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A b s t r a c t 

We describe ARACHNE, a concept formation system that, uses 
explicit constraints on tree structure and local restructur­
ing operators to produce well-formed probabilistic concept 
trees. We also present a quantitative measure of tree qual­
ity and compare the system's performance in artificial and 
natural domains to that of COBWEB, a well-known concept 
formation algorithm. The results suggest that ARACHNE fre­
quently constructs higher-quality trees than COBWEB, while 
still retaining the ability to make accurate predictions. 

1 Backg round and M o t i v a t i o n 
The task of concept formation involves the incremental 
acquisition of concepts f rom unlabeled training instances 
(Fisher &; Pazzani, in press). Much of the recent re­
search on this topic builds on Fisher's (1987) C O B W E B . 
Fisher's system assumes that each instance is described 
as a conjunction of attr ibute-value pairs, and employs a 
probabilistic representation for concepts. In particular, 
C O B W E B represents each concept Ck as a set of attr ibutes 
Ai and a subset of their possible values Vij. Associated 
wi th each value is the conditional probabil i ty of that 
value given membership in the concept, P(Ai = Vij\Ck). 
In addi t ion, each concept has an associated probabil i ty 
of occurrence, P(Ck)- C O B W E B organizes its conceptual 
knowledge into a hierarchy, wi th nodes part ial ly ordered 
according to their generality; thus, the root node sum­
marizes all instances that have been observed, terminal 
nodes correspond to single instances, and intermediate 
nodes summarize clusters of observations. 

C O B W E B integrates the processes of classifying in­
stances and incorporating them into memory. The sys­
tem sorts each new instance I down the hierarchy, start­
ing at the root, locating nodes that summarize classes 
into which the instance fits well. At a given node TV, 
C O B W E B retrieves al l children and considers placing the 
instance in each child node C in tu rn ; it also considers 
creating a new child based on the instance. The algo­
r i thm uses an evaluation funct ion, category utility (Gluck 
& Corter, 1985), to determine the "best" resulting par­
t i t ion , then incorporates the instance into memory ac­
cordingly. The system then recurses, sorting the instance 
through memory unt i l it produces a disjunct or reaches 
a terminal node. Other research on concept formation 
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(Anderson & Matessa, in press; Hadzikadic & Yun, 1989; 
Lebowitz, 1987) has assumed a similar control structure. 

Our designs for I C A R U S (Langley, Thompson, Iba, 
Gennari &: Al len, in press) - an integrated cognitive ar­
chitecture - use C O B W E B as the underlying engine for 
classification and concept formation. ICARUS invokes 
Fisher's algor i thm to acquire pr imit ive concepts, which 
in turn serve as background knowledge for the rest of the 
system. In theory, C O B W E B produces structures contain­
ing concepts that correspond to concepts in the data, 
at several levels of generality. However, our experience 
with. C O B W E B suggests that its abi l i ty to form identifi­
able concepts is l imi ted. Because the system's evaluation 
function is oriented toward maximizing predictive accu­
racy, the hierarchies it constructs may not reflect the 
underlying class structure of the domain. This behavior 
is especially apparent wi th noisy data and wi th certain 
orders of training instances. This has implications for 
systems that use these concepts as bui lding blocks for 
other knowledge structures. For example, if a unified cat 
concept has not been formed, it cannot be used as part 
of a larger knowledge structure, such as a l iv ing room. 

In this paper we describe ARACHNE, a concept forma­
t ion system that seeks to construct well-formed concept 
hierarchies while maintaining high predictive accuracy. 
A R A C H N E ' S focus on the structural quality of the hierar­
chies it constructs is new to unsupervised learning. How­
ever, Van de Velde's (1990) supervised I D L algorithm 
seeks to induce decision trees wi th high accuracy and 
desirable structural properties. Although A R A C H N E ' S 
structural goals are different from those of IDL , both 
systems use structural principles to guide tree formation. 

The ARACHNE algori thm bears many similarities to 
C O B W E B , but employs different criteria for tree forma­
tion and uses alternative restructuring operators, which 
we describe in the next section. We then present ex­
perimental studies that compare the behavior of the two 
systems on both accuracy and tree quality. We close 
wi th general observations about the two systems and di­
rections for future work. 

2 T h e ARACHNE System 
Like C O B W E B , A R A C H N E represents knowledge as a 

hierarchy of probabilistic concepts, and it classifies new 
instances by sorting them down this hierarchy. The sys­
tem differs from C O B W E B in its concern for the structure 
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of the concept tree it constructs, in the learning algo­
r i thm it employs, and in the way it classifies instances. 
Below we discuss each of these differences in tu rn . 

2.1 C o n s t r a i n t s o n M e m o r y O r g a n i z a t i o n 
A R A C H N E ' S main goal is to create well-structured con­
cept trees, but this requires some specification of "de­
sirable" structures. We have chosen to state these as 
formalized constraints, but we have been careful to fo-
cus on local constraints that can be tested efficiently. 
Our hope has been that global properties would tend to 
emerge f rom these local concerns, even though we could 
not guarantee this would occur. The system's approach 
assumes that one has some similarity metric S that lets 
one determine the similari ty of two instances, an instance 
and a concept, or two concepts. The constraint frame­
work does not depend on any particular metric. 

Recall that , in our framework, each concept is a prob­
abilistic abstraction of the nodes below it in the hierar­
chy, and each child is a specialization of its parent. This 
structure suggests two local constraints on the structure 
of concept trees, which we believe reflect useful notions 
of well-formed hierarchies. The first deals wi th the rela­
t ion between a chi ld, its parent, and its siblings: 

D E F I N I T I O N . Concept N is horizontally well placed in a 
concept tree w.r. t . similarity metric S if P is the parent 
of TV and for all siblings A' of TV, S(N, P) > S(N, K). 
Thus, a concept is horizontally well placed if it is of equal 
or greater similarity to its parent than to any sibling. If 
a node TV violates this constraint, it suggests that one 
should consider merging TV wi th one of its siblings. 

