
Compil ing Integr i ty Checking into Update Procedures

M a r k Wal lace
ECRC, Arabellastr 17

8000 Munchen 81, Germany
mark@ecrc.de

A b s t r a c t

Integri ty checking has been investigated exten­
sively in the field of deductive databases. Meth­
ods have been developed to optimise the check­
ing of an update by specialising the constraints
for the information that could have been af­
fected by i t . The optimisation has been applied
to sets of updates resulting from the execution
of unspecified update procedures. This paper
investigates the compilation of integrity check­
ing into the procedures themselves. The pa­
per introduces a (procedural) update language,
and describes how constraints are compiled into
procedures expressed in this language. The
compilation yields conditions on the original
database state that guarantee safety of the
update. The paper also shows why compila­
t ion into procedures offers impor tant possibili­
ties for optimisation not available in the earlier
framework.

1 I n t r o d u c t i o n
Integrity constraint enforcement is important for pre­
venting incorrect data being entered in data and knowl­
edge bases. In databases only quite simple constraints
are generally enforced by the system, such as types and
functional dependencies. However most applications re­
quire more complex constraints.

An integrity enforcement technique has been devel­
oped which separates the integrity constraints from the
update procedures. First proposed in the context of re­
lational databases [Nic82] the technique has been exten­
sively researched in the context of deductive databases
[SK88; Dec86; LST87; BDM88] and the references in
[BMM90].

Under this approach the integri ty constraints are ex­
pressed as logical statements - effectively yes/no queries
- and stored in the knowledge base. The system just
checks the constraints that could have been affected by
the update, and even then only what has (or could have)
changed. We call this specialised integrity checking. It
wi l l be described in more detail in the next section.

To date integrity specialisation has been applied for
updated literals (single inserts and deletes), for sets

of updated literals, and for intentional updates (in­
serts/deletes satisfying a certain condition). However it
is normally assumed that the set of updates is the result
of an update procedure which is not visible to the spe-
cialiser. Specialisation is applied to the resulting update,
not to the update procedure.

In this paper we show how to specialise integrity con­
straints for the update procedures themselves. This
yields significant reductions in the amount of checking
that has to be done at update t ime. The reason is
that update procedures often perform part ial integrity
enforcement automatically. For example the procedure
for hir ing an employee wi l l require that he has a salary
which is a real number, and that he belongs to a depart­
ment etc.

In this paper we show how to compile integrity check­
ing into update procedures in such a way that redundant
checking is minimised. The aim is to eliminate any fur­
ther checking at update t ime of constraints which are,
from the design of the update procedure, bound to be
satisfied after the update. The idea of compiling con­
straints into update procedures was first suggested in
[Sto75], however the techniques applied here are quite
different. Effectively we perform specialised integrity
checking for update procedures at compile t ime.

In section 2 we study integrity checking methods in
deductive databases. The next section describes the up­
date language used for encoding update procedures. In
section 4 we explain how integrity constraints are com­
piled into these procedures.

Specialised integrity checking implies a requirement,
for reasoning over mult iple database states. However it-
is shown that this requirement can be compiled away so
that there is no need for such a faci l i ty at update t ime. In
fact the result of compilation is a safe update procedure
comprising a condit ion, which is simply a query against
the current database state, and then the original update
procedure.

2 Cons t ra in ts on D e d u c t i v e Databases
2.1 C o n s t r a i n t s i n D e d u c t i v e Databases
Deductive databases extend relational databases by
supporting intentional data and logical dependencies
amongst the data. A deductive database is a set of pro-
gram clauses, divided into facts and rules. A program

Wallace 903

clause is a formula Head Body, w i th a "head" (Head)
and a "body" (Body). The head is an atom, comprising
predicate and arguments. The body is a conjunction of
literals. A fact is a clause wi th an empty body. A goal
is a clause wi th an empty head. The goal <— G expresses
the query G. We use the logic programming syntax for
predicates, functions and variables, eg:

grandparent(fred, Y) parent(f red, X),parent(X, Y)

We wi l l not exclude compound terms f rom our rules. In
other words our underlying relational model need not
be in first normal form. We assume, however, that ap­
propriate syntactic restrictions on clauses are enforced
to ensure completeness and termination of query eval­
uation. Such restrictions are described in [RBS87], for
example.

