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A b s t r a c t 

Integri ty checking has been investigated exten­
sively in the field of deductive databases. Meth­
ods have been developed to optimise the check­
ing of an update by specialising the constraints 
for the information that could have been af­
fected by i t . The optimisation has been applied 
to sets of updates resulting from the execution 
of unspecified update procedures. This paper 
investigates the compilation of integrity check­
ing into the procedures themselves. The pa­
per introduces a (procedural) update language, 
and describes how constraints are compiled into 
procedures expressed in this language. The 
compilation yields conditions on the original 
database state that guarantee safety of the 
update. The paper also shows why compila­
t ion into procedures offers impor tant possibili­
ties for optimisation not available in the earlier 
framework. 

1 I n t r o d u c t i o n 
Integrity constraint enforcement is important for pre­
venting incorrect data being entered in data and knowl­
edge bases. In databases only quite simple constraints 
are generally enforced by the system, such as types and 
functional dependencies. However most applications re­
quire more complex constraints. 

An integrity enforcement technique has been devel­
oped which separates the integrity constraints from the 
update procedures. First proposed in the context of re­
lational databases [Nic82] the technique has been exten­
sively researched in the context of deductive databases 
[SK88; Dec86; LST87; BDM88] and the references in 
[BMM90]. 

Under this approach the integri ty constraints are ex­
pressed as logical statements - effectively yes/no queries 
- and stored in the knowledge base. The system just 
checks the constraints that could have been affected by 
the update, and even then only what has (or could have) 
changed. We call this specialised integrity checking. It 
wi l l be described in more detail in the next section. 

To date integrity specialisation has been applied for 
updated literals (single inserts and deletes), for sets 

of updated literals, and for intentional updates (in­
serts/deletes satisfying a certain condition). However it 
is normally assumed that the set of updates is the result 
of an update procedure which is not visible to the spe-
cialiser. Specialisation is applied to the resulting update, 
not to the update procedure. 

In this paper we show how to specialise integrity con­
straints for the update procedures themselves. This 
yields significant reductions in the amount of checking 
that has to be done at update t ime. The reason is 
that update procedures often perform part ial integrity 
enforcement automatically. For example the procedure 
for hir ing an employee wi l l require that he has a salary 
which is a real number, and that he belongs to a depart­
ment etc. 

In this paper we show how to compile integrity check­
ing into update procedures in such a way that redundant 
checking is minimised. The aim is to eliminate any fur­
ther checking at update t ime of constraints which are, 
from the design of the update procedure, bound to be 
satisfied after the update. The idea of compiling con­
straints into update procedures was first suggested in 
[Sto75], however the techniques applied here are quite 
different. Effectively we perform specialised integrity 
checking for update procedures at compile t ime. 

In section 2 we study integrity checking methods in 
deductive databases. The next section describes the up­
date language used for encoding update procedures. In 
section 4 we explain how integrity constraints are com­
piled into these procedures. 

Specialised integrity checking implies a requirement, 
for reasoning over mult iple database states. However it-
is shown that this requirement can be compiled away so 
that there is no need for such a faci l i ty at update t ime. In 
fact the result of compilation is a safe update procedure 
comprising a condit ion, which is simply a query against 
the current database state, and then the original update 
procedure. 

2 Cons t ra in ts on D e d u c t i v e Databases 
2.1 C o n s t r a i n t s i n D e d u c t i v e Databases 
Deductive databases extend relational databases by 
supporting intentional data and logical dependencies 
amongst the data. A deductive database is a set of pro-
gram clauses, divided into facts and rules. A program 
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clause is a formula Head Body, w i th a "head" (Head) 
and a "body" (Body). The head is an atom, comprising 
predicate and arguments. The body is a conjunction of 
literals. A fact is a clause wi th an empty body. A goal 
is a clause wi th an empty head. The goal <— G expresses 
the query G. We use the logic programming syntax for 
predicates, functions and variables, eg: 

grandparent(fred, Y) parent( f red, X),parent(X, Y) 

We wi l l not exclude compound terms f rom our rules. In 
other words our underlying relational model need not 
be in first normal form. We assume, however, that ap­
propriate syntactic restrictions on clauses are enforced 
to ensure completeness and termination of query eval­
uation. Such restrictions are described in [RBS87], for 
example. 