A second constraint concerns the relative similari ty 
between a chi ld, its parent, and its grandparent: 

D E F I N I T I O N . Concept TV is vertically well placed in a 
concept tree w.r. t . similarity metric S if P is the parent 
of TV, G is the parent of P, and S(TV, P) > 5(TV, G). 
Thus, a concept is vertically well placed if it is more sim­
ilar to its parent than to its grandparent. If a node TV 
violates this constraint, it suggests that one should con­
sider promoting TV to become a child of its grandparent 
(and thus a sibling of its parent). 

Taken together and applied over al l the nodes in a 
concept tree, these constraints can be used to define a 
characteristic of the entire tree: 

D E F I N I T I O N . A concept tree is well organized w.r.t . sim­
i lar i ty metric S if all concepts in the tree are horizontally 
and vertically well placed w i th respect to 5. 
A R A C H N E seeks to generate concept hierarchies that are 
well organized for a given similarity metric. We hypoth­
esize that such hierarchies wi l l reflect concepts that are 
inherent in the domain. 

2.2 A R A C H N E ' S C o n t r o l S t r u c t u r e 

The A R A C H N E learning algor i thm has many similarities 
to C O B W E B but also important differences. The system 
accepts an instance / and a concept node TV as argu­
ments, and incorporates / into the hierarchy below TV. 
If TV is a terminal node, A R A C H N E (like C O B W E B ) ex­
tends the hierarchy downward, creating a new concept 

P that summarizes TV and /, making TV and / children 
of the new concept. If TV is not a terminal node, the 
system averages I into the existing probabilistic descrip-
t ion and stores the instance as a new chi ld. At this point, 
A R A C H N E considers two operators for restructuring the 
hierarchy, and this is where it most diverges from its 
predecessor. 

The system first checks each child C of TV in turn ( in­
cluding the new child /) to make sure it obeys the con­
straint that it be vertically well placed. If C violates this 
condit ion, A R A C H N E promotes C, removing it as a child 
of TV and making it a child of TV's parent. (Actually, the 
system must recheck each constraint after applying the 
promote operator, since this changes the description of 
TV). This ensures that no children of TV are more similar 
to their grandparent than to their parent. Thus, storing 
a new instance as a child of a concept can cause a sibling 
instance or concept to "bubble up" to a higher location 
in memory. 

A R A C H N E ' S next step involves checking each child of N 
to make sure it obeys the constraint that it be horizon­
tal ly well placed. If two or more children are more similar 
to each other than either is to TV, the system merges the 
most similar pair. This involves replacing these siblings 
wi th a new node that is their probabilistic average, tak­
ing the union of their children as its children. A R A C H N E 
then recursively considers merging this new node's chil-
dren. In some cases, this leads to recreation of the orig­
inal siblings at a lower level in the hierarchy; in other 
cases, it produces further reorganizations in the subhier-
archy. In particular, if the original instance is merged 
wi th an existing concept, recursive calls of the merge 
operator can effectively sort it down through memory. 

Once it has merged two nodes at a given level, 
A R A C H N E checks the remaining nodes for satisfaction 
of horizontal well placement. If it finds two or more 
nodes that violate this constraint, it again merges the 
most similar, then repeats this process unt i l all nodes 
at this level satisfy the constraint. In this way, a sin­
gle new instance can cause the system to merge succes­
sively many of the nodes previously stored at a given 
level, including pairs of nodes dissimilar f rom i t . For 
instance, suppose A R A C H N E had stored four instances 
of cats under a common parent, and a dog instance is 
added (through merging from above). Here the system 
would first merge the two most similar cats, then merge 
a th i rd into the resulting node, and finally the fourth. 
The result would be two concepts, one representing the 
abstraction of four cat instances and the other based on 
a single dog. This iterative merging process differs from 
that used in C O B W E B , which merges nodes only when 
they are similar to a new instance. Thus, we expect 
ARACHNE wi l l create well-structured trees regardless of 
the order in which instances are presented. 

2 .3 S i m i l a r i t y a n d P r e d i c t i o n in ARACHNE 

Recall that A R A C H N E ' S constraints and control struc­
ture rely on the abil i ty to measure the similarity be­
tween nodes and/or instances. At each level, the sys­
tem uses its similarity metric to decide in which class 
an instance belongs by determining which class descrip-
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t i o n i s mos t s i m i l a r t o t h a t o f the instance. A R A C H N E 
also uses i ts s i m i l a r i t y measure to de te rm ine the dep th 
to wh i ch i t shou ld sor t an ins tance, h a l t i n g whenever 
the best s i m i l a r i t y score at the nex t level is no be t te r 
t h a n t h a t a t the cu r ren t level . T h e m e t r i c also p lays a 
role i n dec id ing when to invoke the merge a n d p r o m o t e 
opera tors . Hadz ikad ic a n d Y u n (1989) have also used a 
s i m i l a r i t y m e t r i c t o gu ide the concept f o r m a t i o n process; 
b o t h t he i r I N C sys tem and A R A C H N E di f fer i n t h i s way 
f r o m C O B W E B , w h i c h uses an eva lua t i on f u n c t i o n over an 
ent i re p a r t i t i o n o f nodes. A l t h o u g h ARACHNE can use 
d i f ferent s i m i l a r i t y f unc t i ons , ou r tests w i t h the system 
have used a s imp le measure of " p r o b a b i l i s t i c ove r l ap " 
between the a t t r i b u t e s o f nodes and instances. 

