Tractable Concept Languages

Francesco M. Donini
Maurizio Lenzerini
Daniele Nardi

Dipartimento di Informatica e Sistemistica,
Universita di Roma "La Sapienza"

Via Salaria 113, 1-00198, Roma, ltaly

Abstract

We present two concept languages,, called PL; and PL,
which are extensions of TC. We prove that the subsump-
tion problem in these languages can be solved in polyno-
mial time. Both languages include a construct for express-
Ing inverse roles, which has not been considered up to now
In tractable languages. In addition, PL4 includes number
restrictions and negation of primitive concepts, while Pl,
Includes role conjunction and role chaining.

By exploiting recent complexity results, we show that none
of the constructs usually considered in concept languages can
be added to PL; and PL, without losing tractabtlity. There-
fore, on the assumption that Languages are characterized by
the set of constructs they provide, the two languages pre-
sented in this paper provide a solution to the problem of
singling out an optimal trade-off between expressive power
and computational complexity.

1 Introduction

Concept languages provide a means for express-
ing knowledge about hierarchies of concepts, i.e.
classes of objects with common properties. They
have been investigated following the ideas ini-
tially embedded in many frame-based and semantic-
network-based languages, especially the KL-ONE Ilan-
guage [Brachman and Schmolze, 1985]. In contrast
to earlier formalisms, concept Languages are given a
Tarski style declarative semantics that allows them
to be conceived as sublanguages of predicate logic
[Brachman and Levesque, 1984].

The basic reasoning tasks on concepts are unsatisfia-
bility and subsumption checking. A concept is unsatis-
fiable if it always denotes an empty set. A concept C is
subsumed by a concept D if C always denotes a subset
of D.

Since the performance of any application developed
using concept languages will heavily rely on the above
reasoning tasks, it is important both to characterize their
computational complexity and to devise algorithms as
much efficient as possible-

Recent results allow us to draw a fairly complete pic-
ture

This work was partly funded by the ESPRIT BRA 3012
(Compnlog), the Italian CNR under Progetto Finalizzato Sis-

temi Informatici e Calcolo Parallelo, contract 90.00681.PF69,
and the German BMFT under grant ITW 8903 0.

458 Knowledge Representation

Werner Nutt

Deutsches Forschungszentrum fur

Kiinstliche Intelligenz
Postfach 2060, D-6750 Kaiseislautern

Germany

of the complexity of a wide class of concept languages
[Schmidt-Schaufi and Smolka, 1988,Donini et al., 1990].
Such results have been obtained by exploiting a general
technique for satisfiability checking in concept languages.
The technique relies on a form of tableaux calculus, and
has been proved extremely useful for studying both the
correctness and the complexity of the algorithms.

The outcomes of this body of research go far beyond
a mere complexity analysis. In particular, we think that
they shed light on three basic aspects related to the use
of concept languages in knowledge representation.

First of all, since the complexity of both satisfiability
and subsumption depends upon the constructs allowed in
the language, we have now an appropriate framework for
the study ofthe trade-off between the expressive power of
the languages and their inherent complexity, which was
the initial motivation of the seminal work by Brachman
and Levesque (see [Levesque and Brachman, 1987]).

Secondly, the design of concept languages and the
associated reasoning procedures can now be realized
through the application of the above mentioned tech-
nique, which provides an algorithmic framework that is
parametric with respect to the language constructs.

Thirdly, the study of the computational behaviour of
concept languages has led to a clear understanding of
the properties of the language constructs and their in-
teraction. The knowledge about the structure of concept
languages can thus be used in the design of intelligent
reasoning procedures, that—by looking at the form of
concepts—can reason about the deductive service, for
example estimating the difficulty of performing the re-
quired deduction, attempting to provide quick answers
to subproblems, or trying possible simplification of the
problem.

The work reported in this paper is concerned with
the first of the above three points. Our goal was the
design of languages including the most powerful set of
constructs, while retaining the tractability of subsump-
tion, in particular extending the basic polynomial lan-
guage FL [Brachman and Levesque, 1984]. FI" in-
cludes conjunction of concepts (written Cl D), univer-
sal role quantification (VJ?.C), and unqualified existen-
tial role quantification (3#). Various extensions of FI’
with a polynomial subsumption problem have already
been considered:

e 7L + role concatenation (also called role chaining)
{Brachman and Levesque, 1984);

o FL™ 4 number restrictions [Nebel, 1988];
e L™ + role conjunction [Nebel, 1988];

e« F£~ 4+ negation of primitive
[Schmidt-Schaul and Smolka, 1988].