The rules yield a notion of dependency:

D e f i n i t i o n 1 An atom A "directly depends" on a literal
U if A is the head of an instantiated database rule whose
body contains U or its negation. The negated literal
directly depends on U if A does.

We assume that for each constraint, Q, there is a rule
inconsistent in the ruleset. Therefore a knowl­
edge base is inconsistent if and only if inconsistent is
derivable as a consequence.

In this paper we do not consider rule updates, there­
fore a database state comprises a fixed set of rules and
an updateable set of "base" facts. We assume, without
loss of generality, that the clauses defining a database
predicate are either all base facts, or else they are all
rules. Predicates defined by base facts are called "base"
predicates, and those defined by rules are "derived" pred­
icates. As the result of an update certain new base facts
are added to the database, and certain base facts are
dropped. These are termed the "directly" updated l i t ­
erals, or "direct updates". Also as a result of an update
certain new facts are derivable, and certain previously
derivable facts are no longer derivable. These are termed
the " indirect ly" updated literals, or "indirect updates".

2.2 I n t e g r i t y C o n s t r a i n t Spec ia l i sa t i on
The derived literals affected by an update are often as­
sumed to be included in those dependent on the direct
updates.

D e f i n i t i o n 2 A dependent update is an indirect update
that directly depends either on a direct update, or on
another dependent update.

Efficient integrity checking methods in deductive
databases (see references above) depend on restricting
proofs of inconsistency to those involving updated liter­
als. These methods essentially prove that inconsistent
is a dependent update, by searching for literals on
the dependency path between the direct updates and
inconsistent, and showing that some, or a l l , of them
are dependently updated. Two such methods [SK88;
LST87] are proved correct. The former is proved only
for the special case of positive databases. We now in­
troduce a basic result on which all the above methods
depend. (The proof is in [Wal90].)

T h e o r e m 1 In a stratified deductive database, the indi-
rect updates are all dependently updated.

To determine whether a l i teral has really been up­
dated, it is necesssary to check its t ru th before the up­
date. However some integri ty checking methods drop
this check. Accordingly we define the class of "update
consequences". First, a prel iminary definit ion:
D e f i n i t i o n 3 Potential updates are literals dependent
on the direct updates.
D e f i n i t i o n 4 Update consequences are potential updates
provable in the updated database
By theorem 1 it follows that:
L is an update consequence, L was not provable in the
original database L is a dependent update.

The update consequences are easier to calculate than
the dependent updates, though they are also a larger
class. Integri ty checking in deductive databases can be
implemented by checking if inconsistent belongs to the
class of update consequences. The method of [LST87]
effectively uses this approach.

A specification of different classes of literals affected by
an update, and their application to integrity checking, is
presented in [Kue90]. A recursive definition of the class
of dependent updates as a logic program was given in
[BDM88]. In this paper the class of literals affected by
an update procedure wi l l similarly be specified as a logic
program.

3 Updates
3.1 A P r o c e d u r a l U p d a t e Language
We now present a procedural language for updates which
enables us to define update procedures. This lan­
guage offers the update facilities provided in relational
database systems, but allows them to be combined freely.
The standard pr imi t ive updates are provided. Then
compound updates can be constructed by placing up­
dates in sequence, applying them conditionally, or apply­
ing them to all values satisfying a query. Final ly update
procedure calls can also be incorporated into compound
updates. The following is an abstract syntax for the lan­
guage (rather than a proposed concrete syntax).

The pr imi t ive updates are as follows
insert (Rel Name, Tuple)
delete(ReI Name, Tuple)
rep lace(Re/Name, Tuplel,Tuple2)

Compound updates are constructed according to the
following syntax:
Update ::- Primitive Update

U1 t h e n U2
i f Condition t h e n Update
f o reach Vars.Condition do Update
Update Procedure Call

Informally, the update U1 t h e n U2 is a sequential up­
date - do update U1 followed by U2. The update if
Condition t h e n Update is a condit ional update - if the
condition holds, perform the update. The condition and
the update have no free variables.

The update f o r e a c h Vars .Condition do Update is
a set-oriented update - for each answer satisfying the

904 Logic Programming

condit ion, do the update. Vars is a list of variables
occurring free in Condition. The "answers" are values
for these variables which make the condition true. In this
case Update is an update template whose free variables
are included in the list Vars. In fact conditional updates
are merely a special case of set-oriented updates: where
the list Vars of free variables is empty.

Update templates are also used in the definition of up­
date procedures. An update procedure Name is defined
thus:
Name (X1 ,Xn) := Update
where X1,. . ., Xn are the free variables in the update
template Update. A procedure for raising employees'
salaries by a certain percentage can be defined as fol­
lows:

raiseSal(R) : =
foreach Emp, Sal, R} N Sal:esr(Emp, Sal, R, NSal)

do replace(empSal, (Emp, Sal), (Emp, NSal))
where the predicate esr is defined by the clause

Update procedures cannot appear directly or indirectly
in their own definitions: i.e. they cannot be defined re­
cursively. However the rules defining update conditions
can involve recursion, and many "recursive" updates can
be expressed just using the recursion in the conditions.
An example of a recursively defined update from [Abi88]
is the recursive addit ion of new tuples to a binary re­
lation R unt i l its transit ive closure had been generated.
The same effect can be achieved in our update language
by defining transit ive closure as a derived relation TR,
and then inserting to R all tuples satisfying TR:
f o reach X, Y : tr(X, Y) do i nse r t (r , (X, Y))

A useful consequence of banning recursively defined
updates is that all update procedures reduce to com­
pound updates involving a fixed finite sequence of con­
structors. In particular only a fixed number of sequenc­
ing constructors are used in any update, which means
that the update only involves a fixed number of interme­
diate states.

3.2 Seman t i cs
To denote sequences of variables and

etc. we shall henceforth use bold characters:
X and Y. Also X = T w i l l denote the conjunction of
equations

An update U is a function f rom states to states. For
the state which results f rom applying update U to state
S we write up (U,S) . The state which results from ap­
ply ing the pr imi t ive update i nse r t (p , T) to a state S is
therefore up(insert(p, T) , S). Similar ly for de le te .

The semantics of a sequenced update U1 t h e n U2
is given by functional composition. Thus the result of
applying the above sequenced update to the state S is
up , up

The result of applying the pr imit ive update
rep lace(p, T l , T 2) to a state S is
up(inser t (p , T 2) , up(delete(p, T l) , S)).

The constructor f o r e a c h builds a set of "simultane­
ous" updates f rom an update template and a condit ion.

Informal ly the set-oriented update
f o reach X : Cond do Up denotes the set of updates
{Up(X) :Cond[X]}.

The power and interest of this update language lies in
updates which combine both set-oriented and sequenced
components. Sets and sequences do not natural ly com­
bine together. Informally, it is not obvious what update
would be denoted by the fol lowing set:
{ (i n s e r t p(a) t h e n de le te p(b)),

(i nse r t p(b) t h e n de le te p(a))}
We choose, in our semantics, to assign the following
meaning to this example:
{ i n s e r t p(a), i n s e r t p(b)} t h e n

{ de le tep (b) , de le te p(a)}

Accordingly we treat updates of the form
fo reach X : Cond do (U 1 t h e n U2) as the following
(fo reach X : Cond do U1) t h e n

(fo reach X : Cond do U2)
However we must be very careful about the state in
which the set-oriented condition Cond is evaluated. For
example the two following queries have a quite different
semantics: "For each employee E, delete employee(E)
and then insert manager(E)", and "For each employee
E delete employee(E), then for each employee E, insert
manager(E)". After the second update there are no new
managers!

We temporari ly introduce for each n-ary predicate
pred in the deductive database a predicate
predSern, w i th one extra argument denoting the state.
We use a shorthand for literals involving the new pred­
icates: if A denotes the atom p (X) , then ASem(S) de­
notes p (X , S); this shorthand is also extended to formu­
lae.

We can now specify the semantics of set-oriented up­
dates recursively. If U is a pr imi t ive update function
(i nse r t , or de le te) , then the result of applying the up­
date f o reach X : Cond do U to the state S is
up(f o reach X.:CondSem(S) do U,S).

If Cond is the conjunction Condi Cond2, then the
result of applying the update
f o reach X : Cond1 do f o reach Y : Cond2 do U
to the state S is
up(f o reach X, Y : CondSem(S) do U, S).

Lastly, suppose U is a sequenced update which maps
the state S to the state up(U2, up(U1, S)). Then the
update f o reach X : Cond do U maps the state S to the
state

4 C o m p i l i n g C o n s t r a i n t s I n t o U p d a t e
P r o c e d u r e s

In this section we draw together the two threads of in­
tegrity specialisation and update semantics.

