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Abstract

We present an approach to syntax-based machine
translation that combines unification-style inter
pretation with statistical processing This ap-
proach enables us to translate any Japanese news-
paper article into English with quality far better
than a word for-word translation Novel ideas in
clude the use of feature structures to encode word
lattices and the use of unification to compose and
manipulate lattices Unification also allows us to
specify abstract features that delay target-language
synthesis untd enough source language information
is assembled Our statistical component enables us
to search efficiently among competing translations
and locate those with high Fnglish fluency

1 Background
JAPANGLOSS [Knight et al, 1994, 1995] is a project

whose goals are to scale up knowledge-based machine
translation (KBMT) techniques to handle Japancst-
Fnghsh newspaper MT, to achieve higher quality output
than is currently available and to develop techniques for
rapidl} constructing MT systems We built the first ver
sion of JAPANGLOSS in nine months and recently par-
ticipated in an ARPA evaluation of MT quality [White
and O'Connell, 1994] JAPANGLOSS is an effort within
the larger PANGLOSS [NMSU/CRL et al 1995] MT
project

Our approach is to use a KBMT framework, but to
fall back on statistical methods when knowledge gaps
arise (as they inevitably will) We syntactically analyze
Japanese text, map it to a semantic representation, then
generate English Figure 1 shows a sample translation

Parsing is bottom-up, driven by an augmented
context-free grammar whose format is roughly like that
of [Shieber, 198G] Our grammar rules look like this

({NP -> § NP)
((X1 syn infl) = (4DRe kihen ta-fore rentai})
(CI0 myn) = (I2 ayn))
((X0 Byn comp) = plup)
((X0 syn e-mod) = (X1 syn)))

"This work was supported in part by the Advanced Re
search Projects Agency (Order 6073 Contract MDA 904 91-
C 5224) and by the Department of Defense
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INPUT

HFieda, 2ACHLBBEIALIREL.

INTERLINGUA

{(gem
({1nstance HAVE-AS-A-GDAL)
{(zenger <1> ((inetance COMPANY-BUSINESS)
(q-mod ((inetance KEW-VIAGIN)})))
{phencmencn ({instance FOUND-LAUNCH)
(agent <17)
(temporal-lacating
{(1natance MONTH)
(index 2))))3)))

auTPuUT

The nev company plane to establish in February

Figure 1 Sample JAPANGLOSS Translation

The semantic representation contains conceptual to
kens drawn from the 70,000-term SENSUS ontolog}
[Knight and Luk, 1994] Semantic analysis proceeds as
a bottom-up walk of the parse tree, in the style of Mon-
tague and Moore [Dowty et al 1981, Moore 1989] Se
mantics is compositional, with each parse tret node as-
signed a meaning based on the meanings of its children
Leaf node meanings are retrieved from a semantic lex
icon, while meaning composition rules handle internal
nodes Semantic rules and lexical entries are sensitive to
syntactic structure, e g

((N -» "kaisha'}
((x0 sem anstance) = COMPANY-BUSINESS))

((NP => S WP}

((X2 syn form) = (+HOT» rentaidome))

((X0 sem instance) = rc-modified-object)

{(X0 sem homd) = (X2 mem))

((X0 sen rel-mod) = (X1 sex))

(sOR+ (((X1 map subject-role) =c X2))
({(X1 map object-role) =c X2))
{((X1 map objectZ-role) =c X2})))

Generation 18 performed by PENMAN [Penman,



1989], which includes a large systemic grammar of En-
glish Gaps in the generator's knowledge are filled with
statistical techniques [Knight and Hatzivassiloglou, 1995
Knight and Chander, 1994], including a model that can
rank potential generator outputs The English lexicon
includes 91,000 roots, comparable in size to the 130 000
roots used in Japanese syntactic analysis

All of these KBs, however, are still not enough to drive
full semantic throughput Major missing pieces include
a large Japanese semantic lexicon and a set of ontologi-
cal constraints We are attacking these problems with a
combination of manual and automatic techniques [Oku
mura and Hovy, 1994, Knight and Luk, 1994] Mean-
while, we want to test our current lexicons, rules, and
analyzers in an end-to-end MT system