The result of our work 18 the definition of two new
extensions of ¥ L™, called PL, and PL,. We show that
subsumption in both languages can be solved in poly-
nomial time. Moreover, they are maximally expressive,
in the sense that no construct can be added to them
without losing tractability.

In particular, PL; extends FL~ with number restric-
tions, negation of primitive concepts, and inverse roles,
and is therefore maximally expressive relative to the
costructs available for concepts. On the other hand, PL,
extends F L~ with role conjunction, role concatenation,
and inverse roles, and is therefore maximally expressive
relative to the costructs avaiable for roles. Notice that
the coustruct for inverse roles has not been considered
up to now in tractable languages.

The paper is organized as follows. In Section 2 we
summarize the main notions used in the formalization
of concept languages. In Section J we describe the tech-
nique used for subsumption checking. In Sections 4 and
5 we present the languages PL, and P Ly, together with
the corresponding subsumption algorithms. Finally, con-
clusions are drawn in Section 6. For the sake of brevity,
the proofs of the theorems are onutted; they are fully
reported in [Donini et al., 1991b].

concepts

2 Basic Notions on Concept Languages

In this section we provide the essential notions about the
concept languages considered in the paper. For a general
presentation, see [Nebel and Smolka, 1990].

We start by considering the [anguage F £, where con-
cepts {denoted by the letters ¢’ and I?) are built out of
primilive concepls (denoted by the letter A} and prim-
ifive roles (denoted here by the letter R) according to
the syntax rule

C.D — A|CND|YR.C{3R

An interpretation T = (AT, F) consists of a set Af
(the domain of T) and a function - (the interpretation
function of T) that maps every concept to a subset of
AT and every role to a subset of AT x AZ such that the
following equations are satisfied:

cnDF = cTnD?
(VR.C)YY = {aeA?|V¥b(a,b)e Rt —beCH)
(3RY* = {a€ A% |3b.(a b) € R*).

An interpretation 7 i1 2 model for a ccmcegt Cif C*
is nonempty; C is subsumed by D if CF C D* for every
interpretation Z, A concept is satisfiable 1f it has a model
and unsalisfiable otherwise. Notice that since L™ does
not mclude any form of negation, every F L™ -concept is
satisfiable.

Other constructs have been considered in the litera-
ture 1o define more general languages. They are:

o the emply concept and the universal concept, de-
fined by L¥ = P and T% = Al respectively;

e disjunction of concepts: (C'U D) = CT U D7,

e negation of concepts (also called complement):
(-C)I = A%\ C%; sometimes negation can only be
applied to primitive concepts (in this case we use
the notation - A4});

e qualified existential role quantification: (IR.C)¥ =
{a € AT | 3a,b) € RE.be CPY,

¢ number_restrictions: (> nR)? = {a € AT |
{be A% | (a,b) € RT} > n},and (K nR)¥ ={a€
AT ||{be A% | (a,b) € R} < n}.

s role conjunction: {(Q N RY = Qf n RE;

o inverse of roles: (R™')% = {(qa,b) € AT x AT |
(b,0) € BT}

e role chaining: (R; o R2)? = {{a,b) € AT x AT |
3c. (a,c) € RE, (c,b) € R}

In the following, we consider concept languages ob-
tained as combinations of the above constructs, Several
such combinations have been taken into account in the
design of concept languages. In general, the constructs
for role formation have been introduced only in the most
sophisticated and powerful languages. In particular, the
construct for the description of inverse roles has been
considered very rarely, and never in tractable languages.
This is somewhat surprising, especially if one consider
its importance in the description of complex concepts.

For example, let child be a primitive role, and let young
be a primitive concept. It is easy to see that the concept
"someone that has at least one child and all of whose par-
ents are young" cannot be defined in a language without
inverse roles. Indeed, the introduction of a new prim-
itive role parent would not solve the problem, because
child and parent would be completely unrelated. On the
other hand, the notion of parent is obviously captured
by the inverse of the role child. Therefore, in a language
with inverse roles, the above concept can be defined as:
child child',young.

One of the goals of this paper is to study the impact of
inverse roles in the tractability of concept languages. In
fact, we show in Sections 4 and 5 that the construct for
inverse roles can be added to TC~ without increasing
the complexity of subsumption.

