
Unders tand ing the Role o f Nego t ia t ion in D i s t r i b u t e d Search 
A m o n g Heterogeneous Agents 

Susan E. Lander and V ic to r R. Lesser 
Department of Computer Science 

University of Massachusetts 
Amherst, MA 01003 

{lander,lesser}@cs.umas8.edu 

Abst rac t 
In our research, we explore the role of negotia­
tion for conflict resolution in distributed search 
among heterogeneous and reusable agents. We 
present negotiated search, an algorithm that ex­
plicitly recognizes and exploits conflict to direct 
search activity across a set of agents. In nego­
tiated search, loosely coupled agents interleave 
the tasks of 1) local search for a solution to 
some subproblem; 2) integration of local sub-
problem solutions into a shared solution; 3) 
information exchange to define and refine the 
shared search space of the agents; and 4) assess­
ment and reassessment of emerging solutions. 
Negotiated search is applicable to diverse ap­
plication areas and problem-solving environ­
ments. It requires only basic search operators 
and allows maximum flexibility in the distribu­
tion of those operators. These qualities make 
the algorithm particularly appropriate for the 
integration of heterogeneous agents into appli­
cation systems. The algorithm is implemented 
in a multi-agent framework, TEAM, that provides 
the infrastructure required for communication 
and cooperation. 

1 In t roduc t ion 
The current state of knowledge-based technology is 
such that almost every application system is built from 
scratch. In order to move beyond the prohibitive cost of 
constantly reinventing, rerepresenting, and reimplement-
ing the wheel, researchers are beginning to examine the 
feasibility of building application systems with reusable 
agents [Neches et a/., 1991]. A reusable agent is designed 
to work without a priori knowledge of the agent set in 
which it wil l be embedded, instead using a flexible, reac­
tive approach to cooperation. Although this flexibility 
can lead to inefficient problem solving, an agent can of­
ten gather information about the agent set as problem 
solving progresses to improve efficiency. 

This research was supported by ARPA under ONR Con­
tract #N00014-92-J-1698. The content of the information 
does not necessarily reflect the position or the policy of the 
Government, and no official endorsement should be inferred. 

Multi-agent systems do not traditionally acknowledge 
the role of conflict among agents as a driving force in 
the control of problem-solving activity. In reusable-agent 
systems, however, conflict is inevitable since agents are 
implemented at different times by different people and 
in different environments. We present a distributed-
search algorithm, negotiated search, that uses conflict as 
a source of control information for directing search ac­
t iv i ty across a set of heterogeneous agents in their quest 
for a mutually acceptable solution. 

The negotiated-search algorithm has been successfully 
incorporated into two implemented systems. In [Lan­
der and Lesser, 1992b], we describe distributed search 
in the context of a seven-agent steam condenser de­
sign system and discuss how different operator/agent 
assignments within the negotiated-search algorithm af­
fect problem solving. In [Lander and Lesser, 1992a], 
a two-agent contract negotiation system is presented, 
and negotiated search is compared to a search strat­
egy that is tailored to characteristics of that environ­
ment. Through analysis of the environment and search 
algorithms, we show the versatility and effectiveness of 
negotiated search in reusable-agent systems while also 
pointing out that customized search strategies are in­
flexible but can improve system performance when they 
can be applied. In this paper, we describe negotiated 
search from an application-independent perspective. 

The need for a flexible algorithm to support reusability 
and heterogeneity motivates particular aspects of nego­
tiated search: 

• Conflict, negotiation, and democratic determination 
of acceptability are integral parts of the algorithm. 

• Agent coordination is accomplished through clearly 
defined individual roles in the evolution of a shared 
solution. These roles are realized as operators that 
accomplish state transitions on shared solutions. 

• Operators represent standard and widely available 
search and information-assimilation capabilities. A 
particular agent may instantiate all defined opera­
tors or some subset of defined operators. 

• Whenever possible, feedback is used to refine the 
perceived search spaces of individual agents to more 
closely reflect the true composite search space. 

TEAM agents are not hostile and wi l l not intentionally 

438 Distributed Al 



mislead or otherwise t ry to sabotage another agent's rea­
soning. They are cooperative in the sense that an agent 
is wil l ing to contribute both knowledge and solutions 
to other agents as appropriate and to accept solutions 
that are not locally optimal in order to find a mutually-
acceptable solution. Each agent is a stand-alone system 
with specific capabilities that allow it to be included 
in an integrated multi-agent system. We assume that 
agents can be heterogeneous in architecture, inference 
engines, evaluation criteria and priorities for solutions, 
and in long-term knowledge. Each agent does its own in­
ternal scheduling and has private data, knowledge, and 
history mechanisms. 

In negotiated search, agents interleave the tasks of 1) 
local search for a solution to some subproblem; 2) inte-
gration of local subproblem solutions into a shared solu­
tion (the composite solution);1 3) negotiation to define 
and refine the shared search space of the agents; and 4) 
assessment and reassessment of emerging solutions. 