We have therefore modified our KBMT system to in-
clude a short-cut path from Japanese to English which
we describe in this paper This path skips semantic
analysis and know ledge-based generation, but it uses the
same syntactic analyses, lexicons, etc , as the full system
We call this short-cut glossing, and it features a new com-
ponent called the glosser whose job is to transform a
Japanese parse tree into English using easily obtamable
resources Our glosser achieves 100% throughput, even
when the parser fails to fully analyze the input sentence
and only produces a fragment ary parst tree

2 Bottom-Up Glossing

In thinking about the glossing problem- turning
Japanese parse trees into English—we had the follow
ing goals and insights

* Quality Glossing necessarily involves guessing, at,
is most obvious from an ambiguous word like ben
which may be glossed as either rice or American
Without A semantic analysis improved guessing is
the road to improved quality

1. All potential translation guesses can be packed
into an English word lattice of the sort used in
speech recognition systems

2 Guesses can be ranked with a statistical lan
guage model and the most promising ones can
be identified with a search procedure

* Component re-use It is possible to build a glosser
very quickly if we re-use representations and mod-
ules from a full KBMT system

1 Word lattices can be stored and manipulated
as feature structures

2 The compositional semantic interpreter can
serve as a glosser if we provide new knowledge
bases

3 The statistical model we built for ranking gen
erator outputs [Knight and Hatzivassiloglou,
1995] can also be used for glossing

This section describes how we put together an MT
system based on these ideas We concentrate here on
the components and knowledge bases, deferring linguis-
tic and statistical aspects to following sections

Word lattices model ambiguities from three sources-
Japanese syntactic analysis, lexical glossing, and English
synthesis Here is a small sample lattice

This lattice encodes 768 possible transitions the two
mam pathways correspond to two different parses 1 he
star symbol (*) stands for an empty transition

Our original bottom-up semantic analyzer transforms
parse trees into semantic feature structures However we
can make it produce word lattices if we encode lattices
with disjunctive feature structures e g

t{gloss
(w0Re
{(Copl "he’)
(op2 {=0RAw» "dad 'made'])
(op3 ((op! (wOR+ "the" "a' 'an' 'memptys'})
(op2 («0R* 'affirmation 'affirmations ))
(op3 "that'}
(op4 ((opl (opl (*OR= 'the' “a'
an'' 'wempty» )2
(opZ (*0R+* "defendant'
"defendants '
“accused"))))
(op2 ({opl (+DA%* "is' "are"))
(op2 'innocent")})INNT}
{(opl "he'™)
(op? (wDAw 'daefendant ' "defendanta’
(op3 {(opl (+OR* 18' are ))
(ep? "imnocent' }})
(cpd 'when'}
(op5 ((opl («OR* 'd1d" "made"})
(op2 ((opl (*«DR* 'the" 'a'" 'an"
"wempty*"))
(op2 (%DHe 'affirmation"
"affirmations ')}

"accuged ')

In the above representation, »OR* marks mutually dis-
joint components of the gloss while the features op1,
op2 etc represent sequentially ordered portions of the
gloss

This structure can be transformed automatically into
a format suitable for statistical processing As part of
that transformation, we also do a hit of English morphol
ogy, to simplify the analyzer s work The analyzers still
runs as a bottom-up walk of the parse tret, using unifi-
cation to implement Montague-sty it composition Now
ever, we replace the conventional semantic lexicon with a
gloss lexicon, easily obtainable from an online Japanese
English dictionary

({N =-> "kaisha"}

{({x0 glosu) = (#0R* "company ' firm'3))

We also replace semantic rules with glossing rules, e g
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SEMANTICS

PLRSON JOHN

melance THUTIC

PERSON  JOHN

+a

John ga Ikt

GLOSSING

Word Iathce

{OR  want lo
WANLS 10 )

opl

(OR  wan 1o
wank o }

ki +al

Figure 7 Semantic analysis versus glossing Both convert parse trees into feature structures using unification-based
compositional techniques Semantics computes a conceptual representation while glossing computes a target language

word lattice
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((8F => § ¥P)
((X0 glose opl) = (I2 gloee))
((X¢ gloss op2) = (#OR* “ghich" "that")}
((X0 glosa op3) = (I1 gloes))
((X0 tmp) = (X2 tmp}))

This rule says to gloss a Japanese noun phrase (HP)
created from a relative clause (S) combining with an-
other noun phrase (HP), glue together the following—an
English gloss of the child IP, a relative pronoun (either
which or that), and an English gloss of the S The rule
also propagates abstract features (tmp) from the child HP
to the parent We return to these features in the next
section