3 Checking Subsumption Using
Constraint Systems

In this section we present the basic features of a
technique for checking concept satisfiability. The
technique is a refinement of the one used in
[Schmidt-SchauB and Smolka, 1988], and is fully de-
scribed in [Donini et al., 1990].

We assume that there exists an alphabet of variable
symbols, which will be denoted by the letters x, y, and
z. The calculus operates on constraints consisting of
variables, concepts, and roles. A constraint is a syntactic
object of one of the forms x: C, xR, where C is a concept
and R is a role.

Donini, et al. 459

Let 7 be an interpretation. An Z-assignment is a func-
tion o that maps every variable to an element of AT
We say that o satisfies the constraint z: C if a{x) € C7,
and o salisfies 2Ry if (a(z),a(y)) € RT. A constraint
¢ i8 salisfiable if there is an interpretation 7 and an I-
assignment o such that o satisfies c. A constratni sys-
tem S 18 a finite, nonemnpty set of constraints. An I-
assignment o safisfies S if o satisfies every consiraint
in S. S is satisfiable if there 1s an interpretation I and
an Z-assignment o such that o satisfies S. Using the
results reported in [Schmidt-SchauB and Smolka, 1988],
it is easy to see that a concept C is satisfiable if and only
if the constraint system {z:C} is satisfiable.

In order to check whether a concept C is satishable we
start with the constraint system S = {z: C}, and in sub-
sequent steps, we add constraints according to a set of
propagation rules, until the resulting system 1s complete,
i.e. none of the propagation rules 1s applicable. At that
point, either the complete system S’ contains a contra-
diction (called clask), or an interpretation satisfying ¢
can be obtained from S’. Fach propagation rule deals
with one of the constructs allowed in the language, and
the computational complexity of the method crucially
depends on their form. It is interesting to observe that,
from the logical viewpoint, the method is essentially a
tableaux calculus modified with suitable contro! mecha-
nisms.

In order to use the above technique for subsumption,
we can rephrase subsumption in terms of unsatisfiability,
exploiting the fact that C is subsumed by D) if and only if
CN-D is unsatisfiable. The problem with this approach
is that, in general, C'M—D may include constructs which
are not present in the language in which C and D are
expressed. We show in the following how to deal with
this problem for the language FL™.

We first define a useful property of a class of concept
languages, which includes FL£7. A concept is said to
be conjunclion-free if it contains no conjunction of con-
cepts (i.e. it does pot contain the symbol N applied to
concepts). It 1s easy to see that in a language including
neither disjunction nor qualified existential quantifica-
tion, a concept D can be rewritten into an equivalent
concept of the form Dy N... N D,, where each D; is
conjunction-free, and is called a conjunction-free compo-
nent of D. This can be done by means of the following
rewriting rule:

VR.(CN DY — VR.CNVYR.D

Theorem 3.1 For every patr of concepts C,D of a
language including nevther unton nor qualified ezisien-
tial quantification, C 1z subsumed by D iff for every
conjunction-free component D; of D, C N -D; 15 un-
satfisfiable.

Notice that, although the concept -I}; may contain
the negation of a non-primitive concept, it can be rewrit-
ten in linear time into an equivalent simple concept (i.e. a
concept where negation occurs only in front of primitive
concepts) by using suttable rewniting rules.

When FL™ is the language used to express C and
D, the sample concept resulting from the rewriting of

460 Knowledge Representation

C N =D; does not belong to the original language,
not only because primitive concepis are negated, but
for new constructs introduced through the rewriting
rules. In particular, it is easy to see that C I ~D;
18 a concept of ALE, an extension of FL™ with qual-
ified existential quantification and negation of primi-
tive concepts. It follows from the results reported in
[Schmidt-Schaufl and Smolka, 1988] that the propaga-
tion rules for satisfiability checking in ALE are:

1. S “=n {I:Cl, Z:CQ}US

if 2:CiNCyi8in S, and either z:C; or
z:Ce 18 not in S

2. S —3 {zRy, y:C}US

if z:3K.C i1sin S, there is no z such that
both zRz and z:C areIn 5, and y 18 a
new variable

3. § =y {y1:ClUS

f 2:VR.Cisin S, zRyi1smm 5, and y:C
is hot in 5.