The rules yield a notion of dependency: 

D e f i n i t i o n 1 An atom A "directly depends" on a literal 
U if A is the head of an instantiated database rule whose 
body contains U or its negation. The negated literal 
directly depends on U if A does. 

We assume that for each constraint, Q, there is a rule 
inconsistent in the ruleset. Therefore a knowl­
edge base is inconsistent if and only if inconsistent is 
derivable as a consequence. 

In this paper we do not consider rule updates, there­
fore a database state comprises a fixed set of rules and 
an updateable set of "base" facts. We assume, without 
loss of generality, that the clauses defining a database 
predicate are either all base facts, or else they are all 
rules. Predicates defined by base facts are called "base" 
predicates, and those defined by rules are "derived" pred­
icates. As the result of an update certain new base facts 
are added to the database, and certain base facts are 
dropped. These are termed the "directly" updated l i t ­
erals, or "direct updates". Also as a result of an update 
certain new facts are derivable, and certain previously 
derivable facts are no longer derivable. These are termed 
the " indirect ly" updated literals, or "indirect updates". 

2.2 I n t e g r i t y C o n s t r a i n t Spec ia l i sa t i on 
The derived literals affected by an update are often as­
sumed to be included in those dependent on the direct 
updates. 

D e f i n i t i o n 2 A dependent update is an indirect update 
that directly depends either on a direct update, or on 
another dependent update. 

Efficient integrity checking methods in deductive 
databases (see references above) depend on restricting 
proofs of inconsistency to those involving updated liter­
als. These methods essentially prove that inconsistent 
is a dependent update, by searching for literals on 
the dependency path between the direct updates and 
inconsistent, and showing that some, or a l l , of them 
are dependently updated. Two such methods [SK88; 
LST87] are proved correct. The former is proved only 
for the special case of positive databases. We now in­
troduce a basic result on which all the above methods 
depend. (The proof is in [Wal90].) 

T h e o r e m 1 In a stratified deductive database, the indi-
rect updates are all dependently updated. 

To determine whether a l i teral has really been up­
dated, it is necesssary to check its t ru th before the up­
date. However some integri ty checking methods drop 
this check. Accordingly we define the class of "update 
consequences". First, a prel iminary definit ion: 
D e f i n i t i o n 3 Potential updates are literals dependent 
on the direct updates. 
D e f i n i t i o n 4 Update consequences are potential updates 
provable in the updated database 
By theorem 1 it follows that: 
L is an update consequence, L was not provable in the 
original database L is a dependent update. 

The update consequences are easier to calculate than 
the dependent updates, though they are also a larger 
class. Integri ty checking in deductive databases can be 
implemented by checking if inconsistent belongs to the 
class of update consequences. The method of [LST87] 
effectively uses this approach. 

A specification of different classes of literals affected by 
an update, and their application to integrity checking, is 
presented in [Kue90]. A recursive definition of the class 
of dependent updates as a logic program was given in 
[BDM88]. In this paper the class of literals affected by 
an update procedure wi l l similarly be specified as a logic 
program. 

3 Updates 
3.1 A P r o c e d u r a l U p d a t e Language 
We now present a procedural language for updates which 
enables us to define update procedures. This lan­
guage offers the update facilities provided in relational 
database systems, but allows them to be combined freely. 
The standard pr imi t ive updates are provided. Then 
compound updates can be constructed by placing up­
dates in sequence, applying them conditionally, or apply­
ing them to all values satisfying a query. Final ly update 
procedure calls can also be incorporated into compound 
updates. The following is an abstract syntax for the lan­
guage (rather than a proposed concrete syntax). 