In the original framework of integrity specialisation,
it was necessary to check if was an "up­
date consequence". In the new framework the object of

Wallace 905

specialisation is not an update but an update procedure
which maps an unspecified state S to a new state, which
can be specified as a function of S.

If an update maps S to NewS, we define an update
consequence to be any l iteral L for which LSem(NewS)
holds but not LSem(S). Showing that inconsistent
is not an update consequence amounts to proving that
inconsistent Strn(N ewS) inconsistent Sern(S).

In this section we describe predicates predSem,
predConsq and predNegConsq which effectively ax-
iomatise update consequences. We then show how
integrity constraint compilation into update proce­
dures is effected by part ial ly evaluating the defini­
t ion of inconsistentConsq. Finally we explain how
this part ial evaluation eliminates all new predicates
prcdSem, predConsq and predN egConsq f rom the re­
sulting code, so all that remains is a check on the original
database state.

4 .1 T h e d r a w b a c k s o f a d i r e c t i m p l e m e n t a t i o n
The system could simply perform the update and do in­
tegrity specialisation on the result, using the methods of
section 2 above. However such a direct implementation
can be unnecessarily inefficient. For example, the update
fo reach Y : r(Y) do (i nse r t p(Y) t h e n de le te q(Y))
cannot cause a violation of the constraint
inconsistent
A direct implementation of integrity checking on this up­
date would perform much redundant work. Every single
value inserted for p would be checked, at update t ime.

The fact that this update cannot cause a violation
of the constraint is a matter of logical proof. Such an
impossibil ity can be detected using logical opt imisation,
as we shall show below. The compilation of integrity
constraints into update procedures using logical opt imi ­
sation ensures that, for the above example, no checking
takes place at update t ime - at least not for the given
constraint.

4.2 Ru les D e r i v e d f r o m t h e Semant i cs o f
U p d a t e s

We now give the definition for the new predicate
predSem temporari ly introduced for the denotation of
each database predicate pred in a given state.

If pred is a derived predicate, then predSem has pre­
cisely the same definition as pred, except that in its body
each goal G is replaced by the goal GSem(S). For exam­
ple the above rule for inconsistent yields the following
rule for inconsistent Sent:
inconsistent Sern

If pred is a base predicate, then for the current state
(say statel) predSem has the same extension as pred.
This can be expressed using a single rule:

However there are further rules defining the effect of
each update on the base predicate. The axioms specify­
ing the effect of pr imit ive insertions are captured by the
following rules.

The rules defining the set-oriented updates use higher
order predicates rename and call in the rule bodies. Set-
oriented insertions and deletions are defined by the fol­
lowing rules:

As explained in section 3 above, the update Up is al­
ways pr imit ive. Given an update, it is always possible
to eliminate the meta-predicate call by part ial evalua­
t ion. Finally the existentially quantified goals can be
translated to atomic goals as described in section 4.4.2
below.

Sequenced updates are automatically dealt wi th by
rules R 2 - R 5 . In this case the state S is itself a com­
pound term of the form up

As a short example, assume r is defined by the rule

and consider the query "does r(a,b) hold after an update
insert

The goal rSern(a, b, up(inser t (p , X), statel)) can be
reduced using the rule

to the pair of goals pSem(a, up(inser t (p , X), state1))
and By rule R 2 , the
goal for pSem is satisfied if A' = a, otherwise it can be
reduced using the rule R3 to to pSem(a, statel). This
can be reduced to p(a) using R l . The goal for qSem
reduces to q(b).

We conclude that the query is satisfied if q(b) holds (in
the original state), and if either holds or if
Note that this conclusion does not mention statel.

4.3 H o w t o Check O n l y W h a t Has C h a n g e d
Just as it is possible to give rules (for predSem) for deriv­
ing what is true (for pred) in an updated state, it is possi­
ble to give rules deriving what has changed between two
states. Thus we can derive the update consequences for
a given update. The predicate which captures the posi­
tive update consequences for pred is named predConsq.
Another predicate captures the negative update conse­
quences (those facts for pred which become false in the
new state). It is named predN egConsq.

These predicates are defined by rules quite similar to
those for predSem. For example if pred is a base predi­
cate, then the rules dealing wi th pr imit ive updates are:
predConsq(T, up(inscrt(pred, T) , 5) , 5) —
prcdNegConsq(T, up(delete(prcd, T) , 5) , S) <—
Further rules define the effect of compound updates. If
pred is a derived predicates, then the rules are extracted
f rom the rules defining pred. A ful l definition of both
predicates is in

The difference between predSem and predConsq can
be i l lustrated using the example of the last section. The
query "does r (a ,b) hold after an update insert(p,X)?"
yielded, the answer "yes, if . The
question "is r (a ,b) an update consequence?", requires an

906 Logic Programming

4.4 H o w t o C o m p i l e I n t e g r i t y C h e c k i n g
The compilat ion of integrity checking into update pro­
cedures introduces two requirements:

• the requirement to logically optimise the resulting
integrity constraint check

• the requirement to express the resulting check as a
standard knowledge base query against the original
state

4.4.1 P a r t i a l E v a l u a t i o n a n d L o g i c a l
O p t i m i s a t i o n

The first requirement, that of logical optimisation is
impossible wi thout unfolding, or part ial ly evaluating,
the goal. Part ial evaluation of rulesets wi th negation is a
relatively new technique. Our implementation is based
on an algor i thm developed by the author wi th David
Chan and described in [CM89].

The result of part ial evaluating a query Q is a set
of qualified answers of the form
Each goal G, is either or l i teral , or a compound goal

Logical optimisation is the re­
moval of inconsistent qualified answers, or redundant
goals wi th in an answer. If, for example, a qualified an-
swer contains a subgoal G and its negation then the
answer is dropped. Similarly if it contains a goal p{a)
and a compound goal then again the answer
is dropped. For theoretical and practical reasons, the op-
timiser cannot eliminate all inconsistencies in all cases,
but in test cases our implementation lias proved to be
effective.

For example suppose we have the following rules:

The result of part ial ly evaluating s is

The system detects the inconsistency, and recogises that
s must fa i l .

After logical opt imisat ion, new predicates are intro­
duced to replace the compound goals. Thereby the result
of part ial evaluation and logical optimisation is trans-
formed back to the standard rule syntax. Specifically,
for each compound goal .Goal, a new predicate (say
np) is introduced, wi th rule np(Y) Goal, where Y
denotes the variables in Goal which do not appear in X.
Now the compound goal is replaced by the atomic goal
nP(Y).

4.4.2 T r a n s l a t i n g t h e Checks B a c k t o
K n o w l e d g e Base Quer ies

The final requirement for our compilation is the elimi-
nation of rules which "reason over mult iple states''. Since
an update can involve only finitely many intermediate
states, all the goals involving base predicates can be un­
folded unt i l the remaining calls are all against the orig­
inal state. Now the "semantic" predicates can be un­

folded using the rule Rl described earlier. In case no
recursion or negation occurs in the rules defining de-
rived predicates, all goals can be unfolded, yielding a
final qualified answer whose body contains only calls to
base predicates, which can be unfolded as above.

In case recursion or negation does appear in the quali­
fied answers, some new predicates have to be introduced,
and rules added to the knowledge base defining them.
However wi th these new rules, a condition can be de­
rived which is also expressed on the original knowledge
base state and which is necessary and sufficient to guar­
antee that no constraints wi l l be violated.

For example if anc is recursively defined in terms of p,

and if an update procedure has the form
inser t (p , (X, Y)) t h e n fo reach A' : anc(X,c) do U
then the condition anc(X,c) must be invoked in the up­
dated state up(inser t (p , (X, Y)), .state]). The resulting
semantic goal is
ancSem{X, c, up(inser t (p , (A', V')), .state])).
The problem is to eliminate this goal in favour of one
which can be evaluated in the original state state].

By a renaming procedure, similar to that used
for el iminating compound goals, the system re­
places the above goal by a goal a n d (X', Y, A,c), for
which the following rules are automatically generated:

Having added the rules for and to the deductive
database (at compile t ime), it is possible to evaluate the
goal and(X, Y, A, c) in the original state.

Thus in all cases semantic goals are replaced in the
compiled constraint check by standard queries expressed
against the original knowledge base state.

5 C o n c l u s i o n

In this paper we have studied the problem of optimised
integrity checking for update procedures in deductive
knowledge base systems. The method is based on an
axiomatisation of the update language, expressed as se­
mantic rules. Conditions for consistency of the new state
wi th the integrity constraints after execution of an up­
date procedure are expressed as a goal in the semantic
language, which can be evaluated against these semantic
rules.

