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Abstract

Preference relations can provide a more realis-
tic model of random phenomena than quantita-
tive probability or belief functions. In order to
use preference relations for reasoning under un-
certainty, it is necessary to perform sequential
and parallel combinations of propagated infor-
mation in a qualitative inference network. This
paper discusses the rules for such sequential
and parallel combinations.

1 Introduction

Many intelligent systems employ the numeric degrees of
belief to make decisions. One of the difficulties often en-
countered in using a quantitative theory of partial belief
is the estimation of the required numeric input. In creat-
ing the knowledge base, the human expert may not be fa-
miliar with expressing his belief in terms of numeric val-
ues. Thus, the problem of obtaining the numeric degrees
of belief from the expert is a major concern in the design
of a decision support system. On the other hand, there
are qualitative methods for uncertain reasoning such as
those using qualitative probability, qualitative belief or
relative plausibility, which are all based on the concept
of preference relations. In these approaches, the experts
are not required to provide numeric values for the indi-
vidual propositions, but are asked instead to specify the
qualitative relationships between the propositions. In
many applications, the qualitative approaches seem to
be more realistic, as it may not be feasible to represent
the available information numerically. Besides, people
are usually more confident in supplying qualitative re-
lationships such as proposition A is more probable than
proposition B.

In addition to the representation of uncertain informa-
tion, another important issue is to propagate such infor-
mation Many researchers have studied the possibility of
using networks for inference. Heckerman (1986), Pearl
(1986), Shenoy and Shafer (1986) studied the propaga-
tion of quantitative information such as certainty factors,
probability and belief functions in quantitative networks.
Wellman (1990) extended Pearl's framework to quali-
tative networks by classifying the influence of different
sources of evidence on a proposition into four classes +,
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— , 0, and ?. If the class is +, then the proposition has
become more probable due to the presence of the new
evidence. On the other hand if the class is —, then the
proposition has become less probable due to the pres-
ence of the new evidence. Class 0 indicates that the
new evidence has no influence on the probability of the
proposition, while class ? indicates that the influence of
the evidence on the proposition is unknown. One can
also define different operators for the manipulation of
these influences. It is clear that qualitative networks
can be useful for suggesting potential actions, eliminat-
ing inferior plans, identifying important tradeoffs, and
explaining probability models (Wellman, 1990) How-
ever, Wellman's study is restricted to frames with only
two elements (a proposition and its negation), and the
suggested classification of influence lacks a theoretical
basis.

This study outlines a qualitative inference network
whose nodes are frames of discernment consisting of
mutually exclusive and exhaustive propositions, and
whose edges represent the relationships between differ-
ent frames. In such a network, the two basic rules are
the sequential and parallel combinations of propagations
(Heckerman, 1986). The former deals with propagating
information from a frame S to another frame T,from
T to 0, and so on, in a sequential manner. The lat-
ter considers the propagation of information from two
or more frames, T4, T,, ..., to another frame © followed
by a parallel combination of the propagated information
(Lingras and Wong, 1990a).

The main objective of this paper is to analyze the
fundamental elements of a qualitative inference network
based on preference relations, namely, the sequential and
parallel combinations of qualitative information. We be-
lieve that the results of this analysis provide a basis for
the development of a network useful for qualitative rea-
soning.

2 Qualitative Preference Structures

Suppose O = {g4, .. .8} is a finite set of all possible
answers to a given question according to one's knowl-
edge, and only one of these answers is correct. This set
0 is referred to as the frame of discernment or simply
the frame defined by the question (Shafer, 1976). Any
subset A C 0 is regarded as a proposition, which repre-



