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Abst rac t 

Model generation can be regarded as a spe­
cial case of the Constraint Satisfaction Problem 
(CSP). It has many applications in AI, com­
puter science and mathematics. In this paper, 
we describe SEM, a System for Enumerating fi­
nite Models of first-order many-sorted theories. 
To the best of our knowledge, SEM outperforms 
any other finite model generation system on 
many test problems. The high performance of 
SEM relies on the following two techniques: (a) 
an efficient implementation of constraint prop­
agation which requires little dynamic allocation 
of storage; (b) a powerful heuristic which elim­
inates many isomorphic partial models during 
the search. We will present the basic algorithm 
of SEM along with these two techniques. Our 
experimental results show that general purpose 
finite model generators are indeed useful in 
many applications. 

1 I n t roduc t i on 
A large number of problems in AI and computer sci­
ence can be viewed as special cases of the constraint-
satisfaction problem (CSP). Some examples are machine 
vision, belief maintenance, scheduling, temporal reason­
ing, graph problems, and the satisfiability problem. In 
this paper, we are interested in one special case of CSPs, 
i.e., model generation, where the constraints are ex­
pressed in predicate logic. 

By model generation we mean, given a set of axioms 
(which are first order formulas), find their models auto­
matically. A model is an interpretation of the function 
and predicate symbols over some domain, which satis­
fies all the axioms. The scope of this paper is restricted 
to finite models, whose domains are finite sets. Model 
generation is very important to the automation of rea­
soning. For example, the existence of a model implies 
the consistency of a theory. A suitable model can also 
serve as a counterexample which shows some conjecture 
does not follow from some premises. In this sense, model 
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generation is complementary to classical theorem prov­
ing. Finite models help people understand a theory, and 
they can also guide conventional theorem provers in find-
ing proofs. In recent years, several programs have been 
developed for generating finite models, such as FALCON 
[Zhang, 1994a] FINDER [Slaney, 1993], MGTP-G [Fu-
jita et al, 1993], LDPP, SATO [Zhang and Stickel, 1994], 
ModGcn [Kim and Zhang, 1994], and MACE [McCune, 
1994b]. They have been used to solve a large number of 
open questions in mathematics (see for example, [Fujita 
et a/., 1993; Slaney et a/., 1995; Zhang and Stickel, 1994; 
Zhang, 1994b]). 

Theoretically speaking, any approach of constraint 
satisfaction can be used for finite model generation. For 
instance, a simple backtracking algorithm can always 
find a finite model (if it exists). Of course, a brute-force 
search procedure is too inefficient to be of any practical 
use. In general, the performances of backtracking algo­
rithms can be improved in a number of ways such as 
forward checking and lookahead. There are many other 
search procedures and heuristics proposed in the AI liter­
ature; see [Kumar, 1992] for a good survey. However, in 
the special case of model generation, we have to address 
the following two issues: 

• How can we implement constraint propagation and 
consistency checking efficiently? In particular, what 
data structures should be used? 

• How can isomorphism be eliminated effectively dur­
ing the search? Two models are isomorphic if one 
can be obtained from the other by permuting ele­
ment names. 

The first issue may be trivial for some constraint sat­
isfaction algorithms because the constraints they accept 
are often assumed to be unary or binary. It is true that 
n-ary constraints can be converted into an equivalent set 
of binary constraints; but this conversion usually entails 
the introduction of new variables and constraints, and 
hence an increase in problem size. This issue is particu­
larly important to model generation because in this case, 
the constraints are represented by complicated formulas. 
Experience tells us that a careful implementation can 
improve the performance of a program by several orders 
of magnitude. For instance, SATO [Zhang and Stickel, 
1994] is a careful implementation of the Davis-Putnam 
algorithm, a well-known method for satisfiability testing 
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in propositional logic. Because of its efficiency, SATO 
has been used by the second author to solve several 
dozens of open cases of quasigroup problems that can 
hardly be solved by other constraint satisfaction systems. 

The second issue is obviously very important, because 
one model may be represented in many ways, which re­
sult in much redundancy in the search space. For propo­
sitional satisfiability, isomorphism elimination has been 
studied via the symmetric property of variables [Ben-
hamou and Sais, 1994]. In the study of quasigroup iden­
tity problems, a key technique used in [Fujita et al., 1993; 
Slaney et al, 1995] is to impose extra constraints as part 
of the input, so that some isomorphic models need not 
be considered. It appears that the method implemented 
in FALCON [Zhang, 1994a] is better for handling iso-
morphism. It works dynamically and does not require 
extra constraints. FALCON has been used by the first 
author to solve a variety of open problems in abstract 
algebra. 

In this paper, we describe a new model generating tool 
called SEM (a System for Enumerating Models) that 
combines the strengths of FALCON and SATO. Like 
FALCON, SEM is based on first-order ground clauses, 
and uses the powerful isomorphism eliminating tech­
nique. It also incorporates some data structures and in­
ference mechanisms which are similar to those of SATO. 
As expected, SEM outperforms any other finite model 
generator that we know. SEM not only reproduced 
many results obtained by SATO and FALCON, but also 
solved several new problems. In particular, SEM works 
very well when the axiom set contains long formulas — 
the propositional satisfiability based systems like LDPP, 
SATO [Zhang and Stickel, 1994], ModGen [Kim and 
Zhang, 1994] and MACE [McCune, 1994b] cannot han­
dle these cases because it is too expensive to convert such 
formulas into propositional clauses. 

In the next section, we present some basic concepts, 
the abstract algorithm for finding finite models, as well 
as some features of SEM. In Section 3, we compare SEM 
with other similar systems on various test problems, and 
illustrate the applications of SEM with several examples. 
We hope that these experiments will be used as a basis 
for further comparison between finite model generators. 

2 Search for F in i te Models 

2.1 Basic Concepts 
SEM accepts problem specifications in many-sorted first-
order logic. But only finite sorts are allowed and formu­
las should be in clause form. Let (S, F) be a signature 
where S is a set of sorts and F is a set of function sym­
bols. We shall use the letter s (or s,) to denote a sort, and 
/ to denote a function symbol. Each sort s E S consists 
of a finite number of elements, which may be designated 
by a list of names. Alternatively, one can simply give a 
positive integer (say n) as the cardinality of s, and the 
elements of s are assumed to be 0,1, . . . , n — 1. In the 
sequel, an element of some sort will be denoted by e or 
ei. Syntactically these elements may be regarded as con­
stant symbols. The built-in sort BOOL has two elements: 
TRUE and FALSE. 

Function symbols are sorted. Each f E F has some 
fixed arity k > 0 and is specified by / : s1 ... sk —► s, 
where s, s1,..., sk £ S. The special predicate 'equality' is 
specified by EQ: s s —► BOOL, where s is an arbitrary sort. 
We assume that, for any element e, EQ(e,e) evaluates to 
TRUE; and for any two distinct elements ei,-,Cj (i not= j) of 
the same sort, EQ(ej,ej) evaluates to FALSE. There can 
be other predefined functions and predicates, but for the 
sake of brevity, they will be neglected in this paper. 

Terms are built from (sorted) variables and function 
symbols in the usual way. For convenience, let us call 
a term of the form /(e1,..., ek) (ei, E SI) cell terms or 
simply cells. (Intuitively, such a term corresponds to 
an entry or a cell in the "multiplication table" of the 
function /.) We shall denote a cell term by ce or cei;. 
Assigning an element of some appropriate sort to each 
cell, we obtain an interpretation of the function symbols. 

The specification of a problem consists of a set of 
clauses. Each clause is a disjunction of literals, and a 
literal is a term of the sort BOOL or its negation. All the 
variables in the specification are universally quantified. 
Our goal is to find an interpretation which makes all the 
clauses true, i.e., to find a (finite) model of the clauses. 

2.2 Model Generation as CSP 
A constraint satisfaction problem (CSP) consists of a 
set of variables, { Vi I 1 < i < rn }; a domain of values, 
Di, for each variable Vi; and a collection of constraints. 
A solution to a CSP is an assignment of values to all 
the variables such that no constraint is violated. Finite 
model generation may be considered as a kind of CSP 
where the "variables" are the cells in the multiplication 
tables and the "constraints" are specified by the clauses. 

The model finding process can be described by the 
recursive procedure in Figure 1. The procedure uses the 
following parameters: 

• A: assignments (cells and their assigned values), 
{(ce,e) | c E sort{ce)}\ 

• B: unassigned cells and their possible values, 
{(ce,D) | DC sort(ce)}; 

• C: constraints (i.e. the clauses). 
Initially A is empty, and B contains all the cells: 
{(ce,D) | D = sort(ce)}. Since it is relatively expen­
sive and inconvenient to check the consistency of a set of 
clauses containing free variables, in the implementation 
of SEM, before the first call of the procedure search, the 
clauses are instantiated once for all, with each variable 
replaced by each element of the same sort. 

The procedure propa(A, B, C) propagates assignment 
A in C: it simplifies C and may force some variables in 
B to be assigned. In the next subsection, we give more 
details about this procedure. 

2.3 Constraint Propagation 
The procedure propa(A, B, C) is essentially a closure op­
eration (with respect to a set of sound inference rules). It 
repeatedly modifies A, B, and C until no further changes 
can be made. When it exits, it returns the modified 
triple (A,B,C). The basic steps of this procedure can 
be described as follows. 
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Because the data (A,B,C) will be used in many re­
cursive calls, it would be much simpler to implement the 
procedure search if we could save a copy of (A,B,C) 
before modifying them in each recursive call. However, 
this would require a lot of storage. Instead, we record in 
a stack all the modifications done to (A,B,C) in each 
call and undo them when backtracking. 

In our implementation, a term in a clause is repre­
sented by a tree in the usual way. A value is associated 
with each leaf node (called value node) and a function 
symbol is associated with each internal node. An in­
ternal node has a counter to record the number of its 
children nodes that are internal nodes; if this number is 
zero, this node corresponds to a cell, called a cell node. 

Associated with each cell, there is a list of cell nodes 
that represent all the occurrences of that cell in the con­
straints C. When a cell is assigned a value, we simply 
mark each cell node in the list as a value node. If a cell 
node in the list has a parent node, we decrease the par­
ent's counter of internal children nodes by one. When 

that number becomes zero, the parent node is inserted 
into the cell node list of the corresponding cell. This kind 
of modifications on tree nodes is stored in a stack so that 
we can undo these modifications when backtracking. 

Similarly, a clause has a counter to record the number 
of uninterpreted literals of the clause. When a literal 
becomes false, this number is decreased by one. When 
a literal becomes true, this clause is marked as "inac­
tive". This technique of counter-manipulating has been 
used in LDPP [Zhang and Stickel, 1994] for propositional 
clauses. Because of space limitation, we shall not give 
more details about the implementation. 
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that in search any two values in 
Di that are not used in A are symmetric with respect 
to C. We can simply delete all the values from Di, that 
do not appear in A, except one (the smallest one in our 
implementation). This technique of exploiting partially 
the symmetry of values is called the least number heuris­
tic (LNH). As we will see in the next section, it is very 
effective in reducing isomorphic subspaces. 

2.5 The System 

SEM was implemented in C. The YACC tool is used 
for parsing. The current version has about 4000 lines 
of source code. The major algorithm is essentially the 
same as search, except that, for the sake of efficiency, 
we use an iterative procedure instead of a recursive one. 

In SEM, the input specification for a problem consists 
of the following four parts: 

Sorts; Functions; Variables; Clauses. 

As an example, we give the specification for the pigeon-
hole problem. 
Example Pigeonhole problem (10 pigeons, 9 holes). 
(The character 7,' starts a comment in a line.) 

3 Exper imenta l Results 

In this section, we describe some of our experiments with 
SEM, and illustrate the applications of finite model gen­
eration with various examples. We compare SEM with 
other similar systems like FALCON-2 [Zhang, 1994a], 
FINDER [Slaney, 1993] (version 3.0), SATO 2 [Zhang 
and Stickel, 1994] and MACE [McCune, 1994b] (version 
1.0.0). (All these systems were implemented in C) Since 
different specifications may result in different execution 
times, we use the sample input files provided by the de­
signers of the systems, whenever possible. For the same 
problem, we use the same set of axioms. All of our ex­
periments were carried out on a Sparc 2 workstation. 
The following tables show the execution times (in sec­
onds) of the programs on various problems. Each row 
corresponds to one problem instance. Its first column 
is of the form name.n or simply n, where name is the 
name of a problem, and n is the size of the model. In 
all but the first table, we also give the number of models 
(denoted by m). 

3.1 The Pigeonhole Problem 
As a simple example of many-sorted applications, let 
us consider the pigeonhole problem, which has been in­
cluded as a benchmark in most of the aforementioned 
systems. When not exploiting symmetry of the clauses, 
these systems can handle at most 11 pigeons in a rea­
sonable amount of time (say 10 minutes). 

Benhamou and Sais [Benhamou and Sais, 1994] pro­
posed a method for exploiting symmetry in the proposi-
tional case. In the first-order case, we can use the least 
number heuristic to solve the problem more quickly. Ta­
ble 1 gives the execution times of the two programs (n 
pigeons and n- 1 holes). The SEM specification for this 
problem was given in §2.5. Benhamou and Sais' algo­
rithm (BS, in short) was implemented in Pascal on a 
SUN4/110 and the run times are taken from [Benhamou 
and Sais, 1994]. 

3.2 Quasigroups and Latin Squares 
Recently a large number of open cases of quasigroup 
identity problems have been solved by various programs 
[Zhang, 1991; Fujita et a/., 1993; Slaney et al., 1995; 
Zhang and Stickel, 1994; McCune, 1994b]. A quasigroup 
has only one binary function, denoted by . or juxtapo­
sition. In the multiplication table of this function, each 
row and each column is a permutation of all the elements. 

In this subsection, we compare SEM with FINDER 
and SATO on the following 3 problems: 

1. IQG: enumerate idempotent quasigroups, i.e. quasi­
groups satisfying the identity xx — x. 

2. QG5: find idempotent quasigroups satisfying the 
identity {yx.y)y = x. For the sake of efficiency, we 
also use two additional equations, i.e. y(xy.y) = x 
and (y.xy)y = x. 

3. RLS: enumerate reduced latin squares. A Latin 
square is called reduced if in the first row and column 
its elements occur in natural order. Thus a reduced 
latin square corresponds to a quasigroup satisfying 
the identities: xO = x and Ox = x. 

For the first two problems, each program uses a differ­
ent method for handling isomorphism. SATO uses the 
last-column constraint [Fujita et al., 1993; Slaney et al., 
1995], FINDER introduces the 'cycle' function in the 
specification [Slaney, 1993], and SEM relies on the LNH. 
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For the last problem, no isomorphism-rejecting heuristic 
is used by any program. 

From Table 2, one can see that the LNH is the most 
powerful heuristic for eliminating isomorphism. When 
this heuristic is used, fewer (or the same number of) 
models are generated. For a fixed size, all the models 
are essentially the same. Take QG5.7 for example, each 
of the 3 models produced by the other two programs 
is isomorphic to the one found by SEM, under certain 
permutations of the elements. 

