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Abstract 

Massively Parallel Artificial Intelligence is a new 
and growing area of AI research, enabled by the 
emergence of massively parallel machines. It is a 
new paradigm in AI research. A high degree of par­
allelism not only affects computing performance, 
but also triggers drastic change in the approach to­
ward building intelligent systems; memory-based 
reasoning and parallel marker-passing are examples 
of new and redefined approaches. These new ap­
proaches, fostered by massively parallel machines, 
offer a golden opportunity for AI in challenging the 
vastness and irregularities of real - world data that are 
encountered when a system accesses and processes 
Very Large Data Bases and Knowledge Bases. This 
article describes the current status of massively par­
allel artificial intelligence research and positions of 
each panelist. 

1 Introduction 

The goal of the panel is to highlight current accomplishments 
and future issues in the use of massively parallel machines for 
artificial intelligence research, a field generally called mas­
sively parallel artificial intelligence. The importance of mas­
sively parallel artificial intelligence has been recognized in 
recent years due to three major reasons: 

1. increasing availability of massively parallel machines, 

2. increasing interest in memory-based reasoning and other 
highly-parallel AI approaches, 

3. development efforts on Very Large Knowledge Bases 
(VLKB). 

Despite wide recognition of massively parallel computing 
as an important aspect of high performance computing and 
general interest in the AI community on highly parallel pro­
cessing, only a small amount of attention has been paid to 

exploring the full potential of the massive parallelism offered 
on currently available machines. One of the causes of this 
is that little communication has occurred between hardware 
architects and AI researchers. Hardware architects design 
without actually recognizing the processing, memory, and 
performance requirements of AI algorithms. AI researchers 
have developed their theories and models assuming idealiza­
tions of massive parallelism. Further, with few exceptions, 
the AI community has often taken parallelism as a mere "im­
plementation detail" and has not yet come up with algorithms 
and applications which take full advantage of the massively 
parallelism available. 

The panel intends to rectify this situation by inviting pan­
elists knowledgeable and experienced in both hardware and 
application aspects of massively parallel computing in artifi-
cial intelligence. There are two interrelated issues which will 
be addressed by the panel: (1) the design of massively parallel 
hardware for artificial intelligence, and (2) the potential ap­
plications, algorithms and paradigms aimed at fully exploring 
the power of massively parallel computers for symbolic AL 

2 Current Research in Massively Parallel AI 
2.1 Massively Parallel Machines 
Currently, there are a few research projects involving the de­
velopment of the massively parallel machines and a few com­
mercially available machines being used for symbolic AI. 
Three projects of particular importance are: 

♦ The CM-2 Connection Machine (Thinking Machines 
Corporation), 

♦ The Semantic Network Array Processor (University of 
Southern California) 

♦ The IXM2 Associative Memory Processor (Electrotech­
nical Laboratory, Japan). 

These machines provide an extremely high-level of par­
allelism (8K - 256K) and promise even more in the future. 
Table 1 shows the specification of these machines. 
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attractive approach to AI on massively parallel machines due 
to the memory-intensive and data-parallel nature of its opera­
tion. Traditional AI work has been largely constrained by the 
performance characteristics of serial machines. Thus for ex­
ample, the memory efficiency and optimization of serial rule 
application has been regarded as a central issue in expert sys­
tems design. However, massively parallel machines may take 
away such constraints by the use of highly parallel operations 
based on the idea of data-parallelism. The memory-based 
reasoning fits perfectly with this idea. 

Another approach is marker-passing. In the Marker-
Passing approach, knowledge is stored in semantic net­
works, and objects called markers are propagated, in par­
allel, to perform the inference. Marker-passing is a powerful 
method of performing inferencing on large semantic network 
knowledge-bases on massively parallel machines, due to the 
high degree of parallelism that can be attained. One obvious 
application of this approach is the processing of Very Large 
Knowledge Bases (VLKB) such as MCC's CYC [Lcnat and 
Guha, 1989], EDR's electric dictionaries [EDR, 1988] (both 
of which are expected to require millions of network links), 
and ATR's dialogue database tEhara et. al., 1990]. It is clear 
that as KBs grow substantially large (over a million concepts) 
the complex (and often complete) searches used in many tra­
ditional inferencing systems will have to give way to heuristic 
solutions unless a high degree of parallelism can be exploited. 
Thus, the use of massively parallel computers for VLKB pro­
cessing is clearly warranted. 