A R A C H N E uses the same s i m i l a r i t y f u n c t i o n a n d es­
sen t ia l l y the same con t ro l s t r uc tu re fo r p red i c t i on t h a t i t 
uses in l ea rn ing . T h e sys tem sorts an instance d o w n the 
h ie rarchy in accordance w i t h i t s cons t ra in ts , except t h a t 
no p r o m o t i o n is a l lowed a n d on l y merges t h a t invo lve 
the ins tance are execu ted . 1 T h u s an instance sorts to 
the class a t wh i ch i t w o u l d o r d i n a r i l y become a d i s j unc t , 
and a p red i c t i on is m a d e f r o m the last node to wh ich 
i t so r ted . A R A C H N E inc ludes a s imp le recogn i t ion cr i -
t e r i on to foster p red i c t i on f r o m i n te rna l nodes and thus 
avo id o v e r f i t t i n g . As i t sor ts an instance t h r o u g h m e m ­
ory, the sys tem makes a p red i c t i on f r o m an i n te rna l node 
i f i ts m o d a l values per fec t ly m a t c h a l l the values o f the 
instance. 

3 C o m p a r a t i v e Studies 

N o w t h a t we have descr ibed ARACHNE, we mus t s t i l l 
demons t ra te t h a t h ierarchies cons t ruc ted accord ing to 
i ts cons t ra in ts have desi rable s t r u c t u r a l p roper t ies , and 
t h a t A R A C H N E i s c o m p e t i t i v e w i t h C O B W E B i n t e rms o f 
p red ic t i ve ab i l i t y . In des ign ing the a l g o r i t h m , we sus­
pected t h a t g o o d s t ruc tu re w o u l d , i f a n y t h i n g , enhance 
the l a t t e r ab i l i t y , and sought to show th i s exper imen ta l l y . 
To th i s end , we designed a set of compara t i ve studies, 
w h i c h we r e p o r t af ter s u m m a r i z i n g the dependent va r i ­
ables we used to measure the sys tems ' behav iors . 

3 . 1 A c c u r a c y o f C l a s s P r e d i c t i o n 

T y p i c a l l y , researchers have eva luated i nduc t i ve l ea rn ing 
systems by t r a i n i n g t h e m on a set o f examples a n d then 
measur ing the i r a b i l i t y to make p red ic t i ons a b o u t new 
examples. For superv ised l ea rn ing me thods , the predic­
t i o n task involves i d e n t i f y i n g the class name of a novel 
ins tance, g iven t r a i n i n g instances t h a t inc lude th i s i n ­
f o r m a t i o n as p a r t o f t he i r desc r ip t i on . I n con t ras t , the 
t r a i n i n g d a t a for unsuperv ised systems l ike C O B W E B and 
A R A C H N E does n o t inc lude class i n f o r m a t i o n . T h u s , 
F isher (1987) i n t r oduced the task o f f lex ib le p r e d i c t i o n , 
w h i c h requires the sys tem to p red ic t the values o f one or 
mo re a r b i t r a r y a t t r i b u t e s t h a t have been excised f r o m 
the test instances. M a r t i n (1989) a n d G e n n a r i (1990) 
have used s i m i l a r pe r fo rmance measures. 

1 Recall that dur ing learning, ARACHNE can merge any 
two nodes at the current level. It is not l imi ted to considering 
only merges that involve the instance being sorted. 

However, the class name can be used for predic­
t i o n s t ra igh t f o rwa rd l y , even w i t h unsuperv ised lea rn ing 
methods . A t yp i ca l unsuperv ised sys tem does no t i n ­
c lude the class name in the desc r ip t i on o f t r a i n i n g i n ­
stances, b u t there is n o t h i n g to prevent one f r o m i nc lud ­
i ng such class i n f o r m a t i o n , p rov ided the sys tem does no t 
use i t to de te rm ine concepts. To take advantage o f th is 
idea i n eva lua t i ng systems l ike ARACHNE a n d C O B W E B , 
we associate the class name w i t h each instance descr ip-
t i o n as an e x t r a a t t r i b u t e , h i d i n g the labe l so t h a t i t does 
no t affect c lus te r ing . However , we do let the sys tem re­
t a i n p robab i l i t i es at each concept for t he class labels of 
instances summar i zed by the node. To p red ic t the class 
name of a new instance, the sys tem s i m p l y classifies the 
instance to a node in the h ie rarchy a n d p red ic ts the mos t 
f requen t l y occu r r i ng labe l a t t h a t node. 

We chose to p red ic t class names in our compara t i ve 
studies because they p rov ide a good basel ine for pre­
d ic t i ve ab i l i t y . Class names are never p r o v i d e d by the 
env i ronmen t ; d o m a i n exper ts assign t h e m based on reg­
u la r i t i es they have observed over t i m e . T h u s , they are 
designed to be p red ic tab le f r o m observed features. In 
con t ras t , F isher 's n o t i o n o f f l ex ib le p red i c t i on fa i ls to dis­
t i ngu i sh between a t t r i b u t e s t h a t can be pred ic ted t r i v ­
ia l ly , ones t h a t can be p red ic ted w i t h a p p r o p r i a t e k n o w l ­
edge, and ones t h a t canno t be p red ic ted a t a l l . 

3 .2 Q u a l i t y o f T r e e S t r u c t u r e 

I n f o r m a l inspect ions o f the trees cons t ruc ted by 
A R A C H N E and C O B W E B suggested t h a t t he f o rmer sys­
t e m was f requen t l y b u i l d i n g " b e t t e r " trees, i n t h a t fewer 
instances were s i t ua ted in classes where they d i d no t 
seem to f i t we l l . ARACHNE also seemed to cons t ruc t 
fewer " j u n k " nodes - spur ious clusters of instances t h a t 
have l i t t l e i n c o m m o n . T h e chal lenge was to quan t i f y 
these observat ions and to cons t ruc t a measure of tree 
q u a l i t y t h a t cou ld be app l ied to the h ierarchies o f bo th 
systems. T h i s measure shou ld n o t favor the g u i d i n g or­
gan i za t i ona l cons t ra in ts o f e i ther sys tem. For examp le , 
we m i g h t have eva luated whe the r the category u t i l i t y o f 
the top- leve l p a r t i t i o n i n g was o p t i m i z e d , as in Fisher 's 
(1987) s t u d y o f t ree q u a l i t y i n C O B W E B , o r how wel l the 
hierarchies adhered to g loba l var ian ts o f t he cons t ra in ts 
set f o r t h for ARACHNE. B u t these measures w o u l d be 
biased in favor o f one o f t he systems. 

Ins tead , we devised t w o dependent measures wh i ch we 
cou ld a p p l y to trees in a r t i f i c i a l d o m a i n s for wh i ch we 
knew the " co r rec t " concept h ierarchy. A good h ierarchy 
shou ld con ta i n nodes t h a t co r respond to concepts em­
bod ied in the d a t a . I f one knows t h a t a d o m a i n conta ins 
wel l -def ined, d i s t i nc t concepts, t hen a n a t u r a l measure 
o f tree q u a l i t y shou ld ref lect the degree to wh ich the 
learned tree respects the k n o w n s t ruc tu re o f the d a t a 
used t o b u i l d i t . I n keep ing w i t h t h i s idea, we counted 
the percentage of formed concepts, or those n o n t e r m i n a l 
nodes whose m o d a l values exac t l y ma tched the m o d a l 
values o f a concept k n o w n to exist in t he d a t a . 

F u r t h e r m o r e , we def ined a measure of well-placed in­
stances, s ing le ton nodes t h a t are descendents of a ta rge t 
concept and t h a t m a t c h 5 0 % o r m o r e o f t he m o d a l a t ­
t r i b u t e values o f t he ta rge t concept . Concepts con ta in i ng 
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wel l -p laced instances t end to adhere closely to the i r ex­
pected concept d e s c r i p t i o n , a n d show m i n i m a l presence 
o f a t t r i b u t e values i n f requencies t h a t vary f r o m the ex­
pec ted . A h i g h percentage of wel l -p laced instances in a 
tree imp l i es a large n u m b e r of accurate concepts. 

3 .3 E x p e r i m e n t a l P r o c e d u r e 

In our e x p e r i m e n t a l s tud ies, we car r ied o u t groups o f ten 
runs , 2 p resen t ing A R A C H N E a n d C O B W E B w i t h iden t ica l 
sets o f r a n d o m l y selected t r a i n i n g instances for each r u n . 
We used the same test set for every r u n in a g roup . In 
exper imen ts n o t concerned w i t h order effects, the t r a i n -
i n g instances were r a n d o m l y o rdered . In a l l cases, test 
instances were t aken f r o m the same d i s t r i b u t i o n as the 
t r a i n i n g instances. T h u s , i f t he t r a i n i n g d a t a had a noise 
level o f 9 0 % , on average the test d a t a w o u l d have tha t 
noise level as we l l . 

B o t h systems sor ted t r a i n i n g instances one at a t i m e 
t h r o u g h the i r h ierarch ies. L e a r n i n g took place as each 
ins tance was i n c o r p o r a t e d , as p robab i l i t i es in the con­
cept descr ip t ions changed a n d the hierarchies were re­
s t r u c t u r e d . A f t e r each t r a i n i n g ins tance, the ent i re test 
set was presented to each sys tem, w h i c h used the hier­
archy i t had f o r m e d t hus far to p red ic t the class name 
o f each test ins tance. We c o m p a r e d th i s to the " a c t u a l " 
class n a m e associated w i t h t he test ins tance, g i v i n g the 
sys tem a score of one i f the p r e d i c t i o n was correct and 
zero o therw ise . No l ea rn ing was done on the test i n ­
stances, so i t was possible to cons t ruc t l ea rn ing curves 
w h i c h p l o t average accuracy on the test set as a f u n c t i o n 
o f the number o f t r a i n i n g instances seen. 

For ou r s tud ies we used t w o versions o f C O B W E B t h a t 
b u i l t i den t i ca l h ierarchies b u t d i f fered i n the i r predic­
t i o n mechan isms . Reca l l t h a t A R A C H N E has a recogni ­
t i o n c r i t e r i on t o foster p r e d i c t i o n f r o m in te rna l nodes; 
i t s tops so r t i ng an ins tance i f i ts values per fec t l y m a t c h 
the m o d a l values o f a node i t has reached in memory . 
To c o n t r o l for t he effect on p red ic t i ve accuracy, we cre­
a ted a vers ion o f C O B W E B , denoted C O B W E B ' , wh i ch i n ­
c luded th i s m e c h a n i s m . Since th i s no t i ceab ly affected 
pe r fo rmance o n l y in t he no isy a r t i f i c i a l d o m a i n , we re­
p o r t C O B W E B ' resul ts o n l y i n t h a t sect ion. 

A f t e r each sys tem had processed the comple te t r a i n i n g 
set on each r u n , we r a n the f i na l h ierarchies t h r o u g h our 
assessor o f t ree qua l i t y , w h i c h repo r ted the number o f 
concepts f o u n d a n d the percentage o f wel l -p laced nodes. 
Since we devised these measures especial ly for our a r t i ­
f ic ia l d a t a sets, w h i c h had k n o w n , c lear ly -def ined con­
cepts, we d i d n o t a t t e m p t t o a p p l y t h e m i n the n a t u r a l 
d o m a i n s we tes ted . 

3 . 4 B e h a v i o r o n N a t u r a l D o m a i n s 

We now consider some hypotheses a b o u t the re la t ive be­
hav io r o f C O B W E B a n d A R A C H N E , and the exper imen ts 
we car r ied o u t to test t h e m us ing the dependent mea­
sures a n d procedure descr ibed above. O u r f i rs t step 
i n eva lua t i ng A R A C H N E was t o exam ine i t s behav io r o n 
some s t a n d a r d p rob lems f r o m the mach ine l ea rn ing l i te r ­
a tu re . For t h i s purpose, we selected t he d o m a i n o f C o n -

Figure 1. Learning curves for ARACHNE and COBWEB on 
congressional vot ing records, using predictive accuracy as a 
performance measure. 

gressional v o t i n g records, w h i c h Fisher (1987) has used 
i n tests o f C O B W E B , a n d the d o m a i n o f soybean diseases, 
wh ich M i c h a l s k i a n d C h i l a u s k y (1980) used in the i r ex­
pe r imen ts on superv ised l ea rn ing . T h e p red i c t i on i n th is 
case is s t r a i g h t f o r w a r d : 

H y p o t h e s i s : A R A C H N E will show better predictive ac-
curacy than COBWEB in natural domains. 

T h e congressional v o t i n g d o m a i n conta ins 435 instances 
o f s ix teen Boo lean a t t r i b u t e s each (co r respond ing to yea 
or nay votes) , w i t h each f a l l i n g i n t o one o f t w o classes 
(Democ ra t a n d R e p u b l i c a n ) . I n con t ras t , the soybean 
d a t a set con ta ins 683 instances f r o m 19 classes, each de­
scr ibed in t e rms o f 35 s y m b o l i c a t t r i b u t e s . 3 T h u s , the 
t w o d a t a sets d i f fer i n t he n u m b e r o f a t t r i b u t e s and d i ­
verge even mo re in the n u m b e r of prespeci f ied classes. 

To eva luate ou r hypo thes is , we presented b o t h 
C O B W E B and A R A C H N E w i t h r a n d o m samples o f 100 
t r a i n i n g instances and a test set of 25 instances f r o m the 
congressional d o m a i n a n d 150 t r a i n i n g instances and a 
test set of 95 instances ( f ive f r o m each class) f r o m the 
soybean d o m a i n . T h e resu l ts , averaged over ten runs 
for the f i rs t d o m a i n a n d f ive for t he l a t t e r , reveal s i m i ­
lar accuracies in class p r e d i c t i o n t h r o u g h o u t the course 
o f l ea rn ing . O n the congressional records, A R A C H N E 
reaches i t s a s y m p t o t e s l i gh t l y ear l ier t h a n C O B W E B , a t 
abou t 20 instances ra the r t h a n 40 instances. On the soy­
bean d a t a , C O B W E B reaches a s y m p t o t e ear l ier , a t abou t 
120 instances ra the r t h a n 140 instances. B u t in b o t h 
cases the t w o asymp to tes are bas ica l ly equ iva lent a n d , 
in genera l , t he differences we had an t i c i pa ted d i d no t 
emerge, f o r c i ng us to reject ou r hypothes is . However, 
w e shou ld n o t conc lude t o o s w i f t l y t h a t A R A C H N E and 
C O B W E B a lways p e r f o r m a t compa rab le levels; these two 
d o m a i n s s i m p l y may n o t have character is t ics t h a t b r i n g 
o u t t he i r dif ferences. T h i s suggests ano ther approach , to 
w h i c h we now t u r n . 

2 The soybean results are one exception to this rule; in this 
case our averages are based on five runs. 

3 Th is data set is much more complex than the four-class 
version used by Stepp (1984) and Fisher (1987). 
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Figure 2. Learning curves for ARACHNE and COBWEB on an 
artificial domain with high attribute noise, using predictive 
accuracy as a performance measure. 

3 .5 Ef fects o f A t t r i b u t e No ise 
Although studies w i th natural domains show relevance 
to real-world problems, artif icial domains are more use-
ful for understanding the reasons for an algorithm's be-
havior. A common use of such domains involves vary-
ing the noise level. Noise in a training set confounds 
a learning system; it blurs boundaries between classes, 
making misclassification of instances more likely and the 
underlying concepts more diff icult to discern. A sys­
tem trained on noisy data is susceptible to overfitting, 
predicting attr ibutes at a more specific concept than it 
should. 

We designed A R A C H N E ' S performance and learning al­
gorithms to be robust in noisy domains, and this suggests 
a simple prediction about its behavior: 

H y p o t h e s i s : ARACHNE will be less affected by noise 
than C O B W E B w.r.t. both accuracy and tree structure. 

Intuit ively, ARACHNE should build better trees because 
of its more powerful reorganization operators and con­
cern wi th constraints, and it should be less subject to 
overfitt ing because of its abil i ty to predict from well-
formed internal nodes. 

To test this hypothesis, we designed artif icial data sets 
at two levels of noise. Each contained instances w i th four 
attr ibutes, each of which could take on ten distinct val­
ues. The attr ibutes had a prototypical value but could 
take on other "noise" values at some specified probabil­
ity. In the low-noise data set (noise level I ) , the modal 
value for each at t r ibute occurred wi th probabil i ty 0.7, 
while three "noise" values occurred wi th probabil i ty 0.1. 
In the noisier data set (noise level I I ) , the modal value 
for each at t r ibute occurred wi th probability 0.5, while 
five noise values occurred wi th probabil i ty 0.1. Because 
a noise value appearing in one class was the modal value 
of some other class, class descriptions overlapped to some 
extent. About 24% of the noise level I instances and 
only about 6% of the noise level II instances should con­
form perfectly to the modal class description, wi th the 
remainder being noisy variants. 