We built a set of 171 complex rules to match the struc-
ture* in our syntactic grammar Our new semantic ana-
lyzer composes glosses (word laltices) rather than mean-
ings, so we call it the glosser

Figurt 2 compares glossing and semantic interpreta-
tion Each parse tree node js annotated with its analysis
Sentence level analyses appear at the top These analy-
ses are then fed to subsequent JAPAN GLOSS modules—
to the generator (in the case of semantic analysis) or
directly to the statistical model (in the case of glossing)

3 Linguistic Aspects

As Figure 2 shows, semantic interpretation makes much
more flexible use of unification as a combinator than
glossing does In fact, most of our glossing rules sim-
ply concatenate word lattices and insert function words
Concatenation lets us put a direct object after a verb
in English for example, even though it comes before
the verb in Japanese However man> Japanese struc
tures are different enough from English that this strat-
egy breaks down Consider the sentence John ga Bill ni
labesaseta parsed as

s
5

S

Y

¥

PP PP v
NP P IP P \lﬂ VSUF VSlUF
John ga Bill m tabe zase La

(eai) (force) tpast)

One translation of this sentence into English is John
forced Bill to eat The difficulty is how to assign word
lattices to intermediate nodes in the parse tree If we
assign forced to eat to tabesastta, there will be no way
for us to squeeze in the word Bill at the next level Our
solution is to use unification to pass abstract features up
the parse tree We store abstract information under a
top-level feature called tmp, parallel to the glose and

syn (for syntaciie) feature structutes So the feature
structure at the lowest § node looks hike

((gloes (»DE+ "gat" "ingest"))
(tap ((force +) (past +))))

lhe complex (S -> PP $) rule then successfully un-
packs the abstract features into words at the next level

({gloas ({opl "forcad")
(op2 "B111")
(op3 "to")
(opd (»Ofx 'eat” "ingest')))))

How to efficiently turn bundles of abstract features
into English is a difficult general problem lving at the
heart of natural language generation Our glosser tack-
les only simple instances of this problem, involving at
most three of four features Three binary features can
require up to eight rules to 'spell out," and we some-
times must specify all cases Often, however we see a
decomposition in which one abstract feature spells itself
out independently of the others In these cases, there is
no exponential blowup in thp required number of glosser
rules

Here is a fragment of rules dealing with the above
example

(CY -> ¥ VSUF)
({(x0 tup} = (x1 tmp}))
(+10R+
(({x2 eyn antry=form) = "maea")
((x0 glosa) = (x1 gloas))
({x¢ tmp force} =~ +})
(({x2 ayn entry-form) = "ta )
{(x1 tmp force) =c +)
{(x0 gloes} = (x1 gloas))
{(x0 tmp past) = +))
{({x2 syn entry-form) = "ta")
((x0 gloms op1) = (a1 glome))
((x0 gloee op2) = "+past™))))

(s -> V)
({x0 glome) = {x! gloes}}
({xD tmp) = {x1 tmp)))
({(PF -> NP )

((x0 eyn entry~form) = (x2 syn antry-form))
((x0 gloes) = (x1 gloes))})

{{§ -» PP 5}
(*XORw

(({xl eyn entry-form) = "ga")

{((x0 glosea cp1) = (xt gloss))

((x0 glose op2) = (x2 glose)))

(((xl ayn entry-form) = 'm1")}

((x2 tmp forca) =c +)

(+X0R+ {((x2 tmp pant) =c +)
((x0 gloee opl) = ’forced'))
{((x0 glos= opl) =

{«0Rs "force' 'forces ))})

((x0 glose op2) = {x1 gloes))

((x0 gloes op3) = "to')}

((x0 glose opq) = (x2 gless))}})
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In this notation, =c (a symbol borrowed from Lexical-
Functional Grammar [Kaplan and Bresnan, 1982])
means the feature sequence must already exist in the
incoming child constituent, and *XDR* sets up a disjunc-
tion of feature constraints, only one of which is allowed
to be satisfied

