Constraints on Tree Structure in Concept Formation

Kathleen B. McKusick* and Pat Langley
Al Research Branch, Mail Stop 244-17
NASA Ames Research Center
Moffett Field, CA 94035 USA

Abstract

We describe ARACHNE, a concept formation system that, uses
explicit constraints on tree structure and local restructur-
ing operators to produce well-formed probabilistic concept
trees. We also present a quantitative measure of tree qual-
ity and compare the system's performance in artificial and
natural domains to that of COBWEB, a well-known concept
formation algorithm. The results suggest that ARACHNE fre-
quently constructs higher-quality trees than COBWEB, while
still retaining the ability to make accurate predictions.

1 Background and Motivation

The task of concept formation involves the incremental
acquisition of concepts from unlabeled training instances
(Fisher &; Pazzani, in press). Much of the recent re-
search on this topic builds on Fisher's (1987) COBWEB.
Fisher's system assumes that each instance is described
as a conjunction of attribute-value pairs, and employs a
probabilistic representation for concepts. In particular,
COBWERB represents each concept Ck as a set ofattributes
Ai and a subset of their possible values Vj. Associated
with each value is the conditional probability of that
value given membership in the concept, P(A; = Vj\Cy).
In addition, each concept has an associated probability
of occurrence, P(Cy)- COBWEB organizes its conceptual
knowledge into a hierarchy, with nodes partially ordered
according to their generality; thus, the root node sum-
marizes all instances that have been observed, terminal
nodes correspond to single instances, and intermediate
nodes summarize clusters of observations.

COBWERB integrates the processes of classifying in-
stances and incorporating them into memory. The sys-
tem sorts each new instance / down the hierarchy, start-
ing at the root, locating nodes that summarize classes
into which the instance fits well. At a given node TV,
COBWERB retrieves all children and considers placing the
instance in each child node C in turn; it also considers
creating a new child based on the instance. The algo-
rithm uses an evaluation function, category utility (Gluck
& Corter, 1985), to determine the "best" resulting par-
tition, then incorporates the instance into memory ac-
cordingly. The system then recurses, sorting the instance
through memory until it produces a disjunct or reaches
a terminal node. Other research on concept formation

*Also affiliated with Sterling Federal Systems.

810 Learning and Knowledge Acquisition

(Anderson & Matessa, in press; Hadzikadic & Yun, 1989;
Lebowitz, 1987) has assumed a similar control structure.
Our designs for ICARUS (Langley, Thompson, Iba,
Gennari &: Allen, in press) - an integrated cognitive ar-
chitecture - use COBWEB as the underlying engine for
classification and concept formation. ICARUS invokes
Fisher's algorithm to acquire primitive concepts, which
in turn serve as background knowledge for the rest of the
system. In theory, COBWEB produces structures contain-
ing concepts that correspond to concepts in the data,
at several levels of generality. However, our experience
with. COBWEB suggests that its ability to form identifi-
able concepts is limited. Because the system's evaluation
function is oriented toward maximizing predictive accu-
racy, the hierarchies it constructs may not reflect the
underlying class structure of the domain. This behavior
is especially apparent with noisy data and with certain
orders of training instances. This has implications for
systems that use these concepts as building blocks for
other knowledge structures. For example, if a unified cat
concept has not been formed, it cannot be used as part
of a larger knowledge structure, such as a living room.

In this paper we describe ARACHNE, a concept forma-
tion system that seeks to construct well-formed concept
hierarchies while maintaining high predictive accuracy.
ARACHNE'S focus on the structural quality of the hierar-
chies it constructs is new to unsupervised learning. How-
ever, Van de Velde's (1990) supervised IDL algorithm
seeks to induce decision trees with high accuracy and
desirable structural properties. Although ARACHNE'S
structural goals are different from those of IDL, both
systems use structural principles to guide tree formation.

The ARACHNE algorithm bears many similarities to
COBWEB, but employs different criteria for tree forma-
tion and uses alternative restructuring operators, which
we describe in the next section. We then present ex-
perimental studies that compare the behavior of the two
systems on both accuracy and tree quality. We close
with general observations about the two systems and di-
rections for future work.

2 The ARACHNE System

Like COBWEB, ARACHNE represents knowledge as a
hierarchy of probabilistic concepts, and it classifies new
instances by sorting them down this hierarchy. The sys-
tem differs from COBWEB in its concern for the structure

of the concept tree it constructs, in the learning algo-
rithm it employs, and in the way it classifies instances.
Below we discuss each of these differences in turn.