We car r ied o u t ten runs at each of these noise levels, 
present ing C O B W E B a n d A R A C H N E w i t h 100 t r a i n i n g ex­
amples in each case. F igu re 2 shows the l ea rn ing curves 
fo r noise level I I ; s im i l a r resul ts were achieved a t noise 
level I . T h e g raph p lo ts the average p red i c t i ve accuracy 
aga ins t the number o f instances seen. A t noise level I I , 
A R A C H N E asympto tes a t 7 6 % accuracy, wh i l e C O B W E B 
asympto tes a t 5 5 % a n d C O B W E B ' , w h i c h p red ic ts f r o m 
i n te rna l nodes, a t 65%. In t h i s d o m a i n , t ree q u a l i t y was 
lower for C O B W E B (5.5 ta rge t concepts a n d 3 7 % we l l -
p laced nodes) t h a n for ARACHNE (6.6 t a rge t concepts 
and 5 2 % wel l -p laced nodes) . Accu racy differences were 
s ign i f icant a t the .001 level fo r ARACHNE and C O B W E B 
and a t the .01 level for A R A C H N E a n d C O B W E B ' . Di f fer­
ences in t ree qua l i t y were s ign i f i cant at t he .025 level . 

These resul ts on l y p a r t l y agree w i t h ou r hypo the ­
sis. A R A C H N E ' S a s y m p t o t i c accuracy i s h igher t h a n 
C O B W E B ' S a t b o t h noise levels, w i t h the dif ference i n ­
creasing w i t h noise. B y p red i c t i ng f r o m we l l - f o rmed i n ­
te rna l nodes, ARACHNE is less suscept ib le to ove r f i t t i ng . 
However, the p i c t u re is m o r e amb iguous w i t h respect 
to tree qua l i t y . B o t h systems lose t ree q u a l i t y as noise 
increases, b u t A R A C H N E suffers less t h a n C O B W E B , pre­
s u m a b l y because o f i ts r e s t r u c t u r i n g opera to rs . T h i s ex­
p e r i m e n t lends evidence to the v iew t h a t p red ic t i ve a b i l ­
i t y and t ree q u a l i t y are no t per fec t l y co r re la ted . Good 
tree s t r uc tu re does no t guarantee good p red i c t i on , and 
good p red ic t i ve pe r fo rmance does no t mean the under­
l y i n g h ie rarchy is organ ized to con ta i n concepts inheren t 
i n the d a t a , b u t b o t h are i m p o r t a n t fac tors . 

3 .6 E f f e c t s o f P r i m i n g i n N o i s y D o m a i n s 

O u r e x p l a n a t i o n o f the prev ious resul ts supposed t h a t 
noise in ear ly t r a i n i n g instances cou ld m is lead b o t h sys­
tems , b u t t h a t C O B W E B was more suscept ib le t o th is 
effect t h a n A R A C H N E . I f so, we shou ld be ab le t o e l im ­
ina te th i s di f ference by priming b o t h systems w i t h we l l -
o rdered , noise-free t r a i n i n g instances f r o m each class. 
T h i s i s equ iva lent to g i v i n g t h e m backg round knowledge 
a b o u t ideal ized categor ies. T h i s suggests a t h i r d predic­
t i o n a b o u t the i r behav io r : 

H y p o t h e s i s : A R A C H N E and C O B W E B will behave sim­
ilarly on both accuracy and tree structure when primed 
with well-ordered, noise-free training data. 

T h e i n t u i t i o n here i s t h a t , w i t h less need to reorga-
nize m e m o r y to recover f r o m m is lead ing observat ions, 
A R A C H N E ' S r e s t r u c t u r i n g opera to rs become less impo r ­
t an t and differences between the systems shou ld be re­
duced. To test t h i s p r e d i c t i o n , we p r o v i d e d each sys tem 
w i t h 40 noise-free instances a t t he s ta r t o f each r u n , four 
iden t i ca l p ro to t ypes f r o m each class, p r o d u c i n g an ide­
a l ized h ierarchy. We fo l lowed these d a t a w i t h the same 
noisy t r a i n i n g sets used for the second expe r imen t . 

F i gu re 3 shows the resul ts o f t h i s e x p e r i m e n t a t noise-
level I I , w h i c h are s o m e w h a t su rp r i s i ng ; resul ts a t noise-
level I are ana logous t h o u g h less p ronounced . P r i m i n g 
improves A R A C H N E ' S p red ic t i ve accuracy s ign i f icant ly , 
ra is ing i t t o 9 0 % f r o m 7 6 % w i t h o u t p r i m i n g . C O B W E B 
shows an accuracy o f on l y 6 3 % , as d i d C O B W E B ' . T h i s 
was an i m p r o v e m e n t over C O B W E B ' S f o r m e r level o f 55%, 
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Number of Instances Seen 
Figure 3. Learning curves for ARACHNE and COBWEB on 
noisy art i f icial data w i th pr imed concept trees. 

b u t s t i l l be low A R A C H N E ' S pe r fo rmance . For b o t h sys­
tems , p r i m i n g improves tree qua l i t y . A R A C H N E ' S qua l i t y , 
i n i t i a l l y h igher t h a n C O B W E B ' S , improves f r o m 5 2 % we l l -
p laced nodes w i t h o u t p r i m i n g t o 8 9 % ; the 1 a l t e r s tree 
q u a l i t y rises f r o m 3 7 % t o 7 9 % w i t h p r i m i n g . Between-
sys tem differences in p red ic t i ve accuracy were s ta t i s t i ­
ca l l y s ign i f i cant a t the .001 leve l ; t ree q u a l i t y differences 
were s ign i f i cant a t t he .01 level . 