In the remainder of the paper, we first motivate the 
development of our negotiated-search model by present­
ing an intuitive description of negotiation and, from this 
foundation, constructing an algorithmic model of the ne­
gotiation process. The next section details negotiated 
search from a state-based perspective similar to that 
used by von Martial to describe negotiation protocols 
in distributed planning [von Mart ial, 1992]. We then 
present seven basic negotiated-search operators. The fi­
nal section briefly describes the status of the implemen­
tation and extensions to this model that are not covered 
in this paper. 

2 An In i t i a l Perspective on Negot iat ion 
In this section, we begin with an intuitive description of 
negotiation: 

One agent generates a proposal and other 
agents review i t . If some other agent doesn't 
like the proposal, it rejects it and provides some 
feedback about what it doesn't like. Some 
agent may generate a counter-proposal. If 
so, the other agents (including the agent that 
generated the first proposal) then review the 
counter-proposal and the process repeats. As 
information is exchanged, conflicts become ap­
parent among the agents. Agents may respond 
to the conflicts by incrementally relaxing indi­
vidual preferences unti l some mutually accept­
able ground is reached. 

This example captures the primary characteristics that 
one would expect to see: 

• proposals are generated by one or more agents 
• agents evaluate proposals based on their individual 

criteria for solution acceptability 
• agents provide feedback about what they like or 

don't like about particular proposals, resulting in 
a progressively better understanding of the shared 
requirements for solutions over time 

1 Sat hi similarly uses the term compoaition as the name 
of a specific search operator that combines local informa­
tion [Sathi and Fox, 1989] 

• agents can play different roles in the negotiation 
process, e.g., an agent can be a reviewer for an­
other agent's proposal and then be a generator for 
a counter-proposal 

• conflicts exist among the agents' requirements for 
acceptable solutions 

• agents incrementally relax their solution require-
ments to reach agreement 

• the decision to accept or not accept a proposal is a 
joint, democratic process 

Some extensions to the definition are required. For 
example, it assumes that a proposal becomes a solution 
when it is accepted by all agents. However, this assump­
tion rules out situations in which high-level problems 
are decomposed and each agent works on some subprob­
lem. In this case, the proposal an agent makes does not 
represent a complete solution but rather some compo­
nent of a solution that interacts wi th other components 
through shared attributes. Evaluation is then indirect 
since an agent cannot evaluate proposals for interact­
ing components that are outside of its domain of exper­
tise. In negotiated search, an agent evaluates an external 
interacting-component proposal by creating and evalu­
ating a compatible local proposal (i.e., one that has the 
same values for shared attributes), thereby focusing on 
how the external proposal affects local quality. 

Although a proposal includes the information required 
to implement a solution, it provides only a surface-level 
view of the reasoning that went into creating it. It is 
sometimes possible to make guesses about other agents' 
requirements that could be used in generating counter­
proposals. However, in the general case of reusable 
agents, external local evaluation criteria for solutions 
cannot be predicted, nor can they be inferred from the 
"snapshot" provided by a proposal. For proposals and 
counter-proposals to be related, there must be a deeper 
understanding of the shared search space of the agents. 
This understanding is achieved through a feedback sys­
tem that can be separate from the proposals. 

3 Negot iated Search 

Artificial intelligence researchers have previously used 
the term negotiation with respect to conflict resolu­
tion and avoidance [Adler et a/., 1989; Klein, 1991; 
Lander and Lesser, 1992a; Sycara, 1985; Werkman, 
1992], task allocation [Cammarata et a/., 1983; Durfee 
and Montgomery, 1990; Davis and Smith, 1983], and re­
source allocation [Adler et a/., 1989; Conry et a/., 1992; 
Sathi and Fox, 1989; Sycara et a/., 1991]. Negotiation 
is sometimes treated as an independent process that is 
used to select one of a set of existing alternative solu­
tions [Zlotkin and Rosenschein, 1990] rather than as an 
inherent part of a solution-generation process. It can be 
difficult under conditions where agents are hostile and 
unwilling to share private information [Sycara, 1985]. 
Negotiation can occur among peers [Cammarata et a/., 
1983; Lander and Lesser, 1992b], through a mediator 
or arbitrator [Sycara, 1985; Werkman, 1992], or hier­
archically through an organization [Durfee and Mont­
gomery, 1990; Davis and Smith, 1983]. It can occur at 

Lander and Lesser 439 



either the domain or cont ro l level of problem-solving. 
Laasr i et. a l . describe the recursive negotiation model, a 
general model of mul t i -agent p rob lem solving tha t details 
various s i tuat ions t h a t can po ten t ia l l y benefit f r om nego­
t i a t i on [Laasri et al, 1992]. In examin ing th is model , i t 
becomes clear t h a t negot ia t ion is a pervasive process tha t 
remains re lat ive ly un tapped by current computat iona l 
systems. In developing the negotiated-search model , we 
have t r ied to capture the key requirements for negotia­
t i on w i t hou t res t r ic t ing the domain , task decomposit ion, 
or organizat ional model of the agent set. 

Several researchers have developed algor i thms and 
heurist ics for constra int -d i rected d is t r ibu ted search in 
s i tuat ions invo lv ing mu l t ip le homogeneous agents [Sathi 
and Fox, 1989; Sycara et al, 1991; Yokoo et a/., 
1992],2 We extend th is work to handle si tuat ions where 
heterogeneous agents may have different or mu l t ip le local 
problem-solv ing paradigms, instant ia te different search 
operators, and where agents may not be able to pro­
vide specific i n fo rma t ion to other agents or understand 
in fo rmat ion received f rom other agents. The negotiated-
search a lgo r i t hm is par t i cu la r l y suitable to th is style of 
p rob lem solv ing because 1) the required search opera­
tors represent s tandard search capabi l i t ies; 2) the search 
operators can be flexibly assigned across the agent set 
according to the search capabi l i t ies of each agent; and 
3) agents use incrementa l re laxat ion of solut ion require­
ments to reach m u t u a l acceptabi l i ty as an inherent par t 
of p rob lem solv ing. 

3 .1 T h e S e a r c h P r o c e s s 

Search is i n i t i a t ed by a prob lem specif ication tha t de­
tai ls the f o rm of a so lu t ion and values, preferences, or 
constraints on some a t t r ibu tes of t ha t solut ion. Th is 
specif icat ion is placed in a central ized shared memory as 
are emerging composi te solut ions.3 Some agent(s) uses 
constra in ing i n fo rma t ion f rom the specif ication and i ts 
local so lu t ion requirements to propose an in i t ia l par t ia l 
solut ion called a base proposal The base proposal is then 
extended and evaluated by other agents dur ing fu ture 
processing cycles. W h e n a par t icu lar solut ion cannot be 
extended by some agent due to confl icts w i t h exist ing so­
lu t i on a t t r i bu tes , there are two possible outcomes: 1) i f 
the conf l ict is caused by the v io la t ion of some hard (non-
relaxable) requi rement , the so lut ion pa th is pruned (e.g., 
arc 5 in F igure 1); or 2) i f the conf l ict is caused by the v i ­
o la t ion of some soft (relaxable) solut ion requirement, the 
solut ion is saved and viewed as a potent ia l compromise 
(e.g, arc 9 in F igure 1). In the f irst case, no more work 
w i l l be done on tha t so lu t ion , and , to the extent t ha t the 
v io la ted requi rement can be communicated to and assim­
i la ted by other agents, fu tu re counter-proposals w i l l not 
v io late t h a t same requi rement . In the second case, the 
v io la ted requi rement may eventual ly be relaxed and, i f 
t ha t happens, the po ten t ia l compromise w i l l become a 

2 Agents may control different resources and have different 
constraints on solutions, but they share a single underlying 
problem-solving paradigm and knowledge representation. 

3 Each agent also has a local short-term memory where it 
stores intermediate results and/or component proposals that 
are linked to composite solutions in shared memory. 

viable solut ion again. Future counter-proposals w i l l take 
the v io la ted requirement in to account b u t are not guar­
anteed to avoid the same conf l ic t , since other al ternat ives 
may be worse. 

In bo th of the above cases, conf l ic t is used as the t r i g ­
ger for the communica t ion of feedback in fo rma t ion . In 
mul t i -agent systems, i t is always prob lemat ic to decide 
what in fo rmat ion should be exchanged and when tha t 
exchange should take place. In general, agents want to 
min imize the amount of i n fo rma t ion they share since i t 
is expensive b o t h to communicate i n fo rma t ion and to 
assimilate in fo rmat ion . On the other hand , shar ing in ­
fo rmat ion tha t w i l l specif ical ly help another agent avoid 
fu ture confl icts is general ly cost effective since it e l im­
inates the expense of generat ing unproduc t i ve solut ion 
paths [Lander, 1993]. In negot iated search, an agent 
tha t receives confl ict i n fo rma t ion from another agent can 
choose whether or not to prune i ts own search to respect 
tha t in fo rmat ion (see Section 4.5). 

Mu l t i p l e solut ion paths can be concurrent ly invest i­
gated in negot iated search. Agents are free to in i t ia te 
solutions at any t ime ei ther because there aren' t any 
promis ing solutions in the current so lu t ion set or because 
they have no other work to do. Advantages to ma in ­
ta in ing mul t ip le paths include exp lo i t i ng the potent ia l 
for concurrent ac t i v i t y and hav ing the ab i l i t y to d i rect ly 
compare different potent ia l compromises. There are dis­
advantages to concurrent ly exp lor ing mu l t i p l e solut ion 
paths however: there w i l l be mu l t i p l e pa r t i a l solutions 
tha t have to be stored at a l l t imes, requ i r ing add i t iona l 
memory resources. There is also overhead involved in 
focusing on a promis ing so lut ion pa th at a par t icu lar 
po in t in prob lem solv ing, b o t h f rom the local and global 
perspectives, and in managing the l inks between solu­
t ion components along each pa th . The number of open 
solut ion paths is h igh ly dependent on the doma in , the 
number of agents, and the cont ro l policies of ind iv idua l 
agents. Th is number can be contro l led t h rough param­
eter settings in TEAM and th rough the specif icat ion of 
which negotiated-search operators w i l l be act ive for each 
agent in the agent set. 