4 Statistical Language Modeling

Our glosser module proposes a number of possible trans-
lations for each Japanese word or sequence of words that
have been matched to a syntactic constituent by the
bottom-up parser Each such translation unit represents
a lexical island according to the knowledge the glosser
hat, 1 e , a. piece of text for which no other constraints
are available At the same time, the various renditions
of each translation unit can combine together, leading to
many possible translations at the sentence level In order
to select among the many combinations of these possi-
bilities we need an objective function that will score
them, hopefully ranking the correct translation near the
top To accomplish this task, we approximate correct-
ness by fluency, and further approximate fluency by like
lihood, selecting the combination of words and phrases
that seems most likely to occur in the target language
This approach offers two advantages

* Because we measure likelihood at the sentence level,
we take into account interactions between words and
phrases that are produced from different parts of
the Japanese input For example bei in Japanese
may mean either American or rice and sha may
mean either shrine or company If both possibilities
survive for both words after the glosser processes
beisha, the likelihood criterion will select American
company which is almost always the correct trans-
lation In addition ranking potential translations
b\ their probability in the target language indirectly
handles collocational constraints and allows the cor-
rect choice of function words which may not appear
in the source text at all (e g articles in Japanese) or
are subject to non-compositional lexical constraints
(e g prepositions in English, as in afraid of or on
Monday versus in February)

* In the absence of additional lexical constraints orig-
inating from neighboring target language words and
phrases individual translations containing more
common and widely used words are preferred over
translations that contain more rare and obscure
words In this way the Japanese word kuruma will
he translated as car and not as motorcar This tac-
tic is optimal when no disambiguating information
is available, since it selects the most likely transla
tion avoiding rare and very specialized alternatives

In the remainder of this section we discuss how we
measure the probability of an English sentence from the
probabilities of short sequences of words (n-grams [Bahl
et al, 1983]), how we estimate these basic probabilities
of n-grams, how we handle problems of sparse data by
smoothing our estimates, and how we search the space
of translation possibilities efficiently during translation
so as to select the best scoring translations
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4 1 The sentence likelihood model

As we discussed in the previous paragraph, we want to
associate with each English sentence A a likelihood mea-
sure PT(A) Since the number of such sequences is very
large and our training text is not unlimited, we cannot
expect to count the occurrences of 4 in a eorpus and
then use a classic estimation technique such as maximum
likelihood estimation ' Instead, we adopt a Markov as-
sumption, according to which the probability of seeing a
given word depends only on the short history of words
appearing just before it in the sentence Using a his-
tory of one or two previous words, the stochastic process
that generates sequences of English words is approx1
mated by a first or second order Markov chain (bigram
or Ingram model) respectively For reasons of numerical
accuracy with finite precision computations, we. convert
probabilities to log likelihoods then, the log-likelihood
of a sequence of words S = ww2 w, is

LL(S) = ) log Pr(w,|w,-1)

LL(S) = 3 log Pr{w,|u._;, 1,-2)

for higrams

for tnigrams

Unfortunate!}, this likelihood model will assign
smaller and smaller probabilities as the sequence be-
comes longer Since we need to compare alternative
translations of different lengths we alleviate this prob-
lem by adding a heuristic corrective bonus which is an
increasing function of sentence length After experiment-
ing with several such functions we have found that the
function f(n) = 0 5n where n is the length of the word
sequence gives satisfactory results when added to the
log-likchhood measure This is equivalent to adding an
exponential function of length to the original probabili-
ties

4 2 Estimating n-gram probabilities
To estimate the conditional bigram and Ingram proba
bilities used in our model, we processed a large corpus
of carefully written English texts and we measured the
frequencies of one two- and three-word sequences in
it Since we aim at translation of unrestricted Japanese
newspaper articles, we selected the Wall Street Journal
(WSJ) corpus® as the most representative available col-
lection of Fnglish texts that our output should imitate
We processed the 1987 and 1988 years from the WSJ
corpus, giving us 46 million words of training text, con-
taining approximately 300,000 different word types

The large number of different word tvpes makes our
modeling task significantly more complicated than previ-
ous similar language models These models were usually
designed for speech recognition tasks, where the vocab-
ulary was limited to at most a few thousand frequent
English words With our vocabulary of 300,000 words,
we have 9 10'° different bigrame, and 2 7 10'® differ
ent trigrams Handling such large numbers of n-grams

' Even with unlimited text, such an approach is not feasi
ble because of practical limitations in terms of memory and
hardware speed