The pr imi t ive updates are as follows 
insert (Rel Name, Tuple) 
delete( ReI Name, Tuple) 
rep lace(Re/Name, Tuplel,Tuple2) 

Compound updates are constructed according to the 
following syntax: 
Update ::- Primitive Update 

U1 t h e n U2 
i f Condition t h e n Update 
f o reach Vars.Condition do Update 
Update Procedure Call 

Informally, the update U1 t h e n U2 is a sequential up­
date - do update U1 followed by U2. The update if 
Condition t h e n Update is a condit ional update - if the 
condition holds, perform the update. The condition and 
the update have no free variables. 

The update f o r e a c h Vars .Condition do Update is 
a set-oriented update - for each answer satisfying the 
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condit ion, do the update. Vars is a list of variables 
occurring free in Condition. The "answers" are values 
for these variables which make the condition true. In this 
case Update is an update template whose free variables 
are included in the list Vars. In fact conditional updates 
are merely a special case of set-oriented updates: where 
the list Vars of free variables is empty. 

Update templates are also used in the definition of up­
date procedures. An update procedure Name is defined 
thus: 
Name (X1 , . . . . . .Xn ) := Update 
where X1,. . ., Xn are the free variables in the update 
template Update. A procedure for raising employees' 
salaries by a certain percentage can be defined as fol­
lows: 

raiseSal(R) : = 
foreach Emp, Sal, R} N Sal:esr(Emp, Sal, R, NSal) 

do replace(empSal, (Emp, Sal), (Emp, NSal)) 
where the predicate esr is defined by the clause 

Update procedures cannot appear directly or indirectly 
in their own definitions: i.e. they cannot be defined re­
cursively. However the rules defining update conditions 
can involve recursion, and many "recursive" updates can 
be expressed just using the recursion in the conditions. 
An example of a recursively defined update from [Abi88] 
is the recursive addit ion of new tuples to a binary re­
lation R unt i l its transit ive closure had been generated. 
The same effect can be achieved in our update language 
by defining transit ive closure as a derived relation TR, 
and then inserting to R all tuples satisfying TR: 
f o reach X, Y : tr(X, Y) do i nse r t ( r , (X, Y)) 

A useful consequence of banning recursively defined 
updates is that all update procedures reduce to com­
pound updates involving a fixed finite sequence of con­
structors. In particular only a fixed number of sequenc­
ing constructors are used in any update, which means 
that the update only involves a fixed number of interme­
diate states. 

3.2 Seman t i cs 
To denote sequences of variables and 

etc. we shall henceforth use bold characters: 
X and Y. Also X = T w i l l denote the conjunction of 
equations  

An update U is a function f rom states to states. For 
the state which results f rom applying update U to state 
S we write up (U,S) . The state which results from ap­
ply ing the pr imi t ive update i nse r t (p , T) to a state S is 
therefore up(insert(p, T ) , S). Similar ly for de le te . 

The semantics of a sequenced update U1 t h e n U2 
is given by functional composition. Thus the result of 
applying the above sequenced update to the state S is 
up , up  

The result of applying the pr imit ive update 
rep lace(p, T l , T 2 ) to a state S is 
up( inser t (p , T 2 ) , up(delete(p, T l ) , S)). 

The constructor f o r e a c h builds a set of "simultane­
ous" updates f rom an update template and a condit ion. 

Informal ly the set-oriented update 
f o reach X : Cond do Up denotes the set of updates 
{Up(X) :Cond[X]}. 

The power and interest of this update language lies in 
updates which combine both set-oriented and sequenced 
components. Sets and sequences do not natural ly com­
bine together. Informally, it is not obvious what update 
would be denoted by the fol lowing set: 
{ ( i n s e r t p(a) t h e n de le te p(b)), 

( i nse r t p(b) t h e n de le te p(a))} 
We choose, in our semantics, to assign the following 
meaning to this example: 
{ i n s e r t p(a), i n s e r t p(b)} t h e n 

{ de le tep (b ) , de le te p(a)} 

Accordingly we treat updates of the form 
fo reach X : Cond do (U 1 t h e n U2) as the following 
( fo reach X : Cond do U1) t h e n 

( fo reach X : Cond do U2) 
However we must be very careful about the state in 
which the set-oriented condition Cond is evaluated. For 
example the two following queries have a quite different 
semantics: "For each employee E, delete employee(E) 
and then insert manager(E)", and "For each employee 
E delete employee(E), then for each employee E, insert 
manager(E)". After the second update there are no new 
managers! 

We temporari ly introduce for each n-ary predicate 
pred in the deductive database a predicate 
predSern, w i th one extra argument denoting the state. 
We use a shorthand for literals involving the new pred­
icates: if A denotes the atom p ( X ) , then ASem(S) de­
notes p ( X , S); this shorthand is also extended to formu­
lae. 

We can now specify the semantics of set-oriented up­
dates recursively. If U is a pr imi t ive update function 
( i nse r t , or de le te ) , then the result of applying the up­
date f o reach X : Cond do U to the state S is 
up( f o reach X.:CondSem(S) do U,S). 

If Cond is the conjunction Condi Cond2, then the 
result of applying the update 
f o reach X : Cond1 do f o reach Y : Cond2 do U 
to the state S is 
up( f o reach X, Y : CondSem(S) do U, S). 

Lastly, suppose U is a sequenced update which maps 
the state S to the state up(U2, up(U1, S)). Then the 
update f o reach X : Cond do U maps the state S to the 
state 

4 C o m p i l i n g C o n s t r a i n t s I n t o U p d a t e 
P r o c e d u r e s 

In this section we draw together the two threads of in­
tegrity specialisation and update semantics. 

In the original framework of integrity specialisation, 
it was necessary to check if was an "up­
date consequence". In the new framework the object of 
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specialisation is not an update but an update procedure 
which maps an unspecified state S to a new state, which 
can be specified as a function of S. 

If an update maps S to NewS, we define an update 
consequence to be any l iteral L for which LSem(NewS) 
holds but not LSem(S). Showing that inconsistent 
is not an update consequence amounts to proving that 
inconsistent Strn(N ewS) inconsistent Sern(S). 

In this section we describe predicates predSem, 
predConsq and predNegConsq which effectively ax-
iomatise update consequences. We then show how 
integrity constraint compilation into update proce­
dures is effected by part ial ly evaluating the defini­
t ion of inconsistentConsq. Finally we explain how 
this part ial evaluation eliminates all new predicates 
prcdSem, predConsq and predN egConsq f rom the re­
sulting code, so all that remains is a check on the original 
database state. 

4 .1 T h e d r a w b a c k s o f a d i r e c t i m p l e m e n t a t i o n 
The system could simply perform the update and do in­
tegrity specialisation on the result, using the methods of 
section 2 above. However such a direct implementation 
can be unnecessarily inefficient. For example, the update 
fo reach Y : r(Y) do ( i nse r t p(Y) t h e n de le te q(Y)) 
cannot cause a violation of the constraint 
inconsistent  
A direct implementation of integrity checking on this up­
date would perform much redundant work. Every single 
value inserted for p would be checked, at update t ime. 

The fact that this update cannot cause a violation 
of the constraint is a matter of logical proof. Such an 
impossibil ity can be detected using logical opt imisation, 
as we shall show below. The compilation of integrity 
constraints into update procedures using logical opt imi ­
sation ensures that, for the above example, no checking 
takes place at update t ime - at least not for the given 
constraint. 

4.2 Ru les D e r i v e d f r o m t h e Semant i cs o f 
U p d a t e s 

We now give the definition for the new predicate 
predSem temporari ly introduced for the denotation of 
each database predicate pred in a given state. 

If pred is a derived predicate, then predSem has pre­
cisely the same definition as pred, except that in its body 
each goal G is replaced by the goal GSem(S). For exam­
ple the above rule for inconsistent yields the following 
rule for inconsistent Sent: 
inconsistent Sern  

If pred is a base predicate, then for the current state 
(say statel) predSem has the same extension as pred. 
This can be expressed using a single rule: 

However there are further rules defining the effect of 
each update on the base predicate. The axioms specify­
ing the effect of pr imit ive insertions are captured by the 
following rules. 