3.2 A S t a t e - B a s e d V i e w o f N e g o t i a t e d S e a r c h 

Figure 1 provides a state-based v iew of the t rans i t ion 
of a composite (shared) so lu t ion from i ts i n i t i a l state (a 
prob lem specif ication) to a t e rm ina t i on state (an infea-
sible so lut ion, an unacceptable so lu t ion , or a complete 
acceptable solut ion) . In th is f igure, states are defined 
in terms of three a t t r ibu tes of composi te solut ions: ac­
ceptability, completeness, and search-state. The possi­
ble values for acceptability are acceptable, unacceptable, 
and infeasible. Possible values for completeness are com­
plete and incomplete. Note t ha t complete means t ha t al l 
agents have had the o p p o r t u n i t y to ex tend or cr i t ique 
the solut ion. A so lut ion w i t h a l l requi red components 
can s t i l l be wa i t i ng for cr i t iques from other agents and is 
not considered complete in t ha t case. Search-state can 
take the values initial or closed. 

A negotiated-search operator is a search func t ion ap­
pl ied by an agent. Each operator has a generic f o rm tha t 
is expressed in an agent language defined by TEAM, spec-

440 Distributed Al 



Figure 1: A State-Based View of Negotiated Search 

ifying its inputs, outputs, and functionality. The deci­
sion to apply a particular operator to a problem-solving 
situation is made by an agent within its local view of 
the problem-solving situation. The arcs in Figure 1 are 
negotiated-search operators that can be applied by some 
agent to a solution. 

Each agent instantiates one or more of the negotiated-
search operators: initiate-solution, extend-solution, 
critique-solution, and relax-solution-requirement In ad­
dition, TEAM instantiates the terminate-search operator. 
These operators wil l be described in detail below, but 
we provide an overview here to provide a sense of their 
functionality. Initiate-solution is applied by an agent to 
generate a base proposal that wil l be used as the basis 
for a new composite solution. Extend-solution is applied 
by an agent to: 1) add a component proposal to a com­
posite solution; 2) evaluate the composite solution from 
a local perspective; and 3) provide feedback information 
if conflicts are detected. Critique-solution is applied to: 
1) evaluate a composite solution (without generating a 
component proposal); and 2) provide feedback informa­
tion if conflicts are detected. Relax-solution-requirement 
is applied to: 1) select a local requirement to relax; 2) 
update the local database to effect the relaxation; and 
3) reevaluate existing solutions in light of the relaxation. 
Terminate-search is applied by TEAM to change the state 
of the problem solving from initial to closed, thereby 
changing the termination status of solutions. 

The negotiated-search algorithm is applied by a set of 
agents, A. Let and assume that Al 
initiates a solution, A2 extends the solution, and A3 cri­
tiques some aspect of that solution. We examine a typi­
cal search in which a conflict occurs. A1 first applies the 
operator initiate-solution to a problem specification and 
produces a partial acceptable solution (arc i ) . Then A2 
applies extend-solution without detecting a conflict. Al -

though the solution now has all components specified, it 
is not complete unti l all critiques have also been received. 
Therefore the solution is now partial and acceptable (arc 
S) . A3 next applies critique-solution, detects a conflict, 
and evaluates the solution as unacceptable (are 8). This 
solution remains as it is for some amount of time while 
the agents are working on other solution paths. When 
further search fails to produce an acceptable solution, 
A3 decides to relax the requirement that made this solu­
tion unacceptable. The solution is now acceptable to A3 
and, since it was already complete, it reaches the termi­
nation state of complete acceptable solution (arc 15). In 
this way, various paths through the state diagram can 
be achieved by the agent set. 

Although the above example describes a sequential or­
dering of operator applications, TEAM permits concur­
rency except where there are domain-dependent opera­
tor preconditions that force sequential execution. Con­
currency requires that TEAM have mechanisms for han­
dling conflicts that occur due to the simultaneous de­
velopment of extending proposals and criticisms. These 
mechanisms are discussed in [Lander, 1993]. 

4 Negot iated Search Operators 
In this section, we present a detailed description of the 
negotiated-search operators. Notice that the operators 
depicted in Figure 1 work at the surface level of problem 
solving: they move a particular solution through various 
states to a termination state. They do not address the 
issue of feedback and its effect on problem solving. Later 
in this section, we wil l present two operators that an 
agent applies to assimilate conflict information into its 
knowledge base, thereby refining its view of the search 
space. 

4.1 In i t i a te -So lu t i on 
Initiate-solution is the basic operator for init iating solu­
tions. It is applied within the agent's view of solution 
requirements: local requirements, those imposed by the 
problem specification, and any known external require­
ments learned from other agents. Given these require-
ments, it creates the base proposal. Initiate-solution is 
executed by one or more agents at system start-up time, 
and may be repeatedly executed as earlier proposed so­
lutions are rejected by other agents or if alternative solu­
tions are desired. If earlier solutions have been proposed 
and rejected, the init iating agent may have received con­
flict information that wi l l influence the generation of new 
base proposals. 

At least one agent must instantiate initiate-solution; 
however, instantiating it at multiple agents is likely to 
result in a more diverse set of solution paths and more 
thorough coverage of the composite solution space. De­
pending on characteristics of the agents and agent set, 
it may also have a distracting effect. Trade-offs between 
coverage and distraction are a ubiquitous problem in dis­
tributed systems and are discussed generally in [Lesser 
and Erman, 1980] and specifically wi th respect to nego­
tiated search in [Lander and Lesser, 1992b], 

When no base proposal can be found under the exist­
ing set of requirements, an agent can relax requirements 

Lander and Lesser 441 



to expand the search space. If there are requirements 
on solutions that come from information communicated 
by another agent (external requirements), the initiating 
agent can ignore one or more of these requirements in 
its own search. Notice that the other agent does not ac­
tually relax the requirements. In this way, each agent 
chooses the set of requirements, both internal and ex­
ternal, it wi l l attempt to satisfy. When known exter­
nal requirements are violated, the proposal is suggested 
as a possible compromise rather than a fully acceptable 
solution. The external agent that has its requirements 
violated in the compromise proposal cannot be forced 
to accept i t . Because the selection of a mutually ac­
ceptable solution is democratic, each agent votes on the 
acceptability of a solution. The external agent that has 
the violated requirement(s) can initially vote that the 
solution is unacceptable but, if it does not find a bet­
ter alternative, it may eventually agree to accept this 
compromise. 

If there are no relaxable external solution requirements 
or if the external requirements are inflexible, an agent 
can relax some local requirement. If no base proposal can 
be found at any level of external or internal requirement 
relaxation, the agent returns a failure along with any 
conflict information it can generate that describes why 
it failed. TEAM returns a failure if no agent can generate 
a new base proposal and all previously created solutions 
have been found to be infeasible. 

4.2 C r i t i que -So lu t i on and Ex tend-So lu t ion 
The critique-solution operator is applied by an agent to 
evaluate a partially or fully specified composite solution. 
The extend-solution operator is applied by an agent to 
extend and evaluate a partially specified composite so­
lution. These two operators wil l be described jointly be­
cause of their similarity. The input for these operators is 
a composite solution that was initiated by another agent. 
The output for critique-solution is an evaluation, and 
when a conflict is detected, conflict information. The 
output for extend-solution is a proposal, an evaluation, 
and, when a conflict exists, conflict information. 

The extend-solution operator is required in domains 
where solutions comprise interacting components and 
each component is developed by an expert agent. The 
component that an agent develops with extend-solution 
must be compatible with the solution being extended (it 
must have the same values for solution variables that 
overlap). The agent executing the operator searches for 
a compatible proposal under its known solution require-
ments and the requirements imposed by the assigned pa­
rameter values of the solution to be extended. 

Although we wil l not discuss critique-solution fur­
ther, the following discussion of extend-solution gen­
erally applies to both operators, except that critique-
solution evaluates the existing composite solution rather 
than creating and evaluating a compatible proposal. In 
extend-solution, if a compatible proposal is found that 
does not violate any local solution requirements, it is re­
turned as an acceptable proposal. If the best compatible 
proposal found violates some relaxable (soft) local solu­
tion requirements (where the best proposal is one that 

maximizes local evaluation), it is returned as unaccept­
able along with information that describes the conflict. 
Although currently unacceptable, future requirement re­
laxations may change its status and, therefore, the so­
lution is saved as a potential compromise. In the final 
case, no compatible proposal can be found without vio­
lating nonrelaxable (hard) requirements of the executing 
agent. In this case, the agent fails and the solution path 
is marked as infeasible. Conflict information is returned 
whenever possible that describes why the path is infea­
sible, i.e., what hard requirements were violated. 

4.3 Re lax -So lu t ion-Requ i rement 

Relaxation of solution requirements is a necessary part of 
negotiated search. In order to terminate problem solv­
ing, agents must reach mutual acceptability on one or 
more solutions. Acceptability is defined as an attribute 
of a composite solution as shown in Figure 1. If any 
agent locally evaluates a solution as unacceptable, the 
solution is considered globally unacceptable. However, 
as can be seen in that figure, a solution that is unac­
ceptable at some point in time can later become accept­
able when the agent or agents that reject it relax their 
solution requirements. 