2.1 Constraints on Memory Organization

ARACHNE'S main goal is to create well-structured con-
cept trees, but this requires some specification of "de-
sirable" structures. We have chosen to state these as
formalized constraints, but we have been careful to fo-
cus on local constraints that can be tested efficiently.
Our hope has been that global properties would tend to
emerge from these local concerns, even though we could
not guarantee this would occur. The system's approach
assumes that one has some similarity metric S that lets
one determine the similarity oftwo instances, an instance
and a concept, or two concepts. The constraint frame-
work does not depend on any particular metric.

Recall that, in our framework, each concept is a prob-
abilistic abstraction of the nodes below it in the hierar-
chy, and each child is a specialization of its parent. This
structure suggests two local constraints on the structure
of concept trees, which we believe reflect useful notions
of well-formed hierarchies. The first deals with the rela-
tion between a child, its parent, and its siblings:

DEFINITION. Concept N is horizontally well placed in a
concept tree w.r.t. similarity metric S if P is the parent
of TV and for all siblings A" of TV, S(N, P) > S(N, K).

Thus, a concept is horizontally well placed ifit is of equal
or greater similarity to its parent than to any sibling. If
a node TV violates this constraint, it suggests that one
should consider merging TV with one of its siblings.

A second constraint concerns the relative similarity
between a child, its parent, and its grandparent:

DEFINITION. Concept TV is vertically well placed in a
concept tree w.r.t. similarity metric S if P is the parent
of TV, G is the parent of P, and S(TV, P) > 5(TV, G).
Thus, a concept is vertically well placed ifit is more sim-
ilar to its parent than to its grandparent. If a node TV
violates this constraint, it suggests that one should con-
sider promoting TV to become a child of its grandparent
(and thus a sibling of its parent).

Taken together and applied over all the nodes in a
concept tree, these constraints can be used to define a
characteristic of the entire tree:

DEFINITION. A concept tree is well organized w.r.t. sim-
ilarity metric S if all concepts in the tree are horizontally
and vertically well placed with respect to 5.

ARACHNE seeks to generate concept hierarchies that are
well organized for a given similarity metric. We hypoth-
esize that such hierarchies will reflect concepts that are
inherent in the domain.

2.2 ARACHNE'S Control Structure

The ARACHNE learning algorithm has many similarities
to COBWEB but also important differences. The system
accepts an instance / and a concept node TV as argu-
ments, and incorporates / into the hierarchy below TV.
If TV is a terminal node, ARACHNE (like COBWEB) ex-
tends the hierarchy downward, creating a new concept

P that summarizes TV and /, making TV and / children
of the new concept. If TV is not a terminal node, the
system averages | into the existing probabilistic descrip-
tion and stores the instance as a new child. At this point,
ARACHNE considers two operators for restructuring the
hierarchy, and this is where it most diverges from its
predecessor.

The system first checks each child C of TV in turn (in-
cluding the new child /) to make sure it obeys the con-
straint that it be vertically well placed. If C violates this
condition, ARACHNE promotes C, removing it as a child
of TV and making it a child of TV's parent. (Actually, the
system must recheck each constraint after applying the
promote operator, since this changes the description of
TV). This ensures that no children of TV are more similar
to their grandparent than to their parent. Thus, storing
a new instance as a child of a concept can cause a sibling
instance or concept to "bubble up" to a higher location
in memory.

ARACHNE'S next step involves checking each child of N
to make sure it obeys the constraint that it be horizon-
tally well placed. Iftwo or more children are more similar
to each other than either is to TV, the system merges the
most similar pair. This involves replacing these siblings
with a new node that is their probabilistic average, tak-
ing the union of their children as its children. ARACHNE
then recursively considers merging this new node's chil-
dren. In some cases, this leads to recreation of the orig-
inal siblings at a lower level in the hierarchy; in other
cases, it produces further reorganizations in the subhier-
archy. In particular, if the original instance is merged
with an existing concept, recursive calls of the merge
operator can effectively sort it down through memory.