We show how such a goal is part ial ly evaluated and
the resulting set of qualified answers is reduced by logi­
cal simplif ication. Final ly the simplified set of qualified
answers is translated back into the original knowledge
base query language. The resulting set of conditions are
imposed as preconditions on the update procedure. They
are conditions on the original knowledge base which are
necessary and sufficient to guarantee that any update
using this procedure preserves integrity.

Of particular importance is the logical simplif ication,
which corresponds to an optimisation step. For example
if an update procedure is guaranteed to satisfy a certain
constraint, whatever arguments are supplied at update

Wallace 907

t ime, then the precondition performs no checking related
to the constraint. Effectively the consistency is detected
at compile t ime, and the check removed during logical
simplif ication.

A benefit of the compilation of constraints into update
procedures is that the behaviour of the system when in­
tegrity is violated can be parameterised on the procedure
which caused the violat ion.

The techniques employed here have shown how logical
reasoning can be used effectively, even for procedural up­
date languages like the one introduced in this paper. The
approach was designed, and first applied, for the com­
pilation of constraints into "safe" methods in an object
knowledge base [Wal89]. However it has become clear
that its applicabil i ty is not restricted to any particular
data model.

6 A c k n o w l e d g e m e n t s

The paper emerged from discussions about the way in­
tegrity constraints were implemented in the KB2 knowl­
edge base system, by the author together wi th Hendrik
Decker. Therefore Hendrik has had a fundamental in­
fluence on this work. Rodney Topor inspired me to
start put t ing my thoughts on paper, and criticisms from
Rainer Manthey and Francois Bry over the last year have
ironed out some (though surely not all) of the wrinkles!
My thanks to the above and to 1CL, Bul l and Siemens
for their funding of ECRC.

[Nic82] J -M. Nicolas. Logic for improving integrity
checking in relational databases. Acta Infor-
matica, 18:227-253, 1982.

[RBS87] R. Ramakrishnan, F. Bancilhon, and A. Sil-
berschatz. Safety of recursive horn clauses
wi th infinite relations. In Proc. 6th PODS,
1987.

[SK88] F. Sadri and R. A. Kowalski. A theorem-
proving approach to database integrity. In
J. Minker, editor, Foundations of Deduc­
tive Databases and Logic Programming, pages
313-362. Morgan Kaufmann, 1988.

[Sto75] M. Stonebraker. Implementation of integrity
constraints and views by query modification.
In Proc. ACM SIGMOD Conf on Mgi. of
Data, May 1975.

[Wal89] M.G. Wallace. Objects and integrity con­
straints. Tech. Rep. 1R-KB-70, ECRC,'1989.

[Wal90] M.G. Wallace. Compil ing integrity checking
into update procedures. Tech. Rep. IR-KB-
81, ECRC, 1990.

R e f e r e n c e s

[Abi88] S. Abi teboul . Updates, a new frontier. In
M. Gyssens, J. Paradaens, and D. Van Gucht,
editors, Proc. 2nd Int. Conf on Database
Theory, Lecture Notes in Computer Science
326, pages 1-18, Bruges, 1988. Springer-
Verlag.

[BDM88] F. Bry, H. Decker, and R. Manthey. A uniform
approach to constraint satisfaction and con­
straint satisfiability in deductive databases. In
Proc. EDBT'88, Venice, I taly, March 1988.

[BMM90] F. Bry, R. Manthey, and B. Martens. Integrity
verification in knowledge bases. Technical Re­
port D.2.1.a, ECRC, 1990.

[CM89] D. Chan and Wallace M.G. A treatment of
negation during part ial evaluation. In Abram-
son and Rogers, editors, Meta Programming
in Logic Programming, 1989, M I T Press.

[Dec86] I I . Decker. Integri ty enforcement on deduc­
tive databases. In L. Kerschberg, editor, Proc
First International Conf On Expert Database
Systems, pages 271-286, Charleston, South
Carolina, Apr i l 1986.

[Kue90] V. Kuechenhoff. On the efficient computation
of the difference between consecutive database
states. Tech. Rep. IR -KB-VK , ECRC, 1990.

[LST87] J. W. L loyd, E. A. Sonenberg, and R. W.
Topor. Integri ty constraint checking in strat­
ified databases. JLP, 4(4):331-343, 1987.

908 Logic Programming