3.3 Some Equational Problems 
Tables 3 and 4 give some data comparing the perfor­
mances of several systems on generating some finite al­
gebras: non-commutative groups (NCG), rings with unit 
(RU), and Boolean algebras (RA). No isomorphism elim­
inating heuristic is used by the programs in Table 3. A 
V indicates that MACE runs out of memory. 

From these tables, one can see that isomorphism rejec­
tion is very important. Without such mechanisms, it is 
very difficult to generate moderately large algebras. The 
use of LNH enables FALCON and SEM to complete the 
search very quickly. It can also be seen that constraint 
propagation in SEM is very efficient. In many cases, 
SEM is about 10 times faster than FALCON. 

3.4 Comparison 
Programs like ModGen and MACE are based on deci­
sion procedures for the propositional logic. They per­
form very well on quasigroup problems, since the prob­
lems can be represented concisely in the propositional 
logic. But in general, it seems inappropriate to use them 
to find finite models of first-order theories because too 
many propositional variables and clauses are needed to 
represent the problems. On the other hand, FINDER, 
FALCON and SEM are based on (ground) first-order 
clauses and can deal with more complicated axiom sets. 
However, FINDER does not have any built-in mecha­
nism for isomorphism rejection. In contrast, the LNH 
is quite general and powerful. Both FALCON and SEM 
rely on this heuristic to reduce the search space. The 
underlying algorithm of the two programs are virtually 
the same. However, FALCON was designed mainly for 
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Here / and g are two binary function symbols, a 
and b are two constant symbols. We completed the 
search for models of size up to 20, but did not find 
any one.1 

* In the study of orthogonal arrays, given three pos­
itive integers g, h and k, we'd like to know if there 
exists an Abelian group G of size g, which has a 
subgroup H of size h, and on which we can define 
a function m : G —► G, satisfying the following two 
conditions: (1) for any a, b E G, m.(ab) = m(a)m(6); 
and (2) for 0 < i < k and a E H, mk(a) = a, 
m1(a) not= a (where m°(a) = a and mi+1(a) — 
m(ml(a))). SEM successfully found (G,H,m) for 
(g,h,k) = (32, 2, 3), (56, 2, 3), (27, 3, 3), (36, 3, 3), 
(48, 3, 3), (57, 3, 3). 

• In group theory, we know that (xy)2 = x2y2 im­
plies xy = yx. This can be proved with a con­
ventional theorem prover like OTTER [McCune, 
1994a]. In contrast, with SEM, we can show that 
(xy)k — xkyk does not imply the commutativity 
law, for k — 3,4,5. SEM found the appropriate 
countermodels of sizes 27, 8, 8, respectively. 

• SEM also found some idempotent quasigroups sat­
isfying two identities simultaneously, for example, a 
13-element model of QG7 and QG9, a 13-element 
model of QG8 and QG9, and a 21-element model of 
QG5 and QG7. (The related identities are: QG7. 
(yx)y = x(yx); QG8. x(xy) = yx; and QG9. 
{(xy)y)y = x.) 

For the first two problems,2 it took several days for 
SEM to complete the search. However, the last two prob­
lems are not so difficult as they appear — the execution 
times range from less than one second to several seconds. 

4 Conclud ing Remarks 

We have described SEM, a System for Enumerating fi­
nite Models, and compared its performance with those 
of other similar systems. Clearly, SEM can solve a wide 
range of problems efficiently. As shown in this paper 
and other papers [Fujita et al, 1993; Slaney et al, 1995; 
Zhang and Stickel, 1994; Zhang, 1994a; 1994b], finite 
model generators are very useful tools. So far, they have 
been mainly used to solve problems in mathematics. But 
we believe that the related techniques will find applica­
tions in Al and computer science as well. 

Finite model generation is closely related to search and 
reasoning, which are two of the most important sub­
jects in AI, and which have been studied extensively. 
Most existing programs are based solely on backtrack­
ing procedures. In the future, we shall experiment with 
more search heuristics and other non-exhaustive meth­
ods. The reliability of non-existence results is also worth 
studying. 
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