seuts the assertion that the correct answer to the ques-
tion lies in A. The power set 2° of denotes the set of
all propositions discemed by the frame ©. In a situation
with incomplete or vague information, it is not possible
to say with certainty which proposition contains the cor-
rect, answer. However, based on the evidence at hand it
may be possible to express one's judgement on a given
proposition either quantitatively or qualitatively. In the
quantitative representation, a real number is used to in-
dicate the degree of belief in a proposition. Alternatively,
one can also characterize the uncertain knowledge qual-
itatively in terms of a preference relation. We assume
that one can define the preference or indifference rela-
tionship between any two propositions A, B <€ 22. The
assertion, A is preferred to B, is denoted by A = B
In the absence of strict preference, i.e., =(A4 » B) and
={ft = A), we say that A and B are indifferent, written
A ~ [, That is, the preference relation » represents
the qualitative information or one's knowledge about a
particular situation. The precise meaning of the pref-
erence relation depends of course on the context of the
application. For example, in the exposition of qualita-
tive probability, A = B represents the assertion that A
ismartprobable than B.

The notion of preference relations enables us to spec-
ify whether a given proposition is more probable than
another proposition. Such a notion can be useful for a
number of reasons. For example, if it is not possible to
provide a reliable estimation of the required quantitative
probabilities, a preference relation can provide a more re-
alistic model of random phenomena. Obviously, qualita-
tive preference relations provide a wider dass of models
to represent a given situation than quantitative probabil-
ities. Preference relations also facilitate the study of the
structures of quantitative probabilities and belief func-
tions (Fine, 1973). To illustrate this point, consider the
following axioms that, impose certain restrictions on the
dass of preference relations that can be used for repre-
senting uncertain information:

(i Asymmetry: A B = (B » A)

(iiy  Negative Transitivaty:
(A BV A C) = (A ()

(iiiy Pominance: Forall A, B € 29,
ADB=>A»BorA~1H

(iv) Partial monotonicity: For all 4, B8,C € 29
fTADB& ANC # @, then
A D= {AUO)Y={BUO)

(V) Nontrivielity: © »

Wong et al. (1990) have shown that there exists a
belief function consistent with =, i.e.,

A > B <= Del(A) > Bel(B), (1)

if and only if the preference relation » satisfies axioms
(i) - (v). The belief function obeys the following three
axioms (Shafer, 1976; Smets, 1988):

Bel(B) =0,
Bel(B)=1,
3. For every positive integer n and
every collection Ay,..., A, of subsets of ©,

Bel(A1U.. UAR)> Y Bel(A;) =) Bel(A;NA;j)
Thus, belief functions can be used ity represent the
class of prefferente(-rdi}tibhBedahNobey) @oms (i)-(v).
A preference relation satisfying axioms (i)-(v) is called
a qualitative belief or a belief relation (Yao and Wong,
1990). For a given belief function, one can define a plau-
sibility function PI as follows: for A4 & 2*

PlA)y =1~ Bel(A"), (2)

where A° represents the complement of A, i.e.,, A° = (-)-
A. Similarly, we can also define a qualitative counterpart
of a plausibility function. Let >BEL he a belief relation,
the corresponding plausibility relation >p, is defined as

Asp Be= B =g A°, (3)

which is consistent with the definition of plausibility
functions.

Based on the notion of preference relations, in the fol-
lowing section we consider a qualitative inference net-
work, and analyze the fundamental elements of such a
network.

3 A Qualitative Inference Network

In making decisions, we are often interested in a number
of related questions. We can formulate a frame of dis-
cernment for each question, and build a qualitative in-
ference network based on the relationships (represented
by compatibility relations) between these frames. If we
want to evaluate the beliefs in a particular frame, we
may have to propagate and combine the beliefs from dif-
ferent sources of evidence to the frame of interest. Thus,
we have to consider the propagation of information from
one frame to another (Yao and Wong, 1990), and the
sequential and parallel combination rules (Lingras and
Wong, 1990a).

We assume that the information about a frame 7' is
represented by a preference relation », and that the re
lationship between frame T and the frame of interest &
is described by a compatibility relation. We consider the
propagation of the preference relation » on frame T to
frame 8.

Definition /: Consider two frames T and 6. An element
t € T is compatible with an element & € €, writtenf ' #,
if the proposition {#} does not contradict the proposition
{6}.