Once it has merged two nodes at a given level,
ARACHNE checks the remaining nodes for satisfaction
of horizontal well placement. If it finds two or more
nodes that violate this constraint, it again merges the
most similar, then repeats this process until all nodes
at this level satisfy the constraint. In this way, a sin-
gle new instance can cause the system to merge succes-
sively many of the nodes previously stored at a given
level, including pairs of nodes dissimilar from it. For
instance, suppose ARACHNE had stored four instances
of cats under a common parent, and a dog instance is
added (through merging from above). Here the system
would first merge the two most similar cats, then merge
a third into the resulting node, and finally the fourth.
The result would be two concepts, one representing the
abstraction of four cat instances and the other based on
a single dog. This iterative merging process differs from
that used in COBWEB, which merges nodes only when
they are similar to a new instance. Thus, we expect
ARACHNE will create well-structured trees regardless of
the order in which instances are presented.

2.3 Similarity and Prediction in ARACHNE

Recall that ARACHNE'S constraints and control struc-
ture rely on the ability to measure the similarity be-
tween nodes and/or instances. At each level, the sys-
tem uses its similarity metric to decide in which class
an instance belongs by determining which class descrip-

McKusick and Langley 811

tion is most similar to that of the instance. ARACHNE
also uses its similarity measure to determine the depth
to which it should sort an instance, halting whenever
the best similarity score at the next level is no better
than that at the current level. The metric also plays a
role in deciding when to invoke the merge and promote
operators. Hadzikadic and Yun (1989) have also used a
similarity metric to guide the concept formation process;
both their INC system and ARACHNE differ in this way
from COBWEB, which uses an evaluation function over an
entire partition of nodes. Although ARACHNE can use
different similarity functions, our tests with the system
have used a simple measure of "probabilistic overlap"
between the attributes of nodes and instances.

ARACHNE uses the same similarity function and es-
sentially the same control structure for prediction that it
uses in learning. The system sorts an instance down the
hierarchy in accordance with its constraints, except that
no promotion is allowed and only merges that involve
the instance are executed.' Thus an instance sorts to
the class at which it would ordinarily become a disjunct,
and a prediction is made from the last node to which
it sorted. ARACHNE includes a simple recognition cri-
terion to foster prediction from internal nodes and thus
avoid overfitting. As it sorts an instance through mem-
ory, the system makes a prediction from an internal node
if its modal values perfectly match all the values of the
instance.

3 Comparative Studies

Now that we have described ARACHNE, we must still
demonstrate that hierarchies constructed according to
its constraints have desirable structural properties, and
that ARACHNE is competitive with COBWEB in terms of
predictive ability. In designing the algorithm, we sus-
pected that good structure would, if anything, enhance
the latter ability, and sought to show this experimentally.
To this end, we designed a set of comparative studies,
which we report after summarizing the dependent vari-
ables we used to measure the systems' behaviors.

3.1 Accuracy of Class Prediction

Typically, researchers have evaluated inductive learning
systems by training them on a set of examples and then
measuring their ability to make predictions about new
examples. For supervised learning methods, the predic-
tion task involves identifying the class name of a novel
instance, given training instances that include this in-
formation as part of their description. In contrast, the
trainingdata for unsupervised systems like COBWEB and
ARACHNE does not include class information. Thus,
Fisher (1987) introduced the task of flexible prediction,
which requires the system to predict the values of one or
more arbitrary attributes that have been excised from
the test instances. Martin (1989) and Gennari (1990)
have used similar performance measures.

"Recall that during learning, ARACHNE can merge any
two nodes at the currentlevel. Itis not limited to considering
only merges that involve the instance being sorted.

812 Learning and Knowledge Acquisition

However, the class name can be used for predic-
tion straightforwardly, even with unsupervised learning
methods. A typical unsupervised system does not in-
clude the class name in the description of training in-
stances, but there is nothing to prevent one from includ-
ing such class information, provided the system does not
use it to determine concepts. To take advantage of this
idea in evaluating systems like ARACHNE and COBWEB,
we associate the class name with each instance descrip-
tion as an extra attribute, hiding the label so that it does
not affect clustering. However, we do let the system re-
tain probabilities at each concept for the class labels of
instances summarized by the node. To predict the class
name of a new instance, the system simply classifies the
instance to a node in the hierarchy and predicts the most
frequently occurring label at that node.

We chose to predict class names in our comparative
studies because they provide a good baseline for pre-
dictive ability. Class names are never provided by the
environment; domain experts assign them based on reg-
ularities they have observed over time. Thus, they are
designed to be predictable from observed features. In
contrast, Fisher's notion of flexible prediction fails to dis-
tinguish between attributes that can be predicted triv-
ially, ones that can be predicted with appropriate knowl-
edge, and ones that cannot be predicted at all.