The rules defining the set-oriented updates use higher 
order predicates rename and call in the rule bodies. Set-
oriented insertions and deletions are defined by the fol­
lowing rules: 

As explained in section 3 above, the update Up is al­
ways pr imit ive. Given an update, it is always possible 
to eliminate the meta-predicate call by part ial evalua­
t ion. Finally the existentially quantified goals can be 
translated to atomic goals as described in section 4.4.2 
below. 

Sequenced updates are automatically dealt wi th by 
rules R 2 - R 5 . In this case the state S is itself a com­
pound term of the form up  

As a short example, assume r is defined by the rule 

and consider the query "does r(a,b) hold after an update 
insert  

The goal rSern(a, b, up( inser t (p , X), statel)) can be 
reduced using the rule 

to the pair of goals pSem(a, up( inser t (p , X), state1)) 
and By rule R 2 , the 
goal for pSem is satisfied if A' = a, otherwise it can be 
reduced using the rule R3 to to pSem(a, statel). This 
can be reduced to p(a) using R l . The goal for qSem 
reduces to q(b). 

We conclude that the query is satisfied if q(b) holds (in 
the original state), and if either holds or if  
Note that this conclusion does not mention statel. 

4.3 H o w t o Check O n l y W h a t Has C h a n g e d 
Just as it is possible to give rules (for predSem) for deriv­
ing what is true (for pred) in an updated state, it is possi­
ble to give rules deriving what has changed between two 
states. Thus we can derive the update consequences for 
a given update. The predicate which captures the posi­
tive update consequences for pred is named predConsq. 
Another predicate captures the negative update conse­
quences (those facts for pred which become false in the 
new state). It is named predN egConsq. 

These predicates are defined by rules quite similar to 
those for predSem. For example if pred is a base predi­
cate, then the rules dealing wi th pr imit ive updates are: 
predConsq(T, up(inscrt(pred, T ) , 5 ) , 5) — 
prcdNegConsq(T, up(delete(prcd, T ) , 5 ) , S) <— 
Further rules define the effect of compound updates. If 
pred is a derived predicates, then the rules are extracted 
f rom the rules defining pred. A ful l definition of both 
predicates is in  

The difference between predSem and predConsq can 
be i l lustrated using the example of the last section. The 
query "does r (a ,b) hold after an update insert(p,X)?" 
yielded, the answer "yes, if . The 
question "is r (a ,b) an update consequence?", requires an 
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4.4 H o w t o C o m p i l e I n t e g r i t y C h e c k i n g 
The compilat ion of integrity checking into update pro­
cedures introduces two requirements: 

• the requirement to logically optimise the resulting 
integrity constraint check 

• the requirement to express the resulting check as a 
standard knowledge base query against the original 
state 

4.4.1 P a r t i a l E v a l u a t i o n a n d L o g i c a l 
O p t i m i s a t i o n 

The first requirement, that of logical optimisation is 
impossible wi thout unfolding, or part ial ly evaluating, 
the goal. Part ial evaluation of rulesets wi th negation is a 
relatively new technique. Our implementation is based 
on an algor i thm developed by the author wi th David 
Chan and described in [CM89]. 

The result of part ial evaluating a query Q is a set 
of qualified answers of the form 
Each goal G, is either or l i teral , or a compound goal 

Logical optimisation is the re­
moval of inconsistent qualified answers, or redundant 
goals wi th in an answer. If, for example, a qualified an-
swer contains a subgoal G and its negation then the 
answer is dropped. Similarly if it contains a goal p{a) 
and a compound goal then again the answer 
is dropped. For theoretical and practical reasons, the op-
timiser cannot eliminate all inconsistencies in all cases, 
but in test cases our implementation lias proved to be 
effective. 

For example suppose we have the following rules: 

The result of part ial ly evaluating s is 

The system detects the inconsistency, and recogises that 
s must fa i l . 

After logical opt imisat ion, new predicates are intro­
duced to replace the compound goals. Thereby the result 
of part ial evaluation and logical optimisation is trans-
formed back to the standard rule syntax. Specifically, 
for each compound goal .Goal, a new predicate (say 
np) is introduced, wi th rule np(Y) Goal, where Y 
denotes the variables in Goal which do not appear in X. 
Now the compound goal is replaced by the atomic goal 
nP(Y). 