Compatibility is symmetric: / is compatible with 0 if and
only if 6 is compatible with t. A compatibility relation
C between two frames T and © is a subset of pairs (¢, #}
in the Cartesian product T x 0 such that t C 8. The
compatibility relation provides a qualitative description
of the relationships between the elements of two frames.

Definition 2: A compatibility relation C between two
frames T and © is complete if for any t € T there exists
af€e®such t ht . and vice versa.
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Without loss of generality, we may assume that the com-
patibility relation between any two frames is complete,
because one can always obtain a reduced frame by delet-
ing those elements in one of the frames which are not
compatible with any element in the other frame, and
vice versa.

Definition 3: Given a compatibility relation C between
two frames T and ©, we can define a mapping I' which
assigns a subset I'(f) C O for every t € T by:

ri)y={6c©|tCé} (1)

For any subset A C O, the lower and upper preimeges
of A, writien w(A) and G(A), are defined as:

w(A)={teT|I{t) C A}, (5)

and

FA)={teT|T()NA#8}. (6)

The set w{A) consists of the elements in 7" which are
compatible with only the elements in A, and the set W(A)
consists of the elements in T which are compatible with
at least one element in A. Upper and lower preimages
are similar to the inner and outer reductions discussed by
Shafer (1976). For any X € 27, we use P'(X) to denote
the following subset of O:

r(xy= | ro. (N

te X
Note that we have adopted the notation, ['({t}) = ['(1).

If the information regarding the propositions in 27 is
described by a preference relation, one can propagate
this relation to another frame using the upper and lower
preimages.

Definstion §: Let T and © be two frames, and let C
be a compatibility relation between T and ©. For a
given preference relation » on 27 the lower and upper

preference relations, »> and *», on 22 are defined as:
for A, B €29,

Ao B = w(A)>»w(B), (8)

and
A "> B ¢ iJ(A) » T(B). (9}

The mapping w : 22 — 27 can be considered as a pes-
stinistic way in which the (comparative or quantitative)
belief in the propositions discerned by T can be trans-
ferred to the propositions discerned by © {Lingras and
Wong, 1990b). Hence, we will refer to the propagation
from > on 27 to ,> on 22 as the pessimistic propagation
of ». Similarly, we will refer to the propagation from »
on 27 to *» on 22 as the optimistic propagation of >
defined by the mapping @ : 22 — 27. In a qualitative
inference network, we can either use the pessimistic or
the optimistic propagation depending upon the applica-
tion. It is also possible to use a combination of both the
pessimistic and optimistic propagations.

Fzample 1: Consider a question regarding a chemical
sclution: Is it acidic, alkaline or neutral? Let & =
{ac,al,ne} be the frame consisting of all possible an-
swers to this question.
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(i) Suppose we have a reading 6.5 £+ 0.5 from a pH-
meter for the solution. |If we use this pH value as a
measure of acidity of the solution, we will have to con-
sider the question of reliability of the pH-meter. The
frame corresponding to this question is defined by T\ =
{reliable, unreliable}. Based on our knowledge of the
pH-meter, we can specify the following weak order (Fish-
burn, 1972):

Ti >, {reliable} =, {unreliable} », 0.

Here a proposition is preferred over another proposi-
tion if it appears on the left hand side and is separated
by at least one =, symbol. Thus, T} is preferred over
{reliable}, {unreliable} and @, and s0 on.

(1) Suppose we receive another evidence from a lit-
mus test conducted by a student. He observed that the
change in color of the litmus paper was so slight that
it was hard to say whether the solution was acidic, al-
kaline or neutral. Nevertheless, he specified his degrees
of belief by the following preference relation on a frame
T» = {change,no—change}:

Ty »2 {change} >3 {no—change} »2 B.

Although, the frames T} and T» are not directly related
to the frame of interest, © = {ac, al, ne}, we can iransfer
the available information to obtain a preference relation
on ©. We may use the pessimistic propagation scheme
to propagate the preference relations >, on frame 7T} and
»2 on frame T to frame O, reapectively.