3.2 Quality of Tree Structure

Informal inspections of the trees constructed by
ARACHNE and COBWEB suggested that the former sys-
tem was frequently building "better" trees, in that fewer
instances were situated in classes where they did not
seem to fit well. ARACHNE also seemed to construct
fewer "junk" nodes - spurious clusters of instances that
have little in common. The challenge was to quantify
these observations and to construct a measure of tree
quality that could be applied to the hierarchies of both
systems. This measure should not favor the guiding or-
ganizational constraints of either system. For example,
we might have evaluated whether the category utility of
the top-level partitioning was optimized, as in Fisher's
(1987) study of tree quality in COBWEB, or how well the
hierarchies adhered to global variants of the constraints
set forth for ARACHNE. But these measures would be
biased in favor of one of the systems.

Instead, we devised two dependent measures which we
could apply to trees in artificial domains for which we
knew the "correct" concept hierarchy. A good hierarchy
should contain nodes that correspond to concepts em-
bodied in the data. Ifone knows that a domain contains
well-defined, distinct concepts, then a natural measure
of tree quality should reflect the degree to which the
learned tree respects the known structure of the data
used to build it. In keeping with this idea, we counted
the percentage of formed concepts, or those nonterminal
nodes whose modal values exactly matched the modal
values of a concept known to exist in the data.

Furthermore, we defined a measure of well-placed in-
stances, singleton nodes that are descendents of a target
concept and that match 50% or more of the modal at-
tribute values of the target concept. Concepts containing

well-placed instances tend to adhere closely to their ex-
pected concept description, and show minimal presence
of attribute values in frequencies that vary from the ex-
pected. A high percentage of well-placed instances in a
tree implies a large number of accurate concepts.

3.3 Experimental Procedure

In our experimental studies, we carried out groups of ten
runs,? presenting ARACHNE and COBWERB with identical
sets of randomly selected training instances for each run.
We used the same test set for every run in a group. In
experiments not concerned with order effects, the train-
ing instances were randomly ordered. In all cases, test
instances were taken from the same distribution as the
training instances. Thus, ifthe training data had a noise
level of 90%, on average the test data would have that
noise level as well.

Both systems sorted training instances one at a time
through their hierarchies. Learning took place as each
instance was incorporated, as probabilities in the con-
cept descriptions changed and the hierarchies were re-
structured. After each training instance, the entire test
set was presented to each system, which used the hier-
archy it had formed thus far to predict the class name
of each test instance. We compared this to the "actual”
class name associated with the test instance, giving the
system a score of one if the prediction was correct and
zero otherwise. No learning was done on the test in-
stances, so it was possible to construct learning curves
which plot average accuracy on the test set as a function
of the number of training instances seen.

For our studies we used two versions of COBWEB that
built identical hierarchies but differed in their predic-
tion mechanisms. Recall that ARACHNE has a recogni-
tion criterion to foster prediction from internal nodes;
it stops sorting an instance if its values perfectly match
the modal values of a node it has reached in memory.
To control for the effect on predictive accuracy, we cre-
ated a version of COBWEB, denoted COBWEB', which in-
cluded this mechanism. Since this noticeably affected
performance only in the noisy artificial domain, we re-
port COBWEB' results only in that section.

After each system had processed the complete training
set on each run, we ran the final hierarchies through our
assessor of tree quality, which reported the number of
concepts found and the percentage of well-placed nodes.
Since we devised these measures especially for our arti-
ficial data sets, which had known, clearly-defined con-
cepts, we did not attempt to apply them in the natural
domains we tested.

3.4 Behavior on Natural Domains

We now consider some hypotheses about the relative be-
havior of COBWEB and ARACHNE, and the experiments
we carried out to test them using the dependent mea-
sures and procedure described above. Our first step
in evaluating ARACHNE was to examine its behavior on
some standard problems from the machine learning liter-
ature. For this purpose, we selected the domain of Con-

2The soybean results are one exception to this rule; in this
case our averages are based on five runs.

L }

L

Predictive Accuracy

40 50 60 70 B0 90 100
[]

[

L

8-
Arachne ———
& - Cobweb ~---
o
2
= T T T : B T T T r—

0D 10 20 30 40 S0 & 70 80 60 100
Number of Instances Saen

Figure 1. Learning curves for ARACHNE and COBWEB on
congressional voting records, using predictive accuracy as a
performance measure.

gressional voting records, which Fisher (1987) has used
in tests of COBWEB, and the domain of soybean diseases,
which Michalski and Chilausky (1980) used in their ex-
periments on supervised learning. The prediction in this
case is straightforward:

Hypothesis: ARACHNE will show better predictive ac-
curacy than COBWEB in natural domains.

The congressional voting domain contains 435 instances
of sixteen Boolean attributes each (corresponding to yea
or nay votes), with each falling into one of two classes
(Democrat and Republican). In contrast, the soybean
data set contains 683 instances from 19 classes, each de-
scribed in terms of 35 symbolic attributes.® Thus, the
two data sets differ in the number of attributes and di-
verge even more in the number of prespecified classes.

To evaluate our hypothesis, we presented both
COBWEB and ARACHNE with random samples of 100
training instances and a test set of 25 instances from the
congressional domain and 150 training instances and a
test set of 95 instances (five from each class) from the
soybean domain. The results, averaged over ten runs
for the first domain and five for the latter, reveal simi-
lar accuracies in class prediction throughout the course
of learning. On the congressional records, ARACHNE
reaches its asymptote slightly earlier than COBWEB, at
about 20 instances rather than 40 instances. On the soy-
bean data, COBWEB reaches asymptote earlier, at about
120 instances rather than 140 instances. But in both
cases the two asymptotes are basically equivalent and,
in general, the differences we had anticipated did not
emerge, forcing us to reject our hypothesis. However,
we should not conclude too swiftly that ARACHNE and
COBWEB always perform at comparable levels; these two
domains simply may not have characteristics that bring
out their differences. This suggests another approach, to
which we now turn.

®This data set is much more complex than the four-class
version used by Stepp (1984) and Fisher (1987).

McKusick and Langley 813

5 8-
g S
g 24
s 2
£ g
2 3.
A& 0
(=g
~
o
<
c-
~
o
4
< T T T T T T T Y T 1

0O 10 20 30 40 50 60 70 80 90 100
Number of Instances Sean

Figure 2. Learning curves for ARACHNE and COBWEB on an
artificial domain with high attribute noise, using predictive
accuracy as a performance measure.

3.5 Effects of Attribute Noise

Although studies with natural domains show relevance
to real-world problems, artificial domains are more use-
ful for understanding the reasons for an algorithm's be-
havior. A common use of such domains involves vary-
ing the noise level. Noise in a training set confounds
a learning system; it blurs boundaries between classes,
making misclassification ofinstances more likely and the
underlying concepts more difficult to discern. A sys-
tem trained on noisy data is susceptible to overfitting,
predicting attributes at a more specific concept than it
should.

We designed ARACHNE'S performance and learning al-
gorithms to be robust in noisy domains, and this suggests
a simple prediction about its behavior:

Hypothesis: ARACHNE will be less affected by noise
than COBWEB w.r.t. both accuracy and tree structure.

Intuitively, ARACHNE should build better trees because
of its more powerful reorganization operators and con-
cern with constraints, and it should be less subject to
overfitting because of its ability to predict from well-
formed internal nodes.

To test this hypothesis, we designed artificial data sets
at two levels of noise. Each contained instances with four
attributes, each of which could take on ten distinct val-
ues. The attributes had a prototypical value but could
take on other "noise" values at some specified probabil-
ity. In the low-noise data set (noise level 1), the modal
value for each attribute occurred with probability 0.7,
while three "noise" values occurred with probability 0.1.
In the noisier data set (noise level Il), the modal value
for each attribute occurred with probability 0.5, while
five noise values occurred with probability 0.1. Because
a noise value appearing in one class was the modal value
of some other class, class descriptions overlapped to some
extent. About 24% of the noise level | instances and
only about 6% of the noise level Il instances should con-
form perfectly to the modal class description, with the
remainder being noisy variants.

814 Learning and Knowledge Acquisition

We carried out ten runs at each of these noise levels,
presenting COBWEB and ARACHNE with 100 training ex-
amples in each case. Figure 2 shows the learning curves
for noise level Il; similar results were achieved at noise
level I. The graph plots the average predictive accuracy
against the number of instances seen. At noise level II,
ARACHNE asymptotes at 76% accuracy, while COBWEB
asymptotes at 55% and COBWEB"', which predicts from
internal nodes, at 65%. In this domain, tree quality was
lower for COBWEB (5.5 target concepts and 37% well-
placed nodes) than for ARACHNE (6.6 target concepts
and 52% well-placed nodes). Accuracy differences were
significant at the .001 level for ARACHNE and COBWEB
and at the .01 level for ARACHNE and COBWEB'. Differ-
ences in tree quality were significant at the .025 level.