There are three primary forms of relaxation, unilat­
eral relaxation, feedback-based relaxation, and problem-
state relaxation. Unilateral relaxation occurs when an 
agent decides to relax a requirement due to its inability 
to find a solution under the problem specification, i.e., 
the agent finds that, given the problem specification and 
its initial solution requirements, it cannot produce a lo­
cally acceptable proposal. This situation occurs in the 
application of the initiate-solution operator as described 
in Section 4.1. 

Feedback-based relaxation occurs when an agent re­
laxes a solution requirement because of some explicit 
information about the requirements of some other 
agent(s), i.e, a conflict is found between relaxable local 
solution requirements and less flexible external solution 
requirements. This occurs when external information 
has been received by an agent and is being assimilated 
as described in Section 4.5. 

Problem-state relaxation is a reaction to the lack of 
overall problem-solving progress. In the current TEAM 
framework, problem-state relaxation occurs at specific 
processing-cycle intervals: for example, all agents may 
relax a solution requirement after 10 processing cycles. 
Alternatively, the user can specify the relaxation param­
eter separately for each agent, so that one agent may 
relax after 10 processing cycles while another wi l l relax 
after 20 processing cycles. Problem-state relaxation oc­
curs because the problem may be overconstrained by the 
full agent set. The ability to formulate, communicate, 
and assimilate constraining information is not guaran­
teed to be complete and precise across the agent set and 
the reality is that agents can't always determine whether 
the composite search space is overconstrained. There­
fore, they must have some heuristic method (as well as 
the deterministic methods above) for deciding when it is 

442 Distributed Al 



appropriate to relax requirements.4 Because of problem-
state relaxation, we can guarantee that if any init ial pro-
posal is generated that can result in a feasible solution, 
either that solution wi l l eventually become acceptable to 
all agents, or some other solution wi l l become acceptable 
to all agents and deadlock wi l l not occur. 

4.4 Termina te-Search 
The operator terminate-aearch is applied by TEAM, rather 
than by an agent, to change the search phase of the algo­
r i thm from initial to closed when some (user-specified) 
number of acceptable proposals been found.5 As seen 
in Figure 1, when this change occurs, partial and com­
plete unacceptable solutions move from intermediate to 
termination states. Any partial acceptable solutions are 
completed however to ensure that good partial solutions 
are not abandoned. 

4.5 Ass im i l a t i ng I n f o r m a t i o n 
There are two operators associated with assimilating in­
formation at an agent: store-received-information and 
retrieve-information. Store-received-information takes 
conflict information from other agents, syntactically 
checks to see if the information already exists in the lo­
cal knowledge base and, if not, stores it so that it can 
be retrieved. A received requirement may be indexed 
by various attributes including the name of the sending 
agent, the flexibility of the requirement, the names and 
acceptable values of constrained solution attributes, and, 
in the case of ordered solution attributes, whether the re­
quirement defines a minimum or maximum boundary on 
potential values, e.g., x > 5. 

Retrieve-information is an operator that extends or 
replaces an agent's default capability to retrieve rele­
vant constraining information from its knowledge base. 
Because an agent's internal knowledge is expected to be 
locally consistent, the default retrieval mechanism gen­
erally does not handle cases where conflicts may exist 
in the retrieved requirements. Requirement retrieval 
occurs during solution init iat ion, extension, and criti­
cism. The goal of the retrieval process is to find the 
most restrictive, but non-conflicting, set of solution re­
quirements that constrain a solution for the current local 
search problem. Different types of requirements require 
different treatment, but to provide a concrete example 
of retrieval, we present the algorithm used for selecting 
boundary constraints on numerical solution attributes in 
our application systems. Potentially relevant constraints 
are retrieved and sorted into maximum and minimum 
boundary groups. The most restrictive maximum con­
straint (MAX) and the most restrictive minimum con­
straint (MIN) from each group are selected (where most 
restrictive means the highest value from the MIN group 
and the lowest value from the M A X group). Then the 

4Using the number of processing cycles as a heuristic is 
a simplistic approach. More sophisticated mechanisms for 
applying problem-state relaxation based on characteristics of 
problem-solving situation, rather than on time, are discussed 
in [Lander, 1993]. 

5This is a simplified version of the TEAM termination policy 
that integrates agent acceptability and, optionally, a domain-
dependent global evaluation of solutions. 

algorithm loops through the following sequence unti l a 
set of minimum and maximum values is found or unti l 
it is determined that no non-conflicting set exists. 

LOOP: If the value of M A X is greater than or equal 
to the value of M IN , return M A X and M IN since a non-
conflicting set has been found. Otherwise, if the flexibil­
i ty of M A X is greater than the flexibility of M I N select 
the next most restrictive maximum constraint (MAX) 
and go to LOOP. Otherwise, if the flexibility of M A X 
is less than the flexibility of M IN , select the next most 
restrictive minimum constraint (MIN) and go to LOOP. 
Otherwise, the flexibility of M A X is equal to the flexi­
bil i ty of M IN . Then: if M A X is locally owned, select the 
next most restrictive minimum constraint (MIN) and go 
to LOOP. If M A X is not locally owned and M I N is lo­
cally owned, select the next most restrictive maximum 
constraint (MAX) and go to LOOP. If neither M A X nor 
M IN is locally owned, select the next most restrictive 
minimum constraint (MIN) and go to LOOP. 

In reusable agent sets, operator diversity is expected— 
not every agent wi l l instantiate every operator including 
the store-received-information and retrieve-information 
operators. Because of this, when an agent formulates 
and sends conflict information to another agent, there 
is no guarantee that the receiving agent wi l l use that 
information appropriately. Therefore, although conflict 
information is shared willingly and cooperatively in ne­
gotiated search, agents do not depend on other agents 
to react in a fixed way to that information. 

4.6 Agent -Leve l C o n t r o l o f Ope ra to r 
A p p l i c a t i o n 

Figure 1 describes domain-independent state precondi­
tions that must be satisfied before an agent can apply 
one of its operators to a particular solution. However, 
because there are multiple solution paths, and because 
some operators are not directly involved in solution gen­
eration (e.g., store-received-information), an agent may 
have multiple operators ready to execute at any given 
time. The order in which an agent schedules local opera­
tors is not mandated by either TEAM or by the negotiated-
search algorithm. However, because an agent's percep­
tion of the world changes over time, the order in which 
particular operators are executed does affect system per­
formance and the effect of local scheduling on the over­
all behavior of the system should be considered. Some 
general policies for local scheduling are useful in most 
situations, i.e., agents should assimilate any new infor­
mation received before init iat ing or critiquing solutions. 
The degree of sophistication required in local scheduling 
though is highly dependent on the application and the 
complexity of required interactions. 

5 Conclusions 

Negotiated search is a flexible and widely applicable 
distributed-search algorithm. It specifically addresses 
issues that arise in multi-agent systems comprised of 
reusable and heterogeneous agents. The algorithm ac­
knowledges the inevitability of conflict among the agents, 
and exploits that conflict to drive agent interaction and 
guide local search. 

Lander and Lesser 443 



Negot ia ted search has been implemented in TEAM, a 
generic framework for the in tegra t ion of reusable agents, 
and consequently, in two app l ica t ion systems bu i l t on top 
of TEAM: STEAM (a seven-agent system for the mechani­
cal design of steam condensers); and AGREE (a two-agent 
system for buy /se l l cont ract negot ia t ion) . Test ing and 
analysis of the a lgo r i t hm w i t h i n the context o f the appl i ­
cat ion systems is described in other work [Lander, 1993; 
Lander and Lesser, 1992a; Lander and Lesser, 1992b]. 
Results f rom exper iments conducted w i t h negotiated 
search show t h a t the a lgo r i t hm can produce h igh-qual i ty 
solut ions. T h e y also suppor t the c la im tha t the al­
go r i t hm is f lex ib le enough to work in reusable-agent 
systems where the search operators are randomly dis­
t r i bu ted across the agent set. We see negot iated search 
as a defaul t a lgo r i thm—one tha t w i l l provide reason­
able solut ions in a reasonable amount of t ime w i t hou t 
problem-specif ic customizat ion. As a complementary 
approach to developing th is general a lgo r i thm, we are 
developing customized a lgor i thms tha t require specific 
agent characterist ics or inter-agent relat ionships to exist. 
By tak ing advantage of these characterist ics, i t is of ten 
possible to improve so lut ion qua l i t y and /o r processing-
t ime per formance. TEAM supports the dynamic selection 
of a search a lgo r i t hm, thereby enabl ing an agent set to 
swi tch to a customized a lgo r i t hm i f the requirements for 
app l icat ion of the a lgo r i t hm are met . Th is work is de­
scribed in [Lander, 1993]. 

Acknowledgements 

We thank Margare t Connel l and Kev in Gallagher for 
the i r suppor t in th is pro jec t . G B B , a system integrat ion 
too l from B lackboard Technology Group, was used as 
the basic p l a t f o r m on wh ich our f ramework was bu i l t . 

References 
[Adler et a l , 1989] Mark R. Adler, Alvah B. Davis, Robert 

Weihmayer, and Ralph W. Worrest. Conflict-resolution 
strategies for non-hierarchical distributed agents. In 
Michael N. Huhns, editor, Distributed Art i f ic ia l Intel l i ­
gence, Volume 2, Research Notes in Art i f ic ial Intelligence. 
Pi tman, 1989. 

[Cammarata et a l , 1983] S. Cammarata, D. McArthur, and 
R. Steeb. Strategies of cooperation in distributed problem 
solving. In Proceedings of the Eighth International Joint 
Conference on Ar t i f ic ia l Intelligence, pages 767-770, Karl­
sruhe, Federal Republic of Germany, August 1983. 

[Conry et a/., 1992] S.E. Conry, K. Kuwabara, V.R. Lesser, 
and R.A. Meyer. Multistage negotiation in distributed 
constraint satisfaction. I E E E Transactions on Systems, 
Man and Cybernetics—Special Issue on Distributed Ar t i f i ­
cial Intelligence, January 1992. 

[Davis and Smith, 1983] Randall Davis and Reid G. Smith. 
Negotiation as a metaphor for distributed problem solving. 
Art i f ic ia l Intelligence, 20:63-109, 1983. 

[Durfee and Montgomery, 1990] Edmund H. Durfee and 
Thomas A. Montgomery. A hierarchical protocol for coor­
dinating multiagent behaviors. In Proceedings of the Eighth 
National Conference on Ar t i f ic ia l Intelligence, pages 86-
93, Boston, Massachusetts, August 1990. 

[Klein, 1991] Mark Klein. Supporting conflict resolution in 
cooperative design systems. I E E E Transactions on Sys­
tems, Man, and Cybernetics, 21(6): 1379-1390, Novem­
ber/December 1991. 

[Laasri et al., 1992] B. Laasri, H. Laasri, S. Lander, and 
V. Lesser. Toward a general model of intelligent nego­
t iat ing agents. The International Journal on Intelligent 
Cooperative Information Systems, 1992. 

[Lander and Lesser, 1992a] Susan E. Lander and Victor R. 
Lesser. Customizing distr ibuted search among agents 
wi th heterogeneous knowledge. In Proceedings of the 
First International Conference on Informat ion and Knowl­
edge Management, pages 335-344, Balt imore, Maryland, 
November 1992. 

[Lander and Lesser, 1992b] Susan E. Lander and Victor R. 
Lesser. Negotiated search: Organizing cooperative search 
among heterogeneous expert agents. In Proceedings of the 
Fifth International Symposium on Ar t i f ic ia l Intelligence, 
Applications in Manufacturing and Robotics, pages 351 -
358, Cancun, Mexico, December 1992. 

[Lander, 1993] Susan E. Lander. Distributed Search in Het­
erogeneous and Reusable Multi-Agent Systems. PhD the­
sis, University of Massachusetts, Amherst, Massachusetts, 
1993. In preparation. 

[Lesser and Erman, 1980] Victor R. Lesser and Lee D. Er-
man. Distributed interpretation: A model and experi­
ment. I E E E Transactions on Computers, C-29(12):1144-
1163, December 1980. 

[Neches et a l , 1991] Robert Neches, Richard Fikes, T im 
Finin, Thomas Gruber, Ramesh Pat i l , Ted Senator, and 
Wi l l iam R. Swartout. Enabling technology for knowledge 
sharing. Al Magazine, 12(3):36-56, Fall 1991. 

[Sathi and Fox, 1989] Arv ind Sathi and Mark S. Fox. 
Constraint-directed negotiation of resource reallocations. 
In Les Gasser and Michael Huhns, editors, Distributed 
Art i f ic ia l Intelligence, Volume 2, pages 163-193. Pi tman, 
Morgan Kaufmann Publishers, 1989. 

[Sycara et a l , 1991] K. Sycara, S. Roth, N. Sadeh, and 
M. Fox. Distributed constrained heuristic search. IEEE 
Transactions on Systems, Man and Cybernetics, Fall 1991. 

[Sycara, 1985] Kat ia Sycara. Arguments of persuasion in 
labour mediation. In Proceedings of the Ninth Interna­
tional Joint Conference on Ar t i f ic ia l Intelligence, pages 
294-296, Los Angeles, California, 1985. 

[von Mart ia l , 1992] Frank von Mart ia l . Coordinating Plans 
of Autonomous Agents. Lecture Notes in Art i f ic ial Intell i­
gence, Springer-Verlag, 1992. 

[Werkman, 1992] Kei th J. Werkman. Mul t ip le agent cooper­
ative design evaluation using negotiation. In Proceedings 
of the Second International Conference on Ar t i f ic ia l Intel­
ligence in Design, Pit tsburgh, PA, June 1992. 

[Yokoo et a l , 1992] Makoto Yokoo, Edmund H. Durfee, 
Toru Ishida, and Kazuhiro Kuwabara. Distr ibuted con­
straint satisfaction for formalizing distr ibuted problem 
solving. In Proceedings of the Twelfth Internat ional Con­
ference on Distributed Computing Systems, Yokohama, 
Japan, June 1992. 

[Zlotkin and Rosenschein, 1990] Gilad Zlotk in and Jeffrey S. 
Rosenschein. Negotiation and conflict resolution in non-
cooperative domains. In Proceedings of the Eighth Na­
tional Conference on Ar t i f ic ia l Intelligence, Boston, Mas­
sachusetts, July 1990. 

444 Distributed Al 