4.4.2 T r a n s l a t i n g t h e Checks B a c k t o 
K n o w l e d g e Base Quer ies 

The final requirement for our compilation is the elimi-
nation of rules which "reason over mult iple states''. Since 
an update can involve only finitely many intermediate 
states, all the goals involving base predicates can be un­
folded unt i l the remaining calls are all against the orig­
inal state. Now the "semantic" predicates can be un­

folded using the rule Rl described earlier. In case no 
recursion or negation occurs in the rules defining de-
rived predicates, all goals can be unfolded, yielding a 
final qualified answer whose body contains only calls to 
base predicates, which can be unfolded as above. 

In case recursion or negation does appear in the quali­
fied answers, some new predicates have to be introduced, 
and rules added to the knowledge base defining them. 
However wi th these new rules, a condition can be de­
rived which is also expressed on the original knowledge 
base state and which is necessary and sufficient to guar­
antee that no constraints wi l l be violated. 

For example if anc is recursively defined in terms of p, 

and if an update procedure has the form 
inser t (p , (X, Y)) t h e n fo reach A' : anc(X,c) do U 
then the condition anc(X,c) must be invoked in the up­
dated state up( inser t (p , (X, Y)), .state]). The resulting 
semantic goal is 
ancSem{X, c, up( inser t (p , (A', V')), .state])). 
The problem is to eliminate this goal in favour of one 
which can be evaluated in the original state state]. 

By a renaming procedure, similar to that used 
for el iminating compound goals, the system re­
places the above goal by a goal a n d (X', Y, A,c), for 
which the following rules are automatically generated: 

Having added the rules for and to the deductive 
database (at compile t ime), it is possible to evaluate the 
goal and(X, Y, A, c) in the original state. 

Thus in all cases semantic goals are replaced in the 
compiled constraint check by standard queries expressed 
against the original knowledge base state. 

5 C o n c l u s i o n 

In this paper we have studied the problem of optimised 
integrity checking for update procedures in deductive 
knowledge base systems. The method is based on an 
axiomatisation of the update language, expressed as se­
mantic rules. Conditions for consistency of the new state 
wi th the integrity constraints after execution of an up­
date procedure are expressed as a goal in the semantic 
language, which can be evaluated against these semantic 
rules. 

We show how such a goal is part ial ly evaluated and 
the resulting set of qualified answers is reduced by logi­
cal simplif ication. Final ly the simplified set of qualified 
answers is translated back into the original knowledge 
base query language. The resulting set of conditions are 
imposed as preconditions on the update procedure. They 
are conditions on the original knowledge base which are 
necessary and sufficient to guarantee that any update 
using this procedure preserves integrity. 

Of particular importance is the logical simplif ication, 
which corresponds to an optimisation step. For example 
if an update procedure is guaranteed to satisfy a certain 
constraint, whatever arguments are supplied at update 
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t ime, then the precondition performs no checking related 
to the constraint. Effectively the consistency is detected 
at compile t ime, and the check removed during logical 
simplif ication. 

A benefit of the compilation of constraints into update 
procedures is that the behaviour of the system when in­
tegrity is violated can be parameterised on the procedure 
which caused the violat ion. 

The techniques employed here have shown how logical 
reasoning can be used effectively, even for procedural up­
date languages like the one introduced in this paper. The 
approach was designed, and first applied, for the com­
pilation of constraints into "safe" methods in an object 
knowledge base [Wal89]. However it has become clear 
that its applicabil i ty is not restricted to any particular 
data model. 

6 A c k n o w l e d g e m e n t s 

The paper emerged from discussions about the way in­
tegrity constraints were implemented in the KB2 knowl­
edge base system, by the author together wi th Hendrik 
Decker. Therefore Hendrik has had a fundamental in­
fluence on this work. Rodney Topor inspired me to 
start put t ing my thoughts on paper, and criticisms from 
Rainer Manthey and Francois Bry over the last year have 
ironed out some (though surely not all) of the wrinkles! 
My thanks to the above and to 1CL, Bul l and Siemens 
for their funding of ECRC. 
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