Notice that the complete constraint system S’ ob-
tained from S = {z:C} by applying the above rules,
may have a number of constraints that is exponential
in the size of C, In particular because of the number of
variables generated by the —3-rule. It has recently been
shown that this 1s due to the interaction of existential
and universal quantification, which makes the unsatis-
fiability problem (and therefore subsumption) in ALE
NP-complete [Donini et al., 1990].

This problem does not arise when computing sub-
sumption in F L™, Indeed, if we look at the form of the
concept obtained by negating the candidate subsumer
and rewriting it into a simple concept, we realize that the
body of a qualified existential quantification may contain
only a universal quantification of the form VH.L. This
implies that the inherent complexity given by the inter-
action of existential and universal quantification in ALE
18 not present in the extension of 7L~ used to compute
subsumption.

This allows us to modify the —3-rule in such a way
that only one variable y is generated for all the con-
straints of the forms z:3R.C, z: IR. The correctness of
this method stems from the fact that, even if different
vanables are generated for each of the above constraints,
they all share the same properties of y. Therefore, in or-
der to check whether a contradiction arises in the system,
it 1s sufficient to consider only the variable y.

The above modification directly leads to a polynomial
time algorithm for subumption in F£~. In the follow-
Ing sections, stmilar techniques are used to show the
tractability of two extensions of FL™.

4 The Language PL,

The language considered in this section, called PLy, is an
extension of F L~ with negation of primitive concepts,
number restrictions and inverse roles. Its syntax is spec-
ified by the following rules:

C,D — A|-A|T{L|CRND|VR.C]
(2nR)|{{<nR)

R — P{P!

where R denotes a role, and P a primitjve role!,

In order to deal with subsumption in PL,, we reduce
this problem to the unsatisfiability problem in a suitable
extension of PL,.

Notice that, since PL; includes neither disjunction nor
qualified existential quantification C is subsumed by D
iff for every conjunction-free component D; of D, CN-D,
is unsatisfiable. Moreover, as pointed out in Section 3,
—-D; can be rewritten into an equivalent simple concept.
The resulting concept may not belong to the language
PL,, because ~-VR.C is rewritten as dR.~C. We call
PL,*t the language constituted by concepts of one of the
form: C, D, CND, where Cis a concept of PL,, and D is
a simple concept resulting from rewriting a conjunction-
free PLy-concept. In the rest of the section, we always
refer to concepts of PL;Y, unless otherwise stated. As
a notation, we say that xRy holds in a PL, " -constraint
system 5 if:

e R is a primitive role P and zPy € §;
e Ris P land yPz € S.

The propagation rules for PL;-constraint system are
as follows:

1. § - {IZC], I:GE}US

if z:Ciy M Cyisin S, and either z:C; or
z:Cy1snot in S

2.5 =y {y:CIUS

if 2:VR.C 181n S5, zRy holds m S, and
y:C 1s not 1n S

3. S —_1 {yP.":} us
if P~lyisin § and yPz isnot in S

if z:(<1R)isin S, xRy and zRz hold
in S with y # z, and [y/z]5 is obtained
from S by replacing ¥ with z

2. S —> {.rRy}US’

f z:{(> nH)isin 5§, with n > 0, y is
a new variable, and there is no z such
that £ Rz holds in S

6. S —3 {zRy, y2C}US

if z:dR.Cisin S, yis a new vanable and
there i8 no z such that both xRz holds
in Sand z:Cisin S

Notice that the construct (> n R) is treated like the
unqualified existential 3R, and, as discussed in Section
3 for L™, only one variable is generated for all the
constraints of the forms z: (> n R), z:3R.C. We show
in the sequel that this simplification, which is crucial
for the tractability of the method, does not affect its
correctness. Notice also that the construct (< n R) 1s
taken into account only if n = 1. This is because using

'Note that PL; allows for the representation of unqual-
ified existential role quantification: indeed, 3R can be ex-

pressed as (> 1 R).

the above rules, no more than 2 variables may be linked
to the same variable through a given role,

In a PL;*-constraint system a clash is a set of con-
straints of one of the following forms:

1. {z:1};

2. {x: A, z:-A};

3. {z:(2 nR),z:(< mR)}, with n > m;
4. {z:(< 0 P),zPy);

5. {z:(< 0P~ 1), yPz).

The next theorem states that the above propagation
rules preserve satisfiability.

Theorem 4.1 Let § be a constraint system. If S’ is 0d-
tained from 5 by the application of the above propagation
rules, then S 18 satisfiable if and only if S’ is satisfiable.