T h i s e x p e r i m e n t d i scon f i rms our hypothes is . T h o u g h 
p r i m i n g genera l ly improves the p red ic t i ve accuracy o f 
the systems, A R A C H N E s t i l l pe r fo rms s ign i f i can t ly bet ­
ter t h a n C O B W E B . F u r t h e r m o r e , w i t h p r i m i n g A R A C H N E 
bu i lds be t te r trees at b o t h noise levels. T h i s suggests 
t h a t A R A C H N E can make be t te r use o f the background 
knowledge encoded in a p r i m e d tree. T h i s may be p a r t l y 
due to C O B W E B ' S greater tendency to misp lace instances 
( i nco rpo ra te t h e m i n t o an i n a p p r o p r i a t e concept ) , wh ich 
affects b o t h the accuracy o f the concept descr ip t ion ( i t 
ob ta ins super f luous noise) and p resumab ly the system's 
a b i l i t y t o i ndex and re t r ieve the ob jec t . No tab l y , a l ­
t h o u g h p r i m i n g led b o t h systems to h igher accuracy i n i ­
t ia l l y , A R A C H N E reached the same a s y m p t o t e a s w i t h o u t 
p r i m i n g , whereas C O B W E B ' S accuracy a c t u a l l y d ropped 
as i t saw noisy t r a i n i n g instances. T h i s prov ides f u r t he r 
evidence t h a t ARACHNE benef i ts f r o m i ts a b i l i t y to pre-
d i c t f r o m we l l - f o rmed i n te rna l nodes, thus avo id i ng the 
ove r f i t t i ng t o w h i c h C O B W E B i s suscept ib le. 

3 .7 E f f e c t s o f I n s t a n c e O r d e r 

A n o t h e r one o f ou r concerns in des ign ing ARACHNE was 
s t a b i l i t y w i t h respect t o d i f fe rent orders o f t r a i n i n g i n ­
stances. Orde r effects are apparen t i n C O B W E B when 
d i f ferent p resenta t ions o f the same d a t a produce hier­
archies w i t h d i f fe rent s t r uc tu re . A R A C H N E ' S opera tors 
for m e r g i n g and p r o m o t i o n shou ld enable recovery f r o m 
nonrepresenta t ive t r a i n i n g orders, a n d th i s leads to an­
o ther p r e d i c t i o n : 

H y p o t h e s i s : C O B W E B will suffer more from order ef­
fects than ARACHNE w.r.t. tree quality but not accuracy. 

G e n n a r i (1990) has repo r ted t h a t t r a i n i n g order affects 
the s t r uc tu re o f C O B W E B trees b u t does no t a l te r the i r 

Table 1. Tree qual i ty in art i f icial domains, measured as per 
centage of well-placed nodes, for (1) unprimed and (2) primed 
runs, (3) poor and (4) random train ing orders, at low noise; 
for (5) unprimed and (6) pr imed runs, at high noise. 

accuracy, so we d i d n o t expect A R A C H N E to o u t p e r f o r m 
i ts predecessor on the l a t t e r measure. However, we d i d 
expect i t to cons t ruc t we l l - s t ruc tu red concept hierarchies 
regardless o f the t r a i n i n g order . O u r experience w i t h 
C O B W E B suggested i t has d i f f i cu l t y when every member 
of a class is presented at once, fo l lowed by every m e m ­
ber of a new class, and so f o r t h . T h u s , we tested the 
above hypothes is by present ing b o t h systems w i t h ten 
r a n d o m order ings and ten " b a d " order ings o f 200 t r a i n ­
i ng instances f r o m the low-noise d a t a set descr ibed ear­
l ier. T h e bad order ings were s t r i c t l y ordered by class, so 
the systems saw 20 examples of each class in t u r n . 

In th i s expe r imen t our hypothes is was con f i rmed . I n ­
stance order d i d no t affect p red ic t i ve accuracy, a l t hough 
n a t u r a l l y the l ea rn ing ra te for the bad o rde r ing was 
slower, since the systems d i d n o t see a representat ive 
o f the f ina l class u n t i l t he 181st ins tance. R a n d o m and 
bad order ings p roduce h ierarchies capable o f analogous 
p red ic t i ve accuracy, a p p r o x i m a t e l y 9 0 % for ARACHNE 
and 8 0 % for C O B W E B . However , t ree q u a l i t y di f fers s ig­
n i f i can t l y i n the t w o s i t ua t i ons . B o t h systems locate 
mos t o r a l l o f the concepts a t some leve l , b u t C O B W E B is 
vu lne rab le to misp laced instances w i t h the pa tho log ica l 
o rde r i ng . Whereas A R A C H N E arr ives a t 8 8 % wel l -p laced 
nodes w i t h the bad o rde r i ng , and a s im i l a r 8 6 % w i t h ran ­
d o m o rde r i ng , C O B W E B averages o n l y 7 4 % wel l -p laced 
nodes when lea rn ing f r o m the bad o rde r i ng , compared 
to 8 4 % for the r a n d o m o rde r i ng . Dif ferences i n predic­
t i ve accuracy were s ign i f i cant for b o t h cond i t i ons a t the 
.001 level . Dif ferences in tree q u a l i t y between the two 
systems were no t s ign i f i cant for r a n d o m order ings , b u t 
were s ign i f icant at the .001 level for bad order ings . 

T h i s expe r imen t prov ides a d d i t i o n a l evidence t h a t 
p red ic t i ve accuracy is no t an adequate measure of tree 
qua l i t y . A p p a r e n t l y order effects t h a t lead to a decrease 
i n tree q u a l i t y do no t affect C O B W E B ' S a b i l i t y t o index 
instances and p red ic t accura te ly . T h i s i s consis tent w i t h 
Gennar i ' s resul ts and w i t h ou r hypothes is . 

3 .8 C o s t o f C l a s s i f i c a t i o n 

Ana lys i s o f C O B W E B reveals a n average-case ass im i la t ion 
cost t h a t i s l o g a r i t h m i c in the number o f ob jects in the 
tree and quad ra t i c in the b ranch ing fac to r (F isher , 1987). 
Ana l ys i s o f A R A C H N E i s con founded by the fac t t h a t i n 
theory i ts r e s t r u c t u r i n g o f the h ierarchy is no t gua ran ­
teed to h a l t . Such cases are pa tho log i ca l a n d A R A C H N E ' S 
behav ior on a l l our d a t a sets was t rac tab le . 
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To q u a n t i f y each sys tem's eff iciency in p rac t i ce , we 
measured the n u m b e r of a t t r i b u t e values inspected as a 
f unc t i on o f n , t he number o f ob jec ts i nco rpo ra ted , over 
f i ve runs o f the soybean d a t a set, the m o r e cha l leng ing o f 
the n a t u r a l d o m a i n s we tes ted. B o t h systems appeared 
l inear i n n ; C O B W E B w i t h a co r re la t i on o f 0.999 and 
A R A C H N E w i t h one o f 0.976. However , A R A C H N E ac­
t u a l l y inspected m o r e a t t r i b u t e s t h a n C O B W E B , h a v i n g 
a l inear coeff ic ient t h i r t y t imes t h a t o f i ts predecessor. 
We bel ieve t h a t a heur is t i c cu to f f mechan ism that, l i m i t s 
reorgan iza t ion o f the h ie ra rchy w o u l d reduce cost w i t h ­
ou t loss of p red ic t i ve accuracy or tree qua l i t y . 

4 Discussion 
I n th is paper we iden t i f ied some p rob lems w i t h F isher 's 
(1987) C O B W E B , a concept f o r m a t i o n sys tem t h a t 
achieves h i g h p red ic t i ve accuracy b u t does no t a lways 
create we l l - s t ruc tu red concept trees. In response, we de­
veloped A R A C H N E , a n a l g o r i t h m w i t h exp l i c i t l y - s ta ted 
cons t ra in ts for we l l - f o rmed p robab i l i s t i c concept h ierar­
chies, wh i ch i nc remen ta l l y cons t ruc ts such trees f r o m 
unsuperv ised t r a i n i n g d a t a . We also repo r ted four ex­
pe r imen ts t h a t c o m p a r e d A R A C H N E w i t h C O B W E B o n 
b o t h p red ic t i ve accuracy and tree qua l i t y . We found 
the systems achieved compa rab le accuracy on t w o n a t u ­
ra l d o m a i n s , b u t we f o u n d s ign i f icant differences in b o t h 
accuracy a n d tree q u a l i t y us ing a r t i f i c i a l d a t a . In par­
t i cu la r , C O B W E B tends t o over f i t mo re t h a n A R A C H N E 
when t r a i n e d and tested on no isy instances, a n d i t ben­
efi ts less f r o m p r i m i n g w i t h noise-free d a t a w i t h respect 
t o tree qua l i t y . A l so , the q u a l i t y o f C O B W E B trees suf­
fers f r o m m is lead ing orders o f t r a i n i n g instances, wh i l e 
ARACHNE's tree s t r uc tu re is re la t i ve ly unaf fected. 

Desp i te these encourag ing resul ts, we need mo re com­
pa ra t i ve studies before d r a w i n g f i r m conclusions a b o u t 
one sys tem's s u p e r i o r i t y over the o ther . A l so , A R A C H N E 
has clear l i m i t a t i o n s t h a t shou ld be removed in f u t u r e 
wo rk . P r e l i m i n a r y studies suggest t h a t the cur ren t s i m ­
i l a r i t y m e t r i c has d i f f i cu l t y d i s t i n g u i s h i n g i r re levant a t ­
t r i bu tes f r o m re levant ones. However , since relevance 
can be es t ima ted f r o m s tored c o n d i t i o n a l p robab i l i t i es , 
we are con f iden t t h a t a d i f fe rent s i m i l a r i t y f u n c t i o n w i l l 
add th i s capab i l i t y . A l so , the ex i s t i ng sys tem can hand le 
numer i c a t t r i b u t e s , b u t o n l y by us ing Euc l idean d is tance 
between means as i t s d is tance m e t r i c ; f u t u r e versions o f 
A R A C H N E shou ld emp loy a p robab i l i s t i c measure t h a t 
lets i t comb ine symbo l i c a n d numer i c d a t a in a un i f ied 
manne r . T h e sys tem s t i l l tends t o f o r m " j u n k " con­
cepts; avo id i ng t h e m m a y requ i re a d d i t i o n a l cons t ra in ts 
o r m o r e power fu l opera to rs fo r r es t r uc tu r i ng the con­
cept t ree. We shou ld also compare A R A C H N E ' S behav­
ior t o o ther no ise- to le rant l ea rn ing a l g o r i t h m s , i n c l u d ­
i ng F isher 's (1989) va r i an t o n C O B W E B a n d superv ised 
me thods for p r u n i n g decis ion trees ( Q u i n l a n , 1986). 

Nevertheless, we bel ieve the present wo rk has shown 
the i m p o r t a n c e o f e x a m i n i n g the s t r u c t u r a l q u a l i t y o f 
concept h ierarchies in a d d i t i o n to t he i r p red ic t i ve ac­
curacy. I t has also shown t h a t exp l i c i t cons t ra in ts on 
tree s t r uc tu re , comb ined w i t h r e s t r u c t u r i n g opera tors for 
co r rec t ing v i o l a t e d cons t ra in ts , can p roduce we l l - fo rmed 
trees w i t h h i g h p red ic t i ve accuracy despi te noise and 

m is lead ing orders o f t r a i n i n g instances. We expect f u ­
t u re w o r k i n th is p a r a d i g m w i l l lead to even m o r e robust 
systems for i nc remen ta l , unsuperv ised concept lea rn ing . 
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