These results only partly agree with our hypothe-
sis. ARACHNE'S asymptotic accuracy is higher than
COBWEB'S at both noise levels, with the difference in-
creasing with noise. By predicting from well-formed in-
ternal nodes, ARACHNE is less susceptible to overfitting.
However, the picture is more ambiguous with respect
to tree quality. Both systems lose tree quality as noise
increases, but ARACHN E suffers less than COBWEB, pre-
sumably because of its restructuring operators. This ex-
periment lends evidence to the view that predictive abil-
ity and tree quality are not perfectly correlated. Good
tree structure does not guarantee good prediction, and
good predictive performance does not mean the under-
lying hierarchy is organized to contain concepts inherent
in the data, but both are important factors.

3.6 Effects of Priming in Noisy Domains

Our explanation of the previous results supposed that
noise in early training instances could mislead both sys-
tems, but that COBWEB was more susceptible to this
effect than ARACHNE. Ifso, we should be able to elim-
inate this difference by priming both systems with well-
ordered, noise-free training instances from each class.
This is equivalent to giving them background knowledge
about idealized categories. This suggests a third predic-
tion about their behavior:

ARACHNE and COBWEB will behave sim-
accuracy and tree structure when primed
noise-free training data.

Hypothesis:
ilarly on both
with well-ordered,

The intuition here is that, with less need to reorga-
nize memory to recover from misleading observations,
ARACHNE'S restructuring operators become less impor-
tant and differences between the systems should be re-
duced. To test this prediction, we provided each system
with 40 noise-free instances at the start of each run, four
identical prototypes from each class, producing an ide-
alized hierarchy. We followed these data with the same
noisy training sets used for the second experiment.

Figure 3 shows the results of this experiment at noise-
level I, which are somewhat surprising; results at noise-
level | are analogous though less pronounced. Priming
improves ARACHNE'S predictive accuracy significantly,
raising it to 90% from 76% without priming. COBWEB
shows an accuracy ofonly 63%, as did COBWEB"'. This
was an improvement over COBWEB'S former level 0f55%,

Pradictive Accuracy

0 10 20 30 40 50 60 70 80 90100
i

T T T T T T 1
0 20 40 60 80 100 120 140

Number of Instances Seen

Figure 3. Learning curves for ARACHNE and COBWEB on
noisy artificial data with primed concept trees.

but still below ARACHNE'S performance. For both sys-
tems, primingimproves tree quality. ARACHNE'S quality,
initially higher than COBWEB'S, improves from 52% well-
placed nodes without priming to 89%; the 1alters tree
quality rises from 37% to 79% with priming. Between-
system differences in predictive accuracy were statisti-
cally significant at the .001 level; tree quality differences
were significant at the .01 level.

This experiment disconfirms our hypothesis. Though
priming generally improves the predictive accuracy of
the systems, ARACHNE still performs significantly bet-
ter than COBWEB. Furthermore, with priming ARACHNE
builds better trees at both noise levels. This suggests
that ARACHNE can make better use of the background
knowledge encoded in a primed tree. This may be partly
due to COBWEB'S greater tendency to misplace instances
(incorporate them into an inappropriate concept), which
affects both the accuracy of the concept description (it
obtains superfluous noise) and presumably the system's
ability to index and retrieve the object. Notably, al-
though priming led both systems to higher accuracy ini-
tially, ARACHNE reached the same asymptote as without
priming, whereas COBWEB'S accuracy actually dropped
as it saw noisy training instances. This provides further
evidence that ARACHNE benefits from its ability to pre-
dict from well-formed internal nodes, thus avoiding the
overfitting to which COBWEB is susceptible.

3.7 Effects of Instance Order

Another one of our concerns in designing ARACHNE was
stability with respect to different orders of training in-
stances. Order effects are apparent in COBWEB when
different presentations of the same data produce hier-
archies with different structure. ARACHNE'S operators
for merging and promotion should enable recovery from
nonrepresentative training orders, and this leads to an-
other prediction:

Hypothesis: COBWEB wil suffer more from order ef-
fects than ARACHNE w.rt. tree quality but not accuracy.

Gennari (1990) has reported that training order affects
the structure of COBWEB trees but does not alter their

Table 1. Tree quality in artificial domains, measured as per
centage of well-placed nodes, for (1) unprimed and (2) primed
runs, (3) poor and (4) random training orders, at low noise;
for (5) unprimed and (6) primed runs, at high noise.

Noise Level 1 Noise Leve] 11

n @ @& @ (5) (6

ARACHNE 74% 95% 88% 8% 52% 89%
ConwFEb 82% 89% TT% 84% 3IT% 1%

accuracy, so we did not expect ARACHNE to outperform
its predecessor on the latter measure. However, we did
expect it to construct well-structured concept hierarchies
regardless of the training order. Our experience with
COBWEB suggested it has difficulty when every member
of a class is presented at once, followed by every mem-
ber of a new class, and so forth. Thus, we tested the
above hypothesis by presenting both systems with ten
random orderings and ten "bad" orderings of 200 train-
ing instances from the low-noise data set described ear-
lier. The bad orderings were strictly ordered by class, so
the systems saw 20 examples of each class in turn.

In this experiment our hypothesis was confirmed. In-
stance order did not affect predictive accuracy, although
naturally the learning rate for the bad ordering was
slower, since the systems did not see a representative
of the final class until the 181st instance. Random and
bad orderings produce hierarchies capable of analogous
predictive accuracy, approximately 90% for ARACHNE
and 80% for COBWEB. However, tree quality differs sig-
nificantly in the two situations. Both systems locate
most or all of the concepts at some level, but COBWEB is
vulnerable to misplaced instances with the pathological
ordering. Whereas ARACHNE arrives at 88% well-placed
nodes with the bad ordering, and a similar 86% with ran-
dom ordering, COBWEB averages only 74% well-placed
nodes when learning from the bad ordering, compared
to 84% for the random ordering. Differences in predic-
tive accuracy were significant for both conditions at the
.001 level. Differences in tree quality between the two
systems were not significant for random orderings, but
were significant at the .001 level for bad orderings.

This experiment provides additional evidence that
predictive accuracy is not an adequate measure of tree
quality. Apparently order effects that lead to a decrease
in tree quality do not affect COBWEB'S ability to index
instances and predict accurately. This is consistent with
Gennari's results and with our hypothesis.

3.8 Cost of Classification

Analysis of COBWEB reveals an average-case assimilation
cost that is logarithmic in the number of objects in the
tree and quadratic in the branching factor (Fisher, 1987).
Analysis of ARACHNE is confounded by the fact that in
theory its restructuring of the hierarchy is not guaran-
teed to halt. Such cases are pathologicaland ARACHNE'S
behavior on all our data sets was tractable.

McKusick and Langley 815

To quantify each system's efficiency in practice, we
measured the number of attribute values inspected as a
function of n, the number of objects incorporated, over
five runs of the soybean data set, the more challenging of
the natural domains we tested. Both systems appeared
linear in n; COBWEB with a correlation of 0.999 and
ARACHNE with one of 0.976. However, ARACHNE ac-
tually inspected more attributes than COBWEB, having
a linear coefficient thirty times that of its predecessor.
We believe that a heuristic cutoff mechanism that, limits
reorganization of the hierarchy would reduce cost with-
out loss of predictive accuracy or tree quality.

4 Discussion

In this paper we identified some problems with Fisher's
(1987) COBWEB, a concept formation system that
achieves high predictive accuracy but does not always
create well-structured concept trees. In response, we de-
veloped ARACHNE, an algorithm with explicitly-stated
constraints for well-formed probabilistic concept hierar-
chies, which incrementally constructs such trees from
unsupervised training data. We also reported four ex-
periments that compared ARACHNE with COBWEB on
both predictive accuracy and tree quality. We found
the systems achieved comparable accuracy on two natu-
ral domains, but we found significant differences in both
accuracy and tree quality using artificial data. In par-
ticular, COBWEB tends to overfit more than ARACHNE
when trained and tested on noisy instances, and it ben-
efits less from priming with noise-free data with respect
to tree quality. Also, the quality of COBWEB trees suf-
fers from misleading orders of training instances, while
ARACHNE's tree structure is relatively unaffected.