(iii) We know that if the pH value is less than 7, the
solution is acidic; equal to 7, the solution is neutral;
greater than 7, the solution is alkaline. Therefore, based
on the pH-meter reading and our knowledge of chetrustry,
the compatibility relationships between the elements of
Ti = {reliable, unreliable} and © = {ac, al, ne} can be
expressed as:

reliable Cy ac,
reliable C) ne,

unrelicble C, ac,
unreliable C) ne,
unreltable C; al.

The above compatibility relationships enable us to com-
pute the lower preimages of the propositions in Q,
namely:

w,(8) = 0, w,({ac}) =0,
a(faD) =0 e(ine)) =8,
w,({ac,ne}) = {reliable}, w,({al,ne})=20,
w:({ac,al}) =9, w(®) =T

From these lower preimages, we obtain the relation .»,
on 22 as a result of the propagation of the relation >,
on 2T1:

#

{ac)

{al}

{ne}
{ac,al}
{al, ne}

{(iv) We know that if the color of the litmus paper
does not change, the solution i1s neutral; otherwise it

© -1 {ac,ne} oy



is ar or al. Thus, the compatibility relationships be.
tween the elements of 75 = {change, no—change} and
® = {ac,al, ne) are given by:

change Cy ac, change Cy al,

no—change 9 ne.

These cornpatibility relationships lead to the following
lower preimages of Lhe propositions in ©:

w,(0) = 9, wy({ne}) = {no—change},

w,({ac}) = 0, wy({ac,ne}) = {no—change},

wr{al)) =90, wa({al ne}) = {no—change],

wy(®) =Tz,  wal{ac,al}) = {change}.
Similarly, we can use these lower preimages to define the
pessimistic propagation of =3 on frame 75 to frame ©.
We obtain:

{ne} 9
O >3 {ac,al} =5 {ac,ne}l o, {ac} . O
{al, ne} {al}

Yao and Wong (1990) showed that the result of quali-
tative propagation is consistent with that of quantitative
propagation (Dempster, 1967). The following theorem
demonstrates that the pesstmistic propagation of a be-
lief relation on a frame results in a belief relation on an-
other {rame. The same can be said about Lhe optimistic
propagation of a plausibility relation.

Theorem 1: Consider two frames 7" and 9, and a com-
patibility relation €7 between 1" and ©. Let »g. be a
belicf relation on 27, and » p; the corresponding plau-
sihility relation. The relation > g, propagated from
>get 15 2 beliel relation on 29, and the relation "> p;
propagated from = p; 1& a plausibility relation of .>g,;.
namely, A4 *»p; B <= B .»p.a A"

It is clear that we can ecasily apply the pessimistic or
optimistic propagation scheme described above to prop-
agate a preference relation from one {rame to another.
In a complex inference network, the propagation of un-
certain information is accomplished by combining two el-
crnentary sequential and parallel networks (Heckerman,
lY86). ln an elmentary sequential network, the propa-
gation from § to T, aud the propagation from T to ©
are combined to obtain a propagation from 5 to €. In
an elementary parallel network, we have a set of eviden-
tial frames Ty, ..., T which are connected to the same
hypothesis frame ©@. The propagations from T; to € are
combined in parallel in frame ©, In the subsequent dis-
cussion, we will analyze these two combination schemes.

(I} Sequentiel Combination

Let = be a preference relation on frame S, ) a com-
patibility relation between § and T, and €% between
T and ©. We are interested in the propagation of the
preference relation = to © based on the compatibility
relations ) and Cs.

Recall that one can use the pessimistic propagation to
construct a preference relation > on 27 fron the prefer-
ence relation > on 25, By using the same procedure, one
can construct a preference relation ,> on 22 from .»>
on 2T, Similarly, one can use the optimistic propagation
scheme to obtain a preference relation *»> on 2° from >

on 2%. The preference relations .» and *» on 29 are
the results of the sequential combination of the two-step
propagations from S to T, and from T to ©. In fact,
the sequential combination can be expressed direetly in
terms of the composition of the compatibility relations

C1 and Cs.