We say that S’ is a completion of {2:C}, if & 15 com-
plete, and 1s obtained from {x:C} by giving priority to
the application of the —3-rule. It 1s easy to see that, up
to variable renaming, only one completion can be derived
from {z:C}.

It 18 important to notice that, differently from the case
of ALE-constraint systems, there is not a direct corre-
spondence between a clash-free completion of {x: C} and
an assignment satisfying it. This is due to the —>-rule
dealing with concepts of the form (> n R), which are
treated as JK, independently of the value of n. How-
ever, the crucial pont 1s that i1t 18 always possible to
obtain from a clash-free completion S’ an interpretation
7 and an I-assignment « that satisfies 5'. In particular,
7 and a are built 1n such a way that to each variable in
5’ there corresponds a suitable number of objects in the
domain of 7, all with the same properties, in order for a
to satisfy all constraints of the form z: (> n R).

Theorem 4.2 Let C be a 'P£1+-concept, and let S’ be
the completion of the constraint system {2:C'}. Then &'
1s satisfiable if and only 1f st conlains no clash.

The entire method for testing subsumption in PL;—
and satishability as a special case—can be summed up
as follows. In order to check if C is subsumed by D, we
compute the conjunction-free components Dy ,..., D, ol
D, and for each 1 we rewrite =D, into the simple concept
Dy’. Finally, we check if for each i, the completion of
C N D, contains a clash.

The tractability of subsumption in PL; can be
proved by showing that computing the completion of
a constraint system {z:C M -D;} requires polyno-
mial time. The proof is based on the following ob-
servations. First of all, giving priority to the —jz-
rule leads to a constraint system of the form § =
{2:C,2Ryyr,maRaya, ..., ys—1 Hnyn, yn: F'}, where F is
not of the form 3R.E. Second, the number of variables
generated in the completion of a constraint system of
the form S is bounded by (¢ + 1) - (h + 1), where g 15
the number of subconceptis (i.e. substrings that are con-
cepts) of C of the form (> n R). Finally, the cost of the
entire method is polynomially bounded by the number
of variables in the computed completion.

Theorem 4.3 The subsumptson problem in PL; can be
solved in polynomial time.

Donini, et al. 461

It is interesting to observe that none of the con-
structs presented in Section 2 can be added to
PLy without sacrificing tractability. In particular,
it follows from the results reported in [Nebel, 1988]
that the addition of role conjunction leads to co-
NP-hardness of subsumption. Also, adding negation
of non-primitive concepts leads to PSPACE-hardness,
whereas adding union makes subsumption co-NP-hard
[Schmidt-SchauB and Smoika, 1988]. Moreover, the ad-
dition of qualified existential quantification results in the
language ALE, and therefore leads to NP-hardness of
subsumption [Donini et al., 1990].

We now show that the same problems arise when P L,
is extended with role chaining. In particular, any con-
cept D of ALE can be translated into a concept D' of
PLy + role chaining such that D) is satisfiable if and
only if IV is satisfiable. D’ is obtained from D by sub-
stituting each subconcept of D having the form IP.C
with (> 1 (Po Q) NV(PoQo@Q@ 1).C, where Q 1s
a new primitive role used only in the substitution of
that subconcept. Since the above translation is clearly
polynomial, we can conciude that unsatisfiability—and
therefore subsumption--in P L, with role chaining is NP-

hard.

5 The language PL,

The language considered in this section, called PL5, is an
extension of FL~ with role conjunction, role chaining,
and nverse roles. Its syntax is specified by the following
rules:

C,D — A|CND|YR.C|3R

R — P‘R‘IERLHRElRlﬁRQ

where P i1s a primitive role, and R, By and R, are arbi-
trary roles. Notice that, as for ¥ L™, every P.Ls-concept,
1s satisfiable,

It 1s possible to verify that every role of PL; can be
written 1n a so-called normal form, where the constructor
for the inverse role i1s applied only to primitive roles. The
following rewriting rules can be used to transform any
role into an equivalent role having such a form. In the
sequel, we only refer to roles in normal form.

(RiNRy)~' — R{'NR;’
(R1 DRQ)_l - REI 'DR;l
(R-1)"* — R

As done for PL,;, we reduce the subsumption prob-
lem in PL; to the unsatisfiability problem in a suit-
able extension of the language. Moreover, since PL, in-
cludes neither disjunction nor qualified existential quan-
tification, 1t is suffictent to consider the unsatisfiability
problem for concepts of the form C N —~D, where D is
conjunction-free.

We call PLoT the language constituted by concepts of
one of the forms: ', ~D, CMN-D, where C is a concept
of PL,, and D is a conjunction-free concept of PL,. In
the reat of this section we always refer to concepts of
PL,T. unless otherwise stated.

In order to present the propagation rules for P£,y*-
constraint systems, we need the foliowing definition. We
say that zRy holds in a PLY-constraint system § if:

462 Knowledge Representation

e R i1s a primitive role P and zPy € $;
e Ris P! and yPr € S;
e Ris f; N R2, and both Ry and 2Ry hold in 5,

e 1K is R o K> and there is a z such that both = R, »
and zR»y hold in S.

The propagation rules for PLy%-constraint systems
are the —n-rule, —+y-rule, and the —_;-rule already de-
fined for PLy, plus the following ones:

4. § —v {zRy,y:-C}lUS

if 2:-¥YR.C 181n S, y 18 a new variable
and there 18 no z such that z: -~C is

S
5. § —np {zR1y,zRay}US

f z(HyMRy)yisin S, and either z R,y or
rfsyisnot in S5

6. S —s {zRyz,zRy}US

if z(R;oRa)yisin S, = is a new variable
and there is no w such that both xR w
and wRyy are in 5

Notice that variables are only generated by the —_y-
rule. In particular only one variable is generated for each
constraint of the form z: =V R.C. On the other hand, no
rule 18 needed for constraints of the form z:3R, since
we can avold to produce new variables for them. This
1s crucial for keeping the size of the system polynomial.
Indeed, even if one generates only one variable for each
constraint of the form z: 3R {as done in FL7), the pres-
ence of role conjunction may lead to an exponential num-
ber of variables in the completion of the system.

It 1s easy to see that, up to variable renaming, only
one completion can be derived from a PL,%-constraint
system. The following theorem states that the above
rules preserve satisfiability.

Theorem 5.1 Let § be a constrainil system. Then, if
5’ 1s obtained from S by application of the above ryles,
then S s salisfiable 1f and only 1f S’ 1s satisfiable.

In PL,%-constraint systems, a clash is defined as a set
of constraints of one of the [ollowing forms:

1. {z: A, z:~A};
2. {I:ERl,m:‘-BRg},

where the completion of the new constraint system
{tRy,2:VRy;.B} (B is a new symbol denoting a
primitive concept) contains a constraint z: B, for
some variable 2.

Notice that checking whether a completion of a con-
straint system S has a clash may require to compute
the completion of other systems, each one constituted
by two constraints of the form {zR\y,z:VR2.B}. It is
eagy to see that if such a completion contains a con-
straint z: B, then the existence of an object y related to
x through the role Ry implies that z is also related to an

object z through the role B2, and the pair of constraints
{:3R;,z:~3R,} 18 unsatisfiable.

Theorem 3.2 Let S be the completion of the constraint
system {z:C N —~D}. Then § 1s satisfiable if and only if
it conlains no clash.

The tractability of subsumption in P£2 can be proved
by showing that computing the completion § of a con-
straint system {z:C M =D;} requires polynomial time,
and moreover checking whether 5’ has a clash is also a
polynomial task. With regard to the first point, the basic
observation is that for every subconcept C' of C NP
at most one constraint of the form z:C’ can be con-
tained in S’. Therefore, the number of constraints in S’
is bounded by the size of ' =), With regard to the
second point, notice that the worst case requires consid-
ering every pair of constraints of 5/, and checking if they
constitute a clash of the form {z:dR; z:-3R5}. Since
the cost of such a check is polynomially bounded by the
size of i} and Ry, we can state the following theorem.

Theorem 5.3 The subsumption problem in PL, can be
solved in polynomial t1me.

As for PLy, it 1s possible to show that none of the
constructs presented in Section 2 can be added to PL,
without sacrificing tractability. In particular, the addi-
tion of number restrictions leads to co-NP-hardness of
subsumption [Nebel, 1988]. The addition of the nega-
tion of primutive concepts results i a language that
1s a superset of a language called ALR, shown in-
tractable in [Donini et al., 1991a], whereas the addition
of qualified existential quantification results 1n a super-
sel. of ALE. Finally, 1t is possible to show that adding
union to PL+ makes subsumption intractable. In fact,
one can prove that even the simpler problem of check-
ing whether C is subsumed by D, U --- U Dy, where
"' Dq,...,D, are FL -concepts is already intractable
(see [Lenzerini and Schaerf, 1991]).

6 Conclusion

We have presented two concept laguages, called PL;
and PL,, that include as many as possible of the con-
structs usually considered in terminological reasoning,
while avoiding combinations that are proved harmful for
tract ability.

It is interesting to observe that we can extend both
PL, and PL, with functional roles, functional role value
map and disjunction of primitive concepts without en-
dangering the tractability of subsumption.

The algorithms for checking subsumption in PL;
and PL, have been designed by exploiting a gen-
eral technique for satisfiability checking in concept lan-
guages. Such a technique is the basis of recent com-
plexity results about a wide class of concept languages
[Schmidt-SchauB and Smolka, 1988,Donini et al., 19914a]
These results allow us to derive lower bounds for the
complexity of almost all the possible combinations of the
constructs presented in Section 2. There is in fact one
single exception, because it is still unknown if subsump-
tion is tractable in the language obtained from FL ™ by
adding number restrictions and role chaining. It turns
out that we can state an interesting property of VC\
and PL,. Let £ be a language extending FL with any
combination of the constructs presented in Section 2, ex-
cept for the combination of number restrictions and role
chaining; if the subsumption problem in £ s tractable,
then £ Is a sublanguage of either V£\ or PL,.

Therefore, on the assumption that languages are char-
acterized by the set of constructs they provide, the two
languages presented in this paper provide a solution to
the problem of singling out an optimal trade-off between
expressive power and computational complexity.

References

[Brachman and Levesque, 1984] R. J. Brachrnan, |I. J.
Levesque. "The tractability of subsumption in frame-
based description languages." In Proceedings of the
Fourth National Conference, on Artificial Intelli-
gence, pp. 34-37, Austin, Texas, 1984.

[Brachman and Schmolze, 1985] R. J, Brachman. J.
Schmolze, "An overview of the KL-ONE knowledge

representation system." Cognitive Science. 9(2): 171
216, 1985,

[Donini et al., 1990] F.M. Donini, B. lloilmuler, M.
Lenzerini, A. Marchetti Spaccamela, D. Nardi, \V.
Nutt, "The complexity of existential quantification
In concept languages." DFKI-Report, DFKI, Post-
fach 2080, D-6750 Kaiserslautern, Germany, 1990.

[Donini et al., 1991a] F.M. Donini, M.
Nardi, W. Nutt.

Lenzerini, D.
"The complexity of concept lan-
guages." To appear in Proceedings of the Second In-
ternational Conference on Principles of Knowledge
Representation and Reasoning, Boston, 1991.

[Donini et al., 1991b] F.M. Donini, M. Lenzerini, D.
Nardi, W. Nutt. "Tractable concept languages.”
Technical Report D.1.2.b,c, ESPRIT Basic Research
Action 3012 Compulog, 1991.

[Lenzerini and Schaerf, 1991] M. Lenzerini, A. Schaerf.
"Concept languages as query languages." To appear
in Proceedings of the Ninth National Conference on
Artificial Intelligence, Anaheim, 1991.

[Levesque and Brachman, 1987] H. J. Levesque, R.
J. Brachman. "Expressiveness and tractability in
knowledge representation and reasoning." Computa-
tional Intelligence, 3:78-93, 1987.

[Nebel, 1988] B. Nebel. "Computational complexity of
terminological reasoning in BACK." Artificial Intel-
ligence, 34(3):371-383, 1988.

[Nebel and Smolka, 1990] B. Nebel, G. Smolka. "Rep-
resentation and reasoning with attributive de-
scriptions. " in K.H. Blasius, U. Hedtstiick, C-R.
Rollinger (Eds.) Sorts and Types in Artificial Intel-
ligence, Lecture Notes in Artificial Intelligence 418,
Springer Verlag, pp. 112-139, 1990.

[Schmidt-SchauB and Smolka, 1988]
M. Schmidt-SchauB, G. Smolka. "Attributive con-
cept descriptions with unions and complements.”
SEKI Report SR-88-21, FB Informatik, Universitat
Kaiserslautern, D-6750, Kaiserslautern, Germany,
1988. To appear in Artificial Intelligence,

Donini, et al. 463

