
M a s s i v e l y P a r a l l e l M e m o r y - B a s e d P a r s i n g * 

H i r o a k i K i t a n o 1 ' 2 a n d T e t s u y a H i g u c h i 3 

Center f o r M a c h i n e T rans la t i on 1 N E C C o r p o r a t i o n 2 E lec t ro techn ica l Labo ra to r y 3 

Carneg ie M e l l o n U n i v e r s i t y 5 -33 -1 Sh iba , M i n a t o - k u 1-1-4 U m e z o n o , Tsukuba 
P i t t sburgh , PA 15213 U.S .A . T o k y o 108, Japan I ba rak i 305 Japan 

hiroaki@cs.cmu.edu higuchi@etl.go.jp 

A b s t r a c t 

This paper discusses a radically new scheme of natural 
language processing called massively parallel memory-
based parsing. Most parsing schemes are rule-based or 
principle-based which involves extensive serial rule ap­
plication. Thus, it is a time consuming task which re­
quires a few seconds or even a few minutes to complete 
the parsing of one sentence. Also, the degree of par­
allelism attained by mapping such a scheme on parallel 
computers is at most medium, so that the existing scheme 
can not take advantage of massively parallel computing. 
The massively parallel memory-based parsing takes a rad­
ical departure from the traditional view. It views parsing 
as a memory-intensive process which can be sped up 
by massively parallel computing. Although we know of 
some studies in this direction, we have seen no report 
regarding implementation strategies on actual massively 
parallel machines, on performance, or on practicality ac-
ecssment based on actual data. Thus, this paper focuses 
on discussion of the feasibility and problems of the ap­
proach based on actual massively parallel implementation 
using real data. The degree of parallelism attained in our 
model reaches a few thousands, and the performance of a 
few milliseconds per sentence has been accomplished. In 
addition, parsing time grows only linearly (or sublincarly) 
to the length of the input sentences. The experimental re­
sults show the approach is promising for real-time parsing 
and bulk text processing. 

1 . I n t r o d u c t i o n 

This paper presents a radically new scheme of natural lan­
guage processing called massively parallel memory-based 
parsing. We wi l l report the experimental results of our scheme 
actually implemented on massively parallel machines, and 
discuss the benefits and problems of the approach. Specifi­
cally, we wi l l examine its performance and memory require­
ments — we wi l l show that parsing can be completed in a few 
milliseconds, and the memory requirement is within practical 
limits. 

Massively parallel memory-based parsing was inspired 
from ideas of the memory-based reasoning and case-based 
reasoning which place memory as the basis of reasoning. 
These paradigms are, by definition, memory-intensive and, 

*This work is supported in part by the Pittsburgh Supercomputing 
Center under grant TRA900105P and IRI-910002P. 

usually assume the use of massivelly parallel machines for the 
implementation of practical systems. So far, some success-
ful results on massively parallel implementation of memory-
based reasoning systems have been published in such areas 
as word pronunciation [Stanfill, 19881 and classification of 
census data [Waltz, 19901; surprisingly, no report has been 
made on the application of the idea to natural language pars­
ing with ful l syntactic and semantic analysis. The only studies 
we have today in this direction are the Direct Memory Ac­
cess Parser (DMAP) [Riesbeck and Martin, 19861, D M T R A N S 
machine translation system [Tomabechi, 1987] [Kitano et. 
al., 19891, and the D M D I A L O G speech-to-speech translation 
system [Kitano, 19901. However, DMAP and D M T R A N S are 
only implemented on very small scale (less than 100 words) 
simulated on serial machines, leaving the scalability and prac­
ticality open to question. D M D I A L O G is larger (more than 
500 words) and more sophisticated system, yet it was only 
recently that versions of the system was implemented on mas­
sively parallel machines [Kitano and Higuchi, 19911 [Kitano, 
et. al., 1991]. Also, we have not seen any detailed discus­
sions on the memory-based or case-based parsing regarding 
implementation strategies and theoretical claims based on ac­
tual data. In this paper, we report the memory-based parsing 
model actually implemented on massively parallel computers, 
and discuss the viability of the approach using actual data. 

We use three corpora of spoken utterances. These are: 
(1) ATR (ATR Interpreting Telephony Research Laboratories) 
conference registration task which contains 329 utterances and 
the vocabulary size of 450 extracted from simulated telephone 
conversations. (2) The DARPA (Defense Advanced Research 
Project Agency) resource management task contains 3345 
sentences and the vocaburaly size of 997. (3) The CNN 
Prime News consists of 453 sentences. The CNN Corpus is 
the real-world data from actual cable broadcasting. Some of 
the sentences are very long, but can be segmented into two 
or three independent sentences (segmented data is referred 
as 'CNN Segmented', and the raw data is simply refered as 
'CNN Prime News'). 

2 . M e m o r y - B a s e d P a r s i n g 

Memory-Based Parsing was inspired by the memory-based 
reasoning paradigm proposed in [Stanfill and Waltz, 1988] 
and [Stanfill and Waltz, 1986]. The basic idea of memory-
based reasoning places memory at the foundation of intelli­
gence. It assumes that large numbers of specific events are 
stored in memory, and response to new events is handled 
by first recalling past events which are similar to the new 
input, and invoking actions associated with these retrieved 

918 Natural Language 



events to handle the new input1. This idea runs counter to 
most AI approaches which place rules or hueristics as the 
central thrust of reasoning. For example, traditional parsing 
has been considered a rule-based or principle-based process 
which comprises serial rule application procedures. However, 
the massively parallel memory-based parsing makes a radi­
cal departure from the traditional view. It considers parsing 
10 be a memory-intensive process which can be sped up by 
massively parallel computing. In the memory-based parsing 
model, parsing is viewed as a memory-search process which 
locates the past occurrence of similar sentences, and the inter­
pretation is built by activating the past occurrence. We believe 
that memory and their associations plays the central role in 
many intelligence tasks. This view is similar to the idea of 
Direct Memory Access Parsing [Riesbeck and Martin, 1986], 
except that our model does not contain adaptation and refine­
ment processeses required in case-based reasoning, and there 
is no consideration of a massively parallel implementation in 
the DMAP model as it presently exists. Actually, the main 
locus of the DMAP is case-adaptation for parsing, and it does 
not pay much attention to parsing with large instances of sen­
tences. However, the basic parsing process is quite similar, 
so by testing our model we can also examine the practicality 
of the DMAP model for real-world tasks. 

The first issue is performance. Traditional parsing is a 
time consuming task. A few seconds or even a few min­
utes is required to complete the parsing of one sentence. The 
most efficient parsing algorithm known to date is Tomiia's 
generalized LR parser which takes less than 0(n3) for most 
practical cases [Tomita, 19861. In addition, the Earlcy type 
algorithms degrade its performance as size of grammar in­
creases (0(G2)) . Furthermore, extensive use of unification, 
which is a computationally expensive operation, in recent 
grammar theories substantially undermines the speed of pro­
cessing. Efforts to parallelize these traditional approachs have 
only a limited contribution to attain turely real-time parsing 
system. Reasons for this include: (1) the level of parallelism 
attained by implementing a parallel version of the traditional 
parsing scheme is rather low, (2) serial application of piece-
wise rules causes combinatorial explosion which leads to sub­
stantial performance degradation as input length gets longer 
and/or as size of grammar grow larger, and (3) unification is 
essentially a sequential operation which docs not gain much 
from parallelization. 

In our model, serial rule application is eliminated and re­
placed by a parallel memory-search process, Also, syntactic 
structure and interpretation are pre-indexed so that expensive 
unification operation is no longer necessary, or sufficiently 
minimized. This approach has not been taken in the serial 
machine because the approach wi l l face a trade-off between 
improved efficiency due to pre-expansion and degradation due 
to an increase in search cost. Since each instance of mem­
ory activation can be processed independently on a massively 
parallel machine, we expect that the level of parallelism wi l l 
exceed at least 1,000 which wi l l lead to a dramatic increase 
in performance. 

One of the major differences of our model from other memory-
based reasoning models is that we do not use similarity-based mem­
ory matching. This is due to the lack of sound domain theory of 
similarity matching in parsing. A similarity-based matching is only 
possible when the syntactic pattern of the input sentence is very 
close (we do not have measurement of closeness itself) to one of the 
instances. However, if a syntactic structure is different, we can not 
make use of past instances. 

Other than the performance aspect, there are several prob­
lems which need to be examined in order to claim that 
memory-based parsing is a viable model. Perhaps the 
most significant issue is the memory requirement. Since 
the memory-based reasoning paradigm requires an extensive 
number of past instances to solve new problems, the critical 
issue is whether the number of necessary cases converges with 
a practical number in the given task domain. In natural lan­
guage processing, the productivity of language dictates that 
human beings are capable of producing an infinite number of 
sentences. Thus, if we store all the sentences which we could 
possibly encounter, we need either an infinite memory space, 
or finite but astronomical space. Obviously, such a naive ap­
proach should be rejected. The approach we do take is to 
use abstract instances of sentences. For example, instead of 
storing sequences of words, we store sequences of syntactic 
categories such as or semantic grammar tem­
plates such as {agent want-to attend event]. By using abstract 
templates, the memory space required to cover the task do­
main wi l l be significantly reduced 2. Although theoretically, 
an infinite number of syntactic patterns need to be stored to 
process all possible sentences, a finite number of syntactic 
patterns can cover a fairly significant percentage, say 99.9%, 
of possible input sentences when the length of the sentence 
has a specific upper-boundary3. Sti l l , it is open to question 
whether or not the necessary number of instances converges 
within a practical size. Observation of convergence of the 
coverage by a finite number of syntactic patterns is one of the 
major purposes of the experiments in this paper. 

3 . E x p e r i m e n t a l I m p l e m e n t a t i o n 

This section describes the implementation used in the exper­
iments in this paper. It should be understood that the idea of 
memory-based parsing is new and that it is in the early stages 
of development. Thus the specific implementation described 
here should be regarded as an example of implementation, not 
the definitive implementation of the memory-based parser. In 
fact, we wi l l discuss some enhancements later. The experi­
mental implementation has two major parts: a massively par­
allel associative processor IXM2 and a memory-based parser 
implemented on the IXM2. 

3.1. The Massively Parallel Associative Processor I X M 2 

IXM2 is a massively parallel associative processor designed 
and developed at the Electrotechnical Laboratory [Higuchi et. 
al., 1991]. It is dedicated to semantic network processing 
using marker-passing. 

IXM2 consists of 64 processors, called associative proces-
sors, which operate with associative memory, each of which 
has a memory capacity of 256K words by 40 bits. Each asso­
ciative processor is connected to other associative processors 
through network processors. The structure of the IXM2 is 
shown in figure 1. 

An associative processor consists of an IMS T800 trans­
puter, 8 associative memory chips, R A M , link adapters, and 

2An alternative approach is to store a large set of sentences in 
its surface sequence, and use similarity-based matching to cover 
unknown inputs. See [Sumita and Iida, 1991] for such an approach. 

3In the section 5, we will demonstrate that we approximately 
limit the maximum length of sentences in the spoken dialogues. 

Kitano and Higuchi 919 



Figure 1: Structure of the IXM2 Associative Memory Pro­
cessor 

associated logic. When operated at 20 MHz clock, T800 at­
tains 10 MIPS [Inmos, 1987]. Each associative memory chip 
is a 20 Kbit C A M (512 words x 40 bits) manufactured by 
NTT. The IXM2 has 64 such processors, thus attaining 256K 
parallelism which is far larger than 64K parallel of the Con­
nection Machine [Hil l is, 1985]. This high level of parallelism 
allows us to implement practical memory-based systems. The 
design decision to use associate memory chips driven by 32 bit 
CPUs, instead of having thousands of 1 -bit CPUs, is the major 
contributing factor for performance, processor efficiency, and 
cost performance. 

3.2. Organization and Algor i thm of the Parser 

We describe the organization and algorithm of the memory-
based parser on the IXM2. As an experimental implemen­
tation designed to test the practicality of the approach, we 
employed a flat memory structure, i.e. no hierarchy was 
used to encode syntactic patterns. This is because the flat 
structure is the most memory-intensive way of implementing 
the memory-based parsing model. Thus, should this imple­
mentation be judged to be practically useful, other versions 
which use a more memory-efficient implementation can also 
be judged to be practical. 

The system consists of two parts: a syntactic recognition 
part on the 1XM2 and a semantic interpretation part on the 
host computer. 

For the syntactic recognition part on the IXM2, the overall 
architecture is shown in figure 2. The memory consists of 
three layers: a lexical entry layer, a syntactic category layer, 
and a syntactic pattern layer. 

Lexical Ent ry Layer: The lexical entry layer is a set of nodes 
each of which represents a specific lexical entry. Most 
of the information is encoded in lexical entries in accor­
dance with modern linguistic theories such as HPSG[Pol-
lard and Sag, 1987], and the information is represented 
as a feature structure. It is a straightforward task to 
represent huge numbers of lexical entries on the IXM2. 

Syntactic Category Layer: The second layer comprises a 
group of nodes representing the syntactic features. Per­
haps the most important feature for parsing is the head 
major category, generally known as the syntactic cate-

Table 1: A Part of Pre-Expanded Syntactic Structures (Sim­
plified) 

gory. In the specific implementation examined in this 
paper, we use the head major category as a single fea­
ture to index syntactic structures. However, it is also 
possible to incorporate other features to index syntactic 
structures. The choice of features to be incorporated 
largely depends on the design decision on how much the 
constraint checks to be conducted on each processor or 
on the host computer. 

Syntactic Patterns Layer: A l l possible syntactic structures 
are directly mapped onto the associative memory as a 
syntactic patterns layer. As mentioned earler, the syn­
tactic structure is a flat sequence of syntactic categories 
which can be generated from the given grammar or from 
a corpus of training sentences. Table 1 shows a part 
of simple syntactic structure loaded on the associative 
memory. Grammatical constraints can be incorporated 
when expanding grammar rules. It allows for a recursive 
structure so that the number of actual syntactic structures 
loaded is less than the actual number of syntactic patterns 
the system can accept. 

The degree of constraints which are incorporated in the 
expanded syntactic structures largely affects the memory re­
quirements and the processing load on the host processor. If 
only the head major category is incorporated, most constraint 
checks must be done by the host computer or at the trans­
puter. On the other hand, if all constraints are incorporated in 
expanding grammar, the number of possible syntactic struc­
tures wi l l be explosive and it w i l l require far more associative 
memory chips. In this experiment, we only used the head 
major category (such as NOUN, VERB), thus most constraint 
processing is done at each transputer and at the host processor. 
It is also possible to use more subdivided symbols at the cost 
of memory requirements. 

In the host computer (SUN-3/250), the case-role binding ta­
ble is pre-compiled which indicates correspondence between 
case-roles and word positions. Table 2 shows a part of a 
simple case-role binding table. Each position in the table is 
associated with actions to be taken in order to build mean­
ing representation. In building the meaning representation, 
the program resides on the host computer and carries out 

920 Natural Language 

Figure 2: Overall Architecture of the Syntactic Recognition 
Part 



Table 2: Case-Role Table (Simplified) 

role-bindings and some constraint checks depending on how 
the constraints are incorporated into the syntactic recognition 
part. If there are ambiguous parses, more than two items 
in the table need to be processed. However, it should be 
noted that all items which are notified from the IXM2 are 
already known to be accepted parsing hypotheses as far as 
syntactic structure is concerned. This architecture drastically 
minimizes the number of operations required for parsing by 
eliminating operations on parses which turn out to be false. 

The algorithm is simple. Two markers, activation mark­
ers (A-Markers) and prediction markers (P-Markcrs) are used 
to control the parsing process. A-Markers are propagated 
through the memory network from the lexical items which 
are activated by the input. P-Markers are used to mark the 
next possible elements to be activated. A general algorithm 
follows: 

1. Place P-Markers at all first elements of the syntactic 
patterns. 

2. Activate the lexical entry. 
3. Pass the A-Marker from the lexical entry to the Syntactic 

Category Node (SCN). 
4. Pass the A-Marker from the SCN to the elements in the 

Syntactic Patterns. 
5. If the A-Marker and a P-Marker co-exist at an element 

in the Syntactic Pattern, 
then the P-Marker is moved to the next element of the 
Syntactic Pattern. 

6. If there arc no more elements, the syntactic pattern is 
temporarily accepted, 
and a pattern ID is sent to the host or local processors for 
semantic interpretation. 

7. Repeat 2 thru 6, until the end of the sentence. 

On the host computer or on the 64 T800 transputers, the 
semantic interpretation is performed for each hypothesis. The 
general flow follows: 

1. Receive the syntactic pattern ID from the syntactic recog­
nition part. 

2. If words remain in the sentence, then ignore the ID re­
ceived. 

3. If no words remain, perform semantic interpretation by 
executing the functions associated with each hypothesis 
in the table. Most operations are reduced to a bit-marker 
constraint check and case-role bindings at compile time. 

4 . P e r f o r m a n c e 

We carried out several experiments to measure the system's 
performance. Figure 3 shows the syntactic recognition time 
against sentences of various lengths. Syntactic recognition 

Figure 3: Syntactic Recognition Time vs. Sentence Length 

Figure 4: Comparison of Syntactic Recognition Time 

at milliseconds order is attained. This experiment uses a 
memory containing 1,800 syntactic patterns. On average, 
30 syntactic patterns are loaded into each associative proces­
sor. Processing speed improves as parsing progresses. This 
is because the computational costs for a sequential part in 
the process is reduced as number of hypotheses activated de­
creases. There is one sequential process which checks active 
hypothese on each 64 transputer. During this process, the 
parallelism of the total system is 64. Discussion of processor 
loading factor wi l l be given in section 6.3. 

It should be noted that this speed has been attained by 
extensive use of associative memory in the IXM2 architecture 
- simple use of 64 parallel processors w i l l not attain this speed. 
In order to illustrate this point, we measured the performance 
of the SUN-4/330, CM-2 Connection Machine, and Cray X-
MP with only 30 syntactic patterns which is equivalent to a 
single processor of the 1XM2. The program on each machine 
uses an optimized code for this task in C language. The 
experimental results are drawn on figure 4. The IXM2 is 
almost 16 times faster than that of the SUN-4/330 and Cray 
X-MP even with such a small task4 The CM-2 Connection 
Machine is very slow due to a communication bottleneck 
between processors. While both the IXM2 and the SUN-

4Cray X-MP is very slow in this experiment mainly due to its 
sub-routine call overhead. We have tested this benchmark on a Cary 
X-MP in Japan and at the Pittsburgh SuperComputing Center, and 
obtained the same result. Thus this is not hardware trouble or other 
irregular problem. 

Kitano and Higuchi 921 



Table 3: Syntactic Recognition Time vs. Grammar Size (mil­
liseconds) 

Figure 5: Distribution by Sentence Length 

4/330 use a CPU of comparable speed, the superiority of the 
IXM2 can be attributed to its intensive use of the associative 
memory which attains a massively parallel search. 

Next we examine the scaling property of both systems. 
Figure 3 shows the performance for a sentence of length 8, for 
syntactic patterns of size 10 and 30. While a single processor 
of the 1XM2 maintains less-than-linear degradation, the SUN-
4/330 and Cray X-MP degrades more than linearly. It should 
be noted that 30 syntactic patterns in other machines literally 
means 30 patterns, but in the single processor in the IXM2, it 
means 1,800 patterns when all 64 processors are used. 

It is expected that the larger task set would demonstrate a 
dramatic difference in total computation time. The IXM2 can 
load more than 20,000 syntactic patterns which is sufficient to 
cover the large vocabulairy tasks currently available for speech 
recognition systems. With up-to-date associative memory 
chips, the number of syntactic patterns which can be loaded 
on the IXM2 exceeds 100,000. Also, extending the IXM2 
architecture to load over one mill ion syntactic patterns is both 
economically and technically feasible. 

5 . M e m o r y R e q u i r e m e n t s 

While the high performance of memory-based parsing on a 
massively parallel machine has been clearly demonstrated, 
now we look into its memory requirement. It is well ac­
knowledged that the productivity or language dictates that we 
can produce an infinite number of sentences. Even if we con­
sider only vaild syntactic patterns, it w i l l be infinite when no 
restriction has been applied. Obviously, we can not create and 
encode an infinite number of syntactic patterns. To advocate 
the memory-based parsing, we need to demonstrate that, in 
practice, the number of syntactic patterns actually used is fi­
nite, or it can be approximated by a finite number of syntactic 
patterns. 

It should be noted that an infinite number of sentences can 
be produced when any of three assumptions stands: 

Figure 6: Coverage by Sentence Length 

Assumption 1: Infinite Vocabulary 
Assumption 2: Infinite Grammar Rules 
Assumption 3: Infinite Sentence Length 

In the other words, (1) finite vocabulary, (2) finite gram­
mar rules, and (3) finite sentence length are the conditions 
for finite productivity of language. However, assumption 1 
and 2 can be ignored since most of parsers only have finite 
vocabulary and grammar at run time. Also, people do not 
acquire infinite vocabulary and grammar rules at a point in 
the dialogue. Increase in vocabulary and grammar are more 
long term effects. What makes our model different from the 
traditional models depends upon whether the third assump­
tion stands or not. If the third assumption is false, our model 
is, at least, equivalent to traditional models in its sentence 
productivity. Therefore, we counted the number of sentences 
of each length. Surprisingly, the ATR and DARPA corpora 
show very similar characteristics (figure 5): both have a peak 
of sentences between 7 to 9 words long. CNN has longer 
sentences, though it too has peaks in 7 to 13 words length. 
The ATR sentences' maximum length was 19 words and that 
of the DARPA corpus was 24. CNN Prime News was 48, 
and CNN segmented was 35. 99.7% of sentences from ATR, 
DARPA, and CNN Segmented corpus are less than 25 words 
length. From this data, we can expect that most sentences are 
within manageable length. Thus, we conclude that in practice 
sentence which can be produced at a given time point is finite. 

Next we examine that if, in practice, the number of syntactic 
structures which appear in the given task domain wi l l saturate 
at a certain number. Empirical observation using a corpus 
taken from the DARPA task shows that it does converge when 
it is in a restricted domain (figure 7). However, the number 
of syntactic patterns necessary to cover the task domain was 
1,500 with the flat structure, and it was reduced to 900 with 
a simple hierarchical network. Since IXM2 is capable of 
loading over 20,000 syntactic patterns, the model is capable 
of covering the task even with the flat memory approach, and 
much wider domain can be covered with hierarchical model. 
However, a larger scale of experiment w i l l be necessary to 
see if the number of syntactic patterns saturates, and where 
it saturates. We are currently investigating this issue using a 
large corpus from real world data such as CNN. 

Independently, we have carried out an experiment to cover 
a given domain based on syntactic patterns pre-expanded from 
a set of grammar rules. We pre-expanded syntactic patterns 
from a set of context-free rules to see the memory require­
ments. A set of 6 basic grammar rules w i l l produce about 
2,000 patterns when the maximum length is 10 words, and 

922 Natural Language 



Figure 7: Training Sentences vs. Syntactic Patterns 

about 20,000 patterns when the maximum length is 15 words. 
However, this has been reduced to 1/20 by using local net­
works which handle noun-noun modifications, adjective-noun 
modifications, etc. Thus, by imposing additional constraints, 
pre-expansion of syntactic patterns from a set of grammar 
rules is also feasible, and can be loaded on IXM2. In ad­
dition, it should be noted that not all syntactic patterns are 
actually used in the real world, thus the number of syntactic 
patterns that we really need to load on the machine would 
be far smaller. Psycholinguistic study shows that there is an 
upper-bound in the complexity of sentences which people can 
process iGibson, 19901. The hypothesis that the number of 
syntactic patterns that actually appears in the given task is rel-
atively small can be independently confirmed. Nagao [Nagao, 
1989] reported that syntactic patterns appeared in the title of 
over 10,000 scientific papers were around 1,000, and it was 
reduced to just 18 with simple reduction rules. While we can 
only confirm our hypothesis on the basis of our experiments 
on the small and medium size domains, increasing availabil­
ity of large memory space and large number of processors 
provided by massively parallel machines offers a realistic op­
portunity that massively parallel memory-based parsing can 
be deployed practical tasks. 

Figure 8: Number of Active Hypotheses per Processor 

abstraction and hierarchical networks would undermine per­
formance and quality of translation, because it would be close 
to rule-based systems. Use of abstraction and hierarchical 
networks should be minimized and should be used only when 
sufficient memory space was not allocated to cover a wide 
range of input sentences. 

6.2. Enhancement I I : Linguistic Knowledge 

While we arc currently using a relatively simple syntactic con­
straint and semantic interpretation mechanism using the case-
role table, there is room for improvements. First, the syntactic 
constraints can be compiled as a large finite-state network so 
that some additional mechanisms using marker-passing can 
effectively incorporate syntactic constraints. Second, instead 
of using the case-role table, we can load functional descrip­
tions and partially build f-structurcs so that only lexical in­
sertion wi l l be performed to complete final f-structure (Levin 
and Gates; personal communication). Most heavy operations 
such as unification are performed in compile time to create a 
partial f-structure, and only a minimal operation is left to run 
time. With this approach, the unification operation wi l l be 
minimized, if not eliminated, for the number of words in the 
sentence. 

63. Hardware Architecture for Memory-Based Parsing 

6 . D i scuss ions 

6.1. Enhancement I: Hierarchical Memory Network 

Use of the hierarchical memory network model reduces mem­
ory requirements by layering the levels of abstractions incor­
porated in the memory, but at the cost of building such net­
works which is not a trivial task. Figure 7 shows an example 
of the memory saving effect of the hierarchical memory net­
work. By incorporating levels of abstractions (such as surface 
sequences, generalized cases, and syntactic rules) the memory 
requirements can be reduced significantly without undermin­
ing the benefits of the memory-based approach. They also 
exemplify an extended notion of the phrasal lexicon[Becker, 
1975]. Actually, this model has been implemented in the 

D M D I A L O G speech-to-speech dialogue translation system, 
and has been proven to be useful for spoken language un­
derstanding systems. We have implemented a memory-based 
translation system using hierarchical memory network, and 
attained the milliseconds performance [Kitano and Higuchi, 
1991], Also, [Kitano, et. al., 1991] reports the similar idea has 
been implemented on the Semantic Network Array Processor 
(SNAP) [Moldovan et. al., 1990], and obtained a comparable 
performance. It should be cautioned, however, that excessive 

First, the IXM2-type associative memory machine has the ad­
vantage in cost performance. In the IXM2, the associative 
memory stores syntactic patterns, and it allows for a mas­
sively parallel search (the current implementation allows for 
a parallel search up to 256K), while l imiting the number of 
processors to 64. 

Figure 8 shows the number of active hypotheses per one 
associative processor. Although it starts with a high pro­
cessing load where a significant percentage of hypotheses arc 
activated, the number of hypotheses decreases drastically as 
the processing proceeds. Since the IXM2 uses associative 
memory chips to store syntactic patterns, no processor wi l l 
be idle unless all the hypotheses assigned to the processor are 
eliminated. However, in other massively parallel machines 
that assign processors to all the hypotheses, most of the pro­
cessors wi l l be idle because most of the hypotheses wi l l be 
eliminated as the processing progresses. Since the use of as­
sociative memory chips would be far cheaper than processor 
chips to store and carry out the operations necessary in the 
implementation in this paper, the IXM2's architecture would 
be more cost effective tnan other architectures for this task. 

Although there are cases that performance and functional­
ities benefit from assigning one processor for one hypothe­
sis, (such cases involve complex calculations of probabilistic 

Kitano and Higuchi 923 



measures, a source of activation check, and dynamic reconfig­
uration of the network) the associative memory-based archi­
tecture as seen in the IXM2 suffices for many memory-based 
reasoning tasks. In most memory-based reasoning tasks, sim­
ilarity matching uses relatively simple similarity measures 
from numeric computations which can be computed on as­
sociative memory. Even in cases which require complex 
computations, the IXM2 is expected to maintain high perfor­
mance with better cost effectiveness, because a sixty four 32 
bit CPU can distributively perform higher-levels of symbolic 
and numeric operations. Thus, the IXM2's architecture which 
we advocate in this paper is a cost effective architecture not 
only for the memory-based parser, but also for more general 
memory-based reasoning systems. 

7 . C o n c l u s i o n 

In this paper, we proposed a massively parallel memory-based 
parsing. We have shown, using data obtained from our exper­
iments, that the massively parallel memory-based parsing is 
a promising approach to implement a high-performance real-
Lime parsing system for certain task domains. Major claims 
and observations made by our experiments are: 

• The massively parallel memory-based parsing attains 
real-time parsing when implemented on a massively par­
allel machine. Our experiments using the 1XM2 associa­
tive memory processor shows that syntactic recognition 
is completed in less than 2 milli-seconds. The system 
not only attains milli-second order parsing performance, 
but also exhibits a desirable scaling property. The pars­
ing time grows only linearly (or sublinearly) to the size 
of the inputs Also, the parsing time required 
grows only sublincarly to the number of syntactic pat­
terns loaded. This scaling property is the real benefit of 
using a massively parallel machine. 

• Massively parallel memory-based parsing, even in its 
simplest form, can be implemented within practical 
memory and processor requirements, when designed for 
suitable task domains. Our observation from spoken lan­
guage corpora demonstrates that the length 01 sentences 
converges within a managablc length, and the number of 
syntactic patterns also converges into a practical scale. 
This enables us to implement the memory-based parsing 
model using massively parallel machines that already 
exist. With the possible development of larger scale 
massively parallel machines such as the one targeted by 
DARPA for TeraOps by 1995 [Waltz, 1990], the possi­
bil ity of the large scale massively parallel memory based 
parsing would be within sight. 

• The IXM2's architecture is cost effective for memory-
based reasoning tasks. The use of associative memory 
to attain a high level of parallelism (256K, in the current 
implementation) allows us to build a practical memory-
based system with possibly lower resource requirements. 
While only a few parts of memory are actually involved 
in solving a specific problem, most processors could be 
idled when a ful l fine-grained processor architecture is 
used. The IXM2 is one of the ideal and cost effec­
tive architectures for building practical and large-scale 
memory-based systems. 

A c k n o w l e d g e m e n t s 

We would like to thank the members of the Center for Machine 
Translation at Carnegie Mellon University, particularly Jaime 

Carbonell and Masaru Tomita, and the members of Elec-
trotechnical Laboratory for discussions and support. Also, 
we would like to thank Hitoshi lida and Akira Kurematsu 
at the ATR Interpreting Telephony Research Laboratories for 
allowing us to use their corpus, and for their continuous en­
couragement. 

Re fe rences 

[Becker, 1975] Becker, J. D., The Phrasal Lexicon, BBN, Technical 
Report, 3081, 1975. 

[Gibson, 1990] Gibson, E., "Memory Capacity and Sentence Pro­
cessing/* Proceedings of ACL-90, 1990. 

[Higuchi et. al.. 1991] Higuchi. T., Kitano, H., Furuya, T., 
Kusumoto, H„ Handa, K., and Kokubu, A., "IXM2: A Paral 
lei Associate Processor for Knowledge Processing," Proceedings 
of the National Conference on Artificial Intelligence (AAAI-9I), 
1991. 

[Hillis, 1985] Hillis, D.,The Connection Machine, The M.I.T. Press, 
1985. 

[Inmos, 1987] Inmos, IMS T800 Transputer, 1987. 
[Kitano, et. al., 1991] Kitano, H., Moldovan, D., Um, I., Cha, S., 

"High Performance Natural Language Processing on Semantic 
Network Array Processor,*' Proceeding of the Inter national Joint 
Conference on Artificial Intelligence (IJCA1-9I). 1991. 

[Kitano and Higuchi, 1991] Kitano, H. and Higuchi, T, "High Per­
formance Memory-Based Translation on IXM2 Massively Paral­
lel Associative Memory Processor," Proceeding of the National 
Conference on Artificial Intelligence (AAAI-9I), 1991. 

[Kitano, 1990] Kitano, H., " D M D I A L O G : A Speech-to-Speech Di­
alogue Translation System/* Machine Translation, 5, 1990. 

[Kitano et. al., 1989] Kitano, H., Tomabechi, H., and Levin, L., 
"Ambiguity Resolution in DMTRANS PLUS," Proceedings of the 
EuropeanChapteroftheACL, 1989. 

[Mpldovanet. al., 1990] Moldovan, D., Lee, W., and Lin, C, 
SNAP: A Marker-Passing Architecture for Knowledge Process­
ing, Technical Report PKPL 90-4, Department of Electrical En­
gineering Systems, University of Southern California, 1990. 

[Nagao, 1989] Nagao, M., Machine Translation: How Far Can It 
Go?, Oxford, 1989. 

[Pollard and Sag, 1987] Pollard, C. and Sag, I., Information-Based 
Syntax and Semantics, CSLI Lecture Notes, 13, 1987. 

[Riesbeckand Martin, 1986] Riesbeck, C. and Martin, C, "Direct 
Memory Access Parsing," Experience, Memory, and Reasoning, 
Lawrence Erlbaum Associates, 1986. 

[Stanfill and Waltz, 1988] Stanfill, C. and Waltz, D., "The Memory-
Based Reasoning Paradigm," Proceedings of the Case-Based 
Reasoning Workshop, DARPA. 1988. 

[Stanfill and Waltz, 1986] Stanfill, C. and Waltz, D., "Toward 
Memory-Based Reasoning/* Communications of the ACM, 1986. 

[Stanfill, 1988] Stanfill, C, "Memory-Based Reasoning Applied to 
English Pronunciation/' Proceedings of the AAAI-88, 1988. 

(Sumita and lida, 1991] Sumita, E., and lida, H., "Experiments and 
Prospects of Example-Based Machine Translation," Proceedings 
of ACL-91,1991. 

[Tanaka and Numazaki, 1989] Tanaka, H. and Numazaki, H., "Par­
allel Generalized LR Parsing based on Logic Programming/* Pro­
ceedings of the First International Workshop on Parsing Tech­
nologies, Pittsburgh, 1989. 

[Tomabechi, 1987] Tomabechi, H., "Direct Memory Access Trans­
lation/' Proceeding of IJCAI-87, 1987. 

[Tomita, 1986] Tomita, M., Efficient Parsing for Natural Language, 
Kluwer Academic Publishers, 1986. 

[Waltz, 1990] Waltz, D, "Massively Parallel AI , " Proceedings of 
AAA1-90,1990. 

924 Natural Language 