Definition 5 Let §,T,Q be three frames, C; a con-
patibilily relation between § and T, and Cy a cotnpat.-
ibility relation between T and ©. A composife relation
C = ) o Cy between S and O can be defined as follows:
for s € Sand P € ©, s C) e Cy 8 if and anly il there
exists £ € T such that s C; f and t C4 6.

One may argue that an clement s € § may not be
compatible with an element # € O even if there is an
element ¢ € T such that 5 Cy ¢ and t (s 6. However,
it 15 reasonable to assume that 5 is not compatibie with
0 if there is no t satisfying s C| t and t 'y #. Thus, in
the absence of any direct relationship between the two
frames S and ©, the composite relation as defined by
definition 5 may be an acceptable solution.

Based on the composite relation € o (s, one may
directly propagate the relation » from frame 5 to frame
© in just one step instead of two. The following theorem
shows that the results of thesc Ltwo combination schemes
are the same.

Theorem 2: Let S, T,© be three frames, "y a compati-
bility relation between S and T, and , a compalibility
relation between T and ©. For a given preference re-
lation > on frame &, the results of propagating = first
from & to T by ) and then from T to © by 7y arc the
same as Lhat of propagating > directly from 7 to & by
the composite relation €y o (.

Froof. Let T'{s) = {t € T'|s Oy t} for every s € 5, aud
F20t) = {# €8 |t 3 0} for every t € 1" Given the comn-
posite relation ) o Cy, we can define a composite map-
ping from S to © by 0T (5) = I'a(T1(s)) = U Ia(8)

HET3{x)

for every s € §. Therefore, for any subset 4 C O, we
have:

{5 | TolTi(s)) € A},
{s|TaTh(s))NAF @]

The set we o0,(A) represents the lower preimage of A
by a one-step propagalion, and the set we, (we (A)) s
the lower preimage of A by a two-slep propagation. Sin-
ilarly, the set &c,a¢,(A) represents the upper preunage
of A by a one-step propagation, and the sel &, (&, (4))
is the upper preimage of A by a two-slep propaga-
tion. Here, we only need to prove that w., . (A} =
y—(l(gc:(A)) and aCaUCZ(A) = ;CI(JC'::(A]) for every
subset A C O.

Suppose 5 € we (we,{A)). 1t follows that 1'(s) C
we,(A). Hence, for every 1 € T'y(s), t € we,(A). This
implies that I'2(¢) C A. Therefore, we can immediately
conclude that Ty(T'1(s)) € A. That is, s € we o, (A)
Thus, we (we,(AY) € we oc,(A). Now assume that
5 € we o, (A). This is cquivalent to Py(I'y(s)) C A,
which impries that for every { € I'y(s), we musL have
I'2(8) € A. Hence, 1 € we (A). In other words, we

Weec,(A)
W ec,(A)
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obtain T1(s) C we,(A). Thus, 8 € we (we,(A)). This
means that we .c0,{A4) € we, (we,(A4)). We can there-
fore conclude that we 0, (A) = we, (W, (A)). Similarly,
one can prove thal e, ,¢,(A) = we, (We,(A4)) 0.
Theorem 2 provides a possibility of reducing a two-
step propagation to a one-step propagation. Since both
the one-step and two-step propagations produce the
samwe results, the sequential propagation from S to T to
© cau be replaced by a propagation directly from S to ©
using the composile relation. Such a simplification can
result in an efficient method for sequential propagation,

(I1) Parallel Combinalion

Suppose T1,...,T, serve as evidential frames for .
Let =; be the preference relation on 2T', i=1,...,n. We
fhirst propagate the individual preference relation »; on
27+ 10 »'; on 22 using cither the pessimistic or optimistic
propagation scheme. Qur objective is to determine the
preference relation = on 29 based on the combined ev-
idence. Such a combination is referred to as the paral-
lel combination, Obviously, the combined preference re-
lation should preserve as many preference relationships
frorn the individual preference relations »';, i =1,...,n
as possible. If we assume for the time being that the
preference relations involved are notl restricted by any

axioms, we can usce the following combination rule: for
A, Be®,

I A’ B, then A= B,
If A~ 8B, then A~ D i=1,...,n. (10

This simple combination scheme preserves ali the rela-
tionships from the individual preference relations. Tlow-
ever, in this process, we may also have imadvertently ac-
curtlated many contradictory preference relationships
such as:
{A> B), ~(A> B). (1)
In order to avoid such conlradictions, we may have to
unpose restriciions on the preference relations » and >,
by introducing various axioms (Fishburn, 18972; Savage,
1972; Yao and Wong, 1990). In that case, we will have
to construet appropriate combination rules accordingly.
I the preflerence relation » 1s to obey a given set of
axtoms L, then certain relationships are not allowed. For
example, if > is asymmetric, then we cannot have both
A» B and B » A4 in the combined rclation. A se-
lection scheme can be explicitly defined by specifying
priorities among the relationships from the preference
relations =", i = 1,...,n, as follows:

{a} Iu general, the preference relationships »/; are more
immportant in decision making than the indiflerence re-
lationships ~';. Hence, we may want to assign higher
priority 1o Lthe preference relationships »=‘, than the in-
difference relationships ', .

(b] We arrange the same type of relationships in an order
according to the priority(i) assigned to each preference
refation »’; i=1,. . . n.

{c) If two relationships cannot be arranged in the order
according to (a) and {b), then, we may have Lo introduce
sonw other predefined order.

We have just described one of the many possible pri-
ority schemes. Depending upon the application and the
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nature of the evidence, a system designer can choose an
appropriate priority scheme for ordering the prefcrence
relations.

Once we have assigned priorities to the individual pref-
erence relations »'; . i = 1,..., n, we can apply combina-
tion rule (10) to the individual preference relationships,
Let U be the set of relationships in the combined prefer-
ence relation >. Initially, / = @. For every relationship
A »'; B, we add the relationship A = H to the set [/,
provided that based on the set of axioms L, the relation-
ships in ¢/ do not infer the contradictory relationship
—(A > B). Similarly, for every relationship A ~; B we
add the relationship A ~ B to the set [/ if the relation.
ghips in U/ do not infer the contradictory relationship
=(A ~ B). Thus, combination rule (10) can be modificd
as: for A, B €29,

If Upr~(A» B)& A'; B, then A > I,
H UL ~(A~B)& A~ B, then A~ B(12)

The expression I/ fy (A ~ B) denotes the fact that
the relationships in I/ do not logically infer ~(4 ~ #3)
with the set of axioms L. The combination rule (12}
can be implemented using standard logic programnuing,
techniques. In practice, the experl may be able to specify
only a few relationships in a given preference relation. hn
that case, the execution of the qualitative combination
rufe will be reasonably fast.

Il the individual relations 'y, ..., >'n completely Je
scribe the relationship between alf the pairs in 29 x 2%
(i.e., either A - B, B » A or A ~ B holds for all
A, B € 2%}, it can be easily seen that the combined re-
lation » will also completely describe the relationship
between all the pairs in 29 x 29, Moreover, since we do
nol. add to I/ either A = B or A ~ B il il violates the
axioms in L, the combined relation = will also obey the
axioms in L. Thus, similar to Theorem 1, we can state
the following result.

Theorem 3: If =1, ..., ="y defined on 22 are belief re
lations, the combined relation = obtained by using rule
{12) is also a belief relation, provided that L is cquivalent
to axioms {i)-(v}.

The proof of Theorem 3 follows immediately from ihe
preceding discussions.

Based on 'Theorems 1 and 3, we can say that il the
input preference relations obey axioms (i)-{v), then the
preference relations resnlting frorn sequential and paral-
lel combinations will also obey axioms (i)-(v). Moreover,
the parallel combination rule discussed here is related
to quantitative combination rules such as the Dempster
rule. A detailed discussion on such a relationship can be
found in (Lingras and Wong, 1990a). Hence, the sequen-
tial and parallel combinations discussed here can be used
to propagate uncertain information that can he modeled
by a subset of axtoms (i)}-(v) in any qualitative infercoce
network.

Frample 2. Consider the lwo preference relalions .-
and .», from Example 1. Qur ohjective is Lo construct
the combined preference relation = (o reflect the accu-
mulated evidence from the pH-meter reading and the
litmus test., Suppose ., .2, and = obey Lhe sotb of



axioms L = {asymmetry,
weak order.

We can order the preference relationships from ,»=; and
.>4, for example, according to the priority scheme de-
scribed earlier. The following priority scheme is used in
this example.

negative transitivity} for a

1. 89 .>; {ac,ne} 2. 0.0

3. 0. {ae} 4. O .y {al}

5. 0. {ne} 6. O .- {ac,al)

7. 0. {al, ne} 8. {ac,ne} .= @

9. {ac,ne} o {ac} 10. {ac,ne} .>1 {al}
11, {ac,ne} > {ne} 12. {ac,ne} o1 {ac,c
13. {ac,ne} o=y {al,ne} 14. O >3 {nc}

15. & .»9 {ac,ne} 16. 6 .=y {al, ne}
17. @ o2 {ac,el} 18. © .- 0

19. @ .»2 {ac) 20. © >3 {al}

21, {ac,al} og {ne) 22. {ac,al} .~ {ac, 7
28, {ac,al} o {al,ne} 24, {ac,al} ,>2 @

5. {ae, al} o~y {ac} 26. {ac,al} >y {al}
27 {ne} -2 @ 28 {ne} oo {ac}
29.  {ne}) o>y {al} 30. fac.ne} -2 @
31, {ac,ne} =2 {ac} 32, {ac,ne} o2 {al}
33, {al,ne} =0 34. {al, ue} -y {ar}
35, {al,ne} .9 {al} 36, B .~ {ac)

37, B~y {ad} 38. B .~ {ne}

9. @~ {ac,al} 40. @ .~; {al, ne}

11, {ac} o~y {al} 42.  {ac} .~ {ne}
13, {ue} o~ {ac, al} 4. {ec} .~ {al ne}
15 {al} o~y {ne} 46.  {al) o~y {ac, el
A7, {al} o~y {al ne} 48, {ne} o~ {ac.al}
A9, {ne} o~ {al, ne} 50 {ac,al} .~y {al,n
51, {ne} o~ {ac,nf) 52 {ne} o~y {al ur)
5%, Aae,ne} ~p {aline}) B0 B ~o fuc}

55 B~y {at} 56, fac) o~» {al}

Initially, {7 = B, Since U L (@ = {ac, ne}), we ac
the refationship © > {uc, ne} to &/ based on rule (12
Using the same argument, we can check if we can ac
all the preference relationships from .»-; and (3. V
obtain the following weak order:

: {ne} ’
O > {ac,ne} = {ae,al} » {al, ne) > {{ﬂ;‘}} :

Note that we did not add the relatiouships such
{ac,al} =1 fae, ne} (ie, no. 22 in the priority schen
1o {7, because

U = —({ac,al} .> {ac,ne})
after adding the first 21 relationships. D

4 Summary and Conclusion

Preference relations, which specify whether a given
proposition is more probable than another proposition,
provide a more realistic model to represent uncertain
information than quantitative probability or belief func-
tions. In order to use preference relations for reason-
ing under uncertainty, it may be necessary to organize'
and propagate the available information in a qualita-
tive network. Sequential and parallel combinations of

propagated information are two of the fundamental el-
ements in such a system. This paper suggests rules for
sequential and parallel combinations using the notion of
compatibility relationships. It is also shown that if the
input preference relations obey certain properties, the
combined relations will also obey these properties.

The qualitative inference networks discussed here are
different from Wellman's qualitative probabilistic net-
works. The qualitative probabilistic relations used by
Wellman correspond to the compatibility relations in this
study. The use of qualitative probabilistic relations in-
stead of compatibility relations may lead to a more gen-
eralized qualitative inference network.
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