Despite these encouraging results, we need more com-
parative studies before drawing firm conclusions about
one system's superiority over the other. Also, ARACHNE
has clear limitations that should be removed in future
work. Preliminary studies suggest that the current sim-
ilarity metric has difficulty distinguishing irrelevant at-
tributes from relevant ones. However, since relevance
can be estimated from stored conditional probabilities,
we are confident that a different similarity function will
add this capability. Also, the existing system can handle
numeric attributes, but only by using Euclidean distance
between means as its distance metric; future versions of
ARACHNE should employ a probabilistic measure that
lets it combine symbolic and numeric data in a unified
manner. The system still tends to form "junk" con-
cepts; avoiding them may require additional constraints
or more powerful operators for restructuring the con-
cept tree. We should also compare ARACHNE'S behav-
ior to other noise-tolerant learning algorithms, includ-
ing Fisher's (1989) variant on COBWEB and supervised
methods for pruning decision trees (Quinlan, 1986).

Nevertheless, we believe the present work has shown
the importance of examining the structural quality of
concept hierarchies in addition to their predictive ac-
curacy. It has also shown that explicit constraints on
tree structure, combined with restructuring operators for
correcting violated constraints, can produce well-formed
trees with high predictive accuracy despite noise and

816 Learning and Knowledge Acquisition

misleading orders of training instances. We expect fu-
ture work in this paradigm will lead to even more robust
systems for incremental, unsupervised concept learning.

Acknowledgements

We thank W. Iba, J. Allen, K. Thompson, D. Kulkarni,
and W. Buntine for discussions that led to many of the
ideas in this paper. The above also provided comments
on an earlier draft, as did M. Drummond and L. Leedom.
J. Alien formatted the figures.

References

Anderson, J. R., &; Matessa, M. (in press). An incremental
Bayesian algorithm for categorization. In D. H. Fisher &
M. Pazzani (Eds.), Concept formation: Knowledge and
experience in unsupervised learning. San Mateo, CA:
Morgan Kaufmann.

Gluck, M. A., &: Corter, J. E. (1985). Information, uncer-
tainty, and the utility of categories. Proceedings of the
Seventh Annual Conference of the Cognitive Science So-
ciety (pp. 283-287). Irvine, CA: Lawrence Erlbaum.

Fisher, D. H. (1987). Knowledge acquisition via incremental
conceptual clustering. Machine Learning, 2, 139-172.

Fisher, D. H. (1989). Noise-tolerant conceptual clustering.
Proceedings of the Eleventh International Joint Confer-
enceArtificial Intelligence (pp. 825-830). Detroit: Mor-
gan Kaufmann.

Fisher, D. H., & Pazzani, M. (Eds.) (in press). Concept
formation: ~ Knowledge and experience in unsupervised
learning. San Mateo, CA: Morgan Kaufmann.

Gennari, J. H. (1990). An experimental study of concept
formation. Doctoral dissertation, Department of Infor-
mation &: Computer Science, University of California,
Irvine.

Hadzikadic, M., & Yun, D. (1989). Concept formation by
incremental conceptual clustering. Proceedings of the
Eleventh International Joint Conference on Atrtificial
Intelligence (pp. 831-836). Detroit: Morgan Kaufmann.

Langley, P., Thompson, K., Iba, W., Gennari, J. H., &: Allen,
J. A. (in press). An integrated cognitive architecture for
autonomous agents. In W. Van De Velde (Ed.), Repre-
sentation and learning in autonomous agents. Amster-
dam: North Holland.

Lebowitz, M. (1987). Experiments with incremental concept
formation: UNIMEM. Machine Learning, 1, 103-138.

Martin, J. D. (1989). Reducing redundant learning. Proceed-
ings of the Sixth International Workshop on Machine
Learning (pp. 396-399). Ithaca: Morgan Kaufmann.

Michalski, R. S., & Chilausky, R. L. (1980). Learning by
being told and learning from examples. International
Journal of Policy Analysis and Information Systems, 4,
125-160.

Quinlan, J. R. (1986). Induction of decision trees. Machine
Learning, 1, 81-106.

Stepp, R. E. (1984). Conjunctive conceptual clustering: A
methodology and experimentation. Doctoral disserta-
tion, Department of Computer Science, University of
Illinois, Urbana.

Van de Velde, W. (1990). Incremental induction of topolog-
ical® minimal trees. Proceedings of the Seventh Inter-
national Conference on Machine Learning (pp. 66-74).
Austin: Morgan Kaufmann.