2Available from the ACL Data Collection Initiative as CD
Rom 1



16 problematic i terms of storage space and retrieval
speed Furthermore, estimating probabalities for these 1s
d]ﬂ'lc:}:lt, since mosi of them do not occur 1 our Lraiming
text

In order to reduce the number of n-grams for which
we need to eslimate probabilities, we first implemented a
simple schema of class-based smoothing We developed
hmite-state automata that use features ke word posi-
tion capitalization, and types of characters in the word
to separate the words 1nto one of four classes numbers,
monetary amounts, proper names, and regular words
We then Lreat all words 1n each of the first three classes as
the same word, pooling their frequencies together and us-
mg uniform maximum likelihood estimates for all words
1n each class, rrespective of whether the particular word
has heen seen n the traming corpus or not

The class-based smoothing reduces the number of
worda for which we need 1o estimale ndividual prob-
abililis Lo 120,000, more importantly 1t reduces the
number of bigrams Ly « factor of 75 and the number
of trigrams by a faclor of 225 Sull many of the sur-
viving n grams have not been observed in the training
corpus and to estumate their probability as sera would
he clearly incorrect, given Lthe compositionahty of the
Englsh language Good [1953] has proposed a method
that addresses this problem and 1s theoretically optimal
under rather general distnbutional assumptions (namcly
thal ench n-gram follows & marginal binonnal distribu-
tion) The resulling Good-Turing estimator replaces the
observed frequency r with the carrected froquency

. Nesr
rm=(r+1) N,

where ¥, s the number of n-gramns that occur r Limes
The correrted [requencies £~ are subsequently wsed (o
provide estimates of probabilities through the max
murn hkelthood formula [n general, prohabilily nass
15 slolen from the obwerved n-grams (proportionally
more {roin those that have been observed a few times
than from the more frequent ones), and redistributed to
the unseen n grams

The Good-Tuning estimator still suffers from ond dis-
advantage, It ass1gns the same probabality Lo all n-grams
that have not been geen 1n the corpus {and for Lhal mat-
ter, to all n-grams that have heen secn the same number
of times 10 the corpus) Church and Gale [1991] have
proposud an enhanced version of the estimator for bi-
grams 1n which a secondary predictor based on unigram
(word) probatalities 15 used to separate the bigrams tuto
bins, and the Good-1uring formulais applied separately
within each bin The rationale of this approach 1s that
pairs of {requent (or infrequent) words are expected to be
frequent (or infrequent) themselves departures from Lhis
norm become notable when the bigrams are separated
mto bims according Lo the hkelihood of their component
words, and Lhese differences lead to different estimates
for the bigram probabilities even 1f the bigrams have the

I Recall that Lhe latter contans 4 6 107 words and con
sequently only a shghtly hgher number of bigrams and in
grams, when the special end of-sentence token 18 Leken into
Aacraank

same frequency in the corpus Church and Gale [1991]
provide empirical evidence that indicates Lhal the en-
hanced Good Turing estimator culperforms bath wimple
estimators such as the MLF and (to a lesser extent) other
complex estimators such as an enhanced version of Lhe
deleted estimation method [Jelinek and Merccr, 1980)

We have implemented the basic {scod-Turing mic thod
for single words, allowing for 130,000 upween words
We then use the Good-Turing estimates of proba-
bilities of words to compute the secondary predictor
log(Pr(A)Pr(8)) m the enhanced Good lurning esti-
mator for the bigram AB  We have also extended
the enhanced method o tngrams 487, using the sec
ondary predictor log(Pr{A8) Pr{()) Lhat combines the
estimaled probabilities of the imtial bigram and the fi
nal word * We smeolh the secondary predictor by using
2 or 3 bins per order of magmtude (for (rigrams and
bigrams, respectively}, and we smioath the counts of 1t
gramsn tach bin { N} with a dynamically sell adjusting
local smioolher

43 Searching the word lattice space

In the previous (wo subscclions we discussed how any
sequence of words can he assignod a hkehhood estimalty,
appropriatdy modified for lengith  This 1 prineiple
would allow ranking the various (ranslation alternatives
by sunply compuling the hkelihood flor each of then
However 1he word lattices produced by the glusser com-
pactly encode billions of possible translations a sunpl
linear chain of states wilh 30 statcs and (wo ires leaