, (ed): Proceedings of the Ninth International Joint
Conference on Artificial intelligence. August, Los Angeles, 1985.
[Kodratoff and Picard, 83} Y. Kodratoff, M. Pcard: Completion de sysiemes de
reecriture et synthase de programmes a partir de leurs specifications; Bigre No 35,
October, 1983.
[Kodratoff, 88] Y. Kodratoff, (ed): Proceedtngs of the 8th European Conferance
on Arlificial Intelligence, August 1-5, Pitman, London, United Kingdom, 1988.
[Manna and Waldinger, 80) Z. Manna, R.Waidinger: A Deductive Approach to
Program Synthesis; ACM Transactions on Programming Languages and Systems,
Vol. 2., No.1, January, 1980,90-121.
[Manna and Waldinger, 87] Z Manna, R. Waldinger: How to Clear a Block: A Theory
of Plans; Journal of Automated Reasoning 3,1987,343-377
[Perdrix, 86] H Perdnx: Program synthesis from specifications; in ESPRIT'85,
Status Report of Continuing Wort, North-Holland, 1986, 371-385.
[Smith, 85) 0. R. Smith: Top-Down Synthesis of Simple Divide and Conquer
Algorithm; Artificial Intelligence, vol. 27. no. 1,1985,43-96.

Franova and Kodratoff 237