Table 2 shows massively parallel Al systems developed so 
far. The list is by no means exhaustive, only lists the major 
systems. Also, there are many other models which match 
well with massively parallel machines. But, we only list the 
systems that are actually implemented on massively parallel 
machines. 

There are two major approaches to designing a massively 
parallel machine: the Array Processor and the Associative 
Processor. CM-2 and SNAP arc examples of the array proces­
sor architecture, and IXM2 is an example of the associative 
processor architecture. While the array processor architec­
ture attains parallelism by the number of physical processors 
available, the associative processor attains parallelism by the 
associative memory assigned to each processor. Thus, the 
parallelism attained by the associative processor architecture 
is beyond the number of processors in the machine, whereas 
the array processor attains parallelism equal to the number of 
actual processors. This is why the IXM2 attains 256K paral­
lelism with 64 processors. However, operations carried out 
by associative memories are limited to bit-marker passing and 
relatively simple arithmetic operations. When more complex 
operations are necessary, the parallelism will be equal to the 
number of processors. 

Regarding the parallelism, the next version of the IXM2 
(may be called IXM3) will aim at over one million paral­
lelism using up-to-data processors and high density associa­
tive memory chips. The SNAP project is planning to develop a 
custom VLSI to attain a one million processor-scale machine. 
DARPA (Defense Advanced Research Projects Agency) is 
fundings project to attain TeraOps by 1995 [Waltz, 1990]. 

2.2 Massively Parallel Al Paradigm 

In addition to designing new hardware architectures, the 
strategies and perhaps even the paradigms for designing and 
building AI systems may need to be changed in order to take 
advantage of the full potential of massively parallel machines. 
Emergence of massively parallel machines offers a new op­
portunity for AI in that large-scale DB/KB processing can be 
made possible in real-time. Walu's talk at AAAI-90 [Waltz, 
1990] envisioned the challenge of massively parallel Al . Two 
of the major ideas that play central roles in massively parallel 
AI are; memory-based reasoning and marker-passing. 

Memory-based reasoning and case-based reasoning assume 
that memory is a foundation of intelligence. Systems based 
on this approach store a large number of memory instances of 
past cases, and modify them to provide solutions to new prob­
lems. Computationally, the memory-based reasoning is an 
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3 Associative Memory Architecture 

Tetsuya Higuchi 
Electrotechnical Laboratory, Japan 

In this talk, we consider the architectural requirements for 
massively parallel AI applications, based on our experiences 
of developing a parallel associative processor IXM2 and ap­
plications for IXM2, In addition, we introduce the current 
status of the Electric Dictionary Research project in Japan 
which is a real example of a very large knowledge base con­
taining 400,000 concepts. 

We have developed a parallel associative processor IXM2 
which enables 256K parallel operations using a large associa­
tive memory. IXM2 consists of 64 associative processors with 
256K word large associative memory and 9 communications 
processors. These are interconnected based on a complete 
connection scheme to improve marker propagations. Due to 
its bit-parallel nature, the associative memory is more pow­
erful in fundamental operations of AI such as association and 
set intersection, compared with 1-bitPEs of SIMD machines 
like Connection Machine [Thinking Machine Corp., 1989], 
MPP [Batcher, 1980] and DAP [Bowler, 1984]. 

The current applications for IXM2 include: 
(1) very large knowledge base processing, 
(2) memory-based parsing for real-time speech-to-spccch 
translation, and 
(3) rule-based learning system using genetic algorithms. 

As we develop applications for IXM2, we also compare the 
results on IXM2 with those on other high performance ma­
chines such as Connection Machine (CM-2), Cray-XMP and 
SUN-4 in order to investigate the architectural requirements 
for massively parallel AI applications. 

Now we enumerate some findings through our experiments. 

1. Supercomputers are not necessarily fast for applications 
of knowledge base processing and memory-based pars­
ing. 

Example 1. Set Intersection: Set intersection can be 
performed in 0(1) on SIMD machines like IXM2 
and CM-2, because the data-level parallelism can be 
utilized by direct mapping of datum to each process­
ing element. On the other hand, supercomputers 
perform it in 0(N). Therefore, there is a difference 

of two orders of magnitude in execu- tion time be­
tween Cray-XMP and CM-2 for 64K data, and a 
difference of three orders between Cray-XMP and 
IXM2. 

Example 2. Marker Propagation: Marker propaga­
tion is intensively used in processing is-a hierarchy 
know- ledge base. It actually traverses links of the 
network structured data. A marker propagation pro-
gram written in C, which uses recursive procedure 
call for traversing links, was run both on SUN-4 and 
Cray-XMP. In spite of the exactly same program, 
Cray was slightly slower than SUN-4. The main 
reasons for this are that the overhead of recursive 
procedure calls is heavy, and that network struc­
tured data can not be represented well with array 
data structures which best fit Cray. 

2. Performances on SIMD are heavily influenced by the 
number of simultaneous activations of communications. 
SIMD machines prefer applications where: 
(1) Computation can be done in parallel on each PE, and 
(2) Communications between PEs are local and the com­
munication can be done in parallel. 
This is because SIMD machines employ 1-bit PEs and 
serial(slow) communication links between PEs. Appli­
cations with above characteristics are often found in sci­
entific computations. However, AI applications are not 
necessarily the case. AI applications where all PEs are 
not always active and the number of simultaneous com­
munications are a few often cause the severe degradation 
in performance. According to our experiments on knowl­
edge base processing and memory-based parsing, CM-2 
is the best for applications with "average" simultaneous 
communication over 1,000. And for applications under 
1,000, IXM2 outperforms CM-2. However, it seems that 
AI applications with simultaneous activations over 1,000 
are not commonly seen. 

3. Interaction overheads between the host and SIMD ma­
chines. 
The rule-based learning system using genetic algorithms 
(classifier systems) is one of the typical examples which 
require frequent interactions between the host proces­
sor and SIMD machine. In such applications, the per-
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formances of SIMD machines are degraded heavily by 
the interaction overheads; the communication bandwidth 
and efficiency between the host and parallel processing 
modules have to be designed carefully to alleviate the 
problem. In addition, the introduction of the process­
ing capability located in an intermediate level between 
the host and parallel processing modules may be very 
effective for this problem as demonstrated in dedicated 
architectures for image processing. Medium-grain mul-
ticomputers operating in MIMD mode, such as IXM2, 
MIT J-machine [Dally et. al, 1989], and iWarp [Borkar 
et. al., 1990] are also promising in this respect. 

Inference algorithms to VLKB have to be investigated and 
evaluated using large-scaJe knowledge bases such as CYC 
and EDR. Practical knowledge bases include many excep­
tions (cancellation of inheritance) and tangled is-a hierarchy. 
Without such examples, it is very hard to develop efficient 
and robust inference algorithms. 

The EDR electric dictionaries are the promising environ­
ment where investigations for VLKB processing techniques 
should be conducted. The dictionaries consist of a word 
dictionary, concept dictionary, co-occurrence dictionary and 
bilingual dictionary. The concept dictionary is especially in­
teresting to VLKB researchers. It contains knowledge on the 
400,000 concepts defined by the word dictionary. The knowl­
edge is described in a form similar to semantic network, 

4 How to Design a Marker-Passing 
Architecture for Knowledge Processing 

Dan Moldovan 
Computer Engineering 

University of Southern California 
Los Angeles, CA 90089-0781 

In this talk we will share our experience in designing a paral­
lel marker-passing computer system dedicated for processing 
semantic network applications. Over the last few years wc 
have investigated and eventually implemented such a system. 
It is called SNAP (Semantic Network Array Processor). 

We have approached this problem by first understanding 
the processing requirements of some AI domains and then 
seeking computer structures to satisfy these requirements. 
The outcome of our design effort was a parallel computer 
architecture capable of performing marker and value passing. 
Some of the architectural innovations of the SNAP machine 
are its unique high-level instruction set, marker propagation 
rules, and processor architecture, 

A SNAP prototype has been implemented in our laboratory 
using off the shelf components. The prototype has 160 mi-
croprocessors grouped into some 32 clusters. It is capable of 
storing 16 k node semantic network with approximately 160 
k inter-node relations. 

The primary application for the SNAP machine is Natu-
ral Language Processing. We have found out that SNAP is 
suitable for NLP. In particular there is a good match between 
SNAP'S distributed memory with its marker-passing features 
and the new dynamic memory parsing approach. For some 
limited domains we have observed parsing speeds in the order 
of millisecond per sentence [Kitano,el. al., 1991bl. 
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5 Massively Parallel AI Applications1 

David L. Waltz2 

Thinking Machines Corporation and 
Brandeis University 

Memory-based and Case-based reasoning methods fit per­
fectly on massively parallel computers of all varieties; these 
methods use analogies with previous examples to decide on 
appropriate courses of action for new examples. In order 
for memory-based methods to work, one needs, in general, a 
database of previous examples, along with a "shell" that con-
tains the machinery for matching new with previous examples. 
The database is of exactly the same sort that is typically used 
to train artificial neural nets or AI learning systems such as 
ID3. 

Such systems have now been applied to a number of real-
world applications; an MBR system that automatic classifies 
US Census Bureau returns will be described. This system 
significantly outperforms an expert system devised for the 
same task, but is most noteworthy because the effort to build 
it was only about l/50th that required to build the expert sys­
tem. Other MBR systems show promise for handling prob-
lems that have generally been considered to require rule-based 
solutions; for instance, Sumita and Iida have recently demon­
strated the value of MBR-likc methods for machine translation 
[Sumita and Iida, 1991), 

I will argue that for nearly every domain of AI interest, 
MBR is likely to be more appropriate than rule-based meth­
ods. This is because most domains contain both regularities 
(that seem to encourage rule-based approaches) as well as 
large number of exceptions or idiosyncrasies (that demand 
item-by-item treatment). Unfortunately for those who favor 
rules, the ubiquity and sheer number of exceptions may cause 
the number of rules needed to handle all phenomena to become 
extremely large, so large that the number of rules is on the 
same order as the number of phenomena. MBR systems han­
dle both regularities and exceptions in a uniform and simple-
to-program fashion. Trade-offs between different learning 
and knowledge engineering methods will be discussed, along 
with implications of new and more powerful hardware and 
other factors. 

6 Massively Parallel Symbolic AI3 

James A. Hendler 
University of Maryland 

It has been argued that memory-based reasoning can best 
be performed on a parallel platform by the application of 
an associative-memory-type process running over a database 
of training examples. It is my contention that while such 
approaches may be useful in applications, they fall far short of 

1This research was funded in part by the Defense Advanced 
Research Projects Agency, administered by the U.S. Air Force Office 
of Scientific Research under contract number F49620-0058, and in 
part by the United States Bureau of the Census. 

2Thinking Machines Corporation, 245 First St., Cambridge, MA, 
02142, USA. 

3This research was funded in part by the ONR grant N-00014-88-
K-0560 and NSF grant 1RI-8907890. Development of the PARKA 
project has been performed in conjunction with two of my students, 
Matthew Evett and Lee Specter. 



the inferencing needs of complex AI systems. If we are truly to 
succeed at NLP, planning, and other tasks requiring a richness 
of knowledge, we w i l l have to automate the sorts of complex 
inferencing procedures that have been the mainspring of work 
in the traditional AI symbolic reasoning paradigm. Although 
the majority of the Al research done to date on actual parallel 
platforms has focused on vision research or on conneclionist 
modeling, I w i l l demonstrate that symbolic inferencing, in the 
form of traditional AI frame systems, can also show significant 
performance gains when using massive parallelism. 

My discussion w i l l center on a frame-based knowledge rep­
resentation system, called PARKA, which runs on the mas­
sively parallel Connection Machine. Our research to date 
has centered on demonstrating that PARKA's performance of 
common types of inferencing can be far superior to mat of 
serial systems. We have concentrated on two types of infer­
encing, bottom-up and top-down inheritance, both related to 
ISA-hierarchy property inheritance. Property inheritance is at 
the heart of most representation systems. Designing PARKA 
to have superior performance on property inheritance calcu­
lations furnishes a solid platform on which to base PARKA's 
other representation mechanisms. 

For "top-down" inheritance queries, those which must start 
at the root of the tree and proceed towards the leaves (for 
example, "what are all the animals") we see that PARKA has 
worst-case runtime of 0(d); linear with respect to the depth 
d of the network, while serial inheritance programs have a 
worst-case performance of O(Bd) (where B is the average 
branching factor in the network). For relatively large networks 
(over 32K nodes and upwards of 100K links) PARKA can 
process top-down inheritance queries in under two seconds. 

We are currently working on extending the representational 
power of the PARKA language. One important ability which 
we are now focusing on is the ability to perform recognition 
queries, which we wi l l argue are necessary to performing case-
based inferencing with any real generality. We wi l l describe 
a method by which the PARKA system can handle complex 
recognition queries in time approximating 0(D + M), where 
M is the number of conjuncts in the query. This contrasts dra­
matically with the 0(M x Bd) time taken by current systems. 
1 w i l l argue that such algorithms are necessary to the success 
of large "common sense" knowledge-bases, such as the US 
CYC project or the Japanese electronic dictionary. 

7 Designing Massively Parallel AI Systems4 

Hiroaki Kitano 
Carnegie Mellon University and 

NEC Corporation, Japan 

This talk addresses some of the issues that the designer of 
the massively parallel AI systems should notice. Some of the 
issues affect design decisions of the overall design ideas and 
some issues affects choice of the hardware. 

1. Gaining massive parallelism 
2. Deciding where to gain parallelism 

3. Mapping from logical world to physical world 

4.This research was funded by the National Science Foundation 
under grant MIP-9009111, and by the Pittsburgh Supercomputing 
Center under grant IRI-910002P 

4. Avoiding PE overload 
5. Minimizing Communication 
First, a high level of parallelism needs to be attained in order 

to take advantage of the massively parallel machines. How­
ever, if we simply map current AI systems which extensively 
rely on piecewise rule applications, the level of parallelism 
attained can only be medium at best. The memory-based ap-
proach fits perfecUy with massively parallel machines because 
matching of an input against all cases wi l l be considered in 
parallel by SIMD operation. For example, the traditional view 
of natural language processing has been relying upon gram-
mar rules to analyze sentences. However, in reality, natural 
language is a bulk collection of exceptions, and many serious 
NLP systems have a large set of rules which cope with each 
exceptions. Memory-based parsing and memory-based trans-
lation theory is a superior and practical model for building 
practical NLP systems to be delivered to the real-world. 

Second, the designer should notice that not all processes 
can be parallelized. The processes which can be parallelized 
differ from one architecture to another. For example, the array 
processor architecture (such as CM-2 and SNAP) can paral­
lelize activation of more than one nodes, but thise architecture 
does not send markers in parallel - each marker wi l l be send 
out sequentially from one node. The associative processor 
(such as 1XM2) can send markers in parallel, but activation of 
nodes wi l l be in serial in each driving PE, thus parallelism wi l l 
be only 64 for this operation. In some cases, creating/deletion 
of nodes and links requires controller interrupts which makes 
this part of process serial. Designers should be well aware 
of the characteristics of each architecture and should avoid 
turning a massively parallel machine into a serial machine. 

Third, logical structure of the semantic networks is not 
necessary mapped directly on physical allocation. Suppose 
we have a node with 10 fanout. A l l 10 neighbour nodes arc 
within one hop on the logical map. However, if the PE has 
only 4 physically connected neighbour PEs, at least 6 of the 
logical neighbours w i l l be allocated on PEs which arc more 
than one hop. 

Fourth, there are hardware constraints. For example, if 
marker-passing algorithm requires propagation of addresses 
or other information, each node needs to have memory to 
store the information, or the information wi l l be simply lost. 
Physical constraints on the memory capacity limits numbers 
of markers which can be legally acceptable to each node 
In addition, fine-grained massively parallel machines do not 
have powerful PEs assigned to each node, so that heavy op­
erations such as unification would k i l l entire performance of 
the system. 

Fif th, minimization of communication is critical in design­
ing high performance massively parallel AI systems. Al 
though the massively parallel machine circumvented a Von-
Neumann bottleneck, it encounters a communication bottle­
neck. In some case, over 95% of entire computing time 
was consumed in communication of data between processors. 
Physically, a communication between processor is an expen­
sive operation. 

These are some of the design issues for massively paral­
lel AI applications. This list may give the impression that 
designing a massively parallel AI system is a hard task, but 
it is not true. It simply requires a paradigm change of the 
view toward intelligent processes. We had been relying on 
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somewhat rule-based and serial thinking, which may be due 
to hardware constraints of the serial machines we have so far. 
The alternative view which is more oriented toward memory -
based and parallel thinking, enables us to build more practical 
Al applications, and once one get used to massively parallel 
thinking, and it would be a viable alternative to many of the 
current AI approaches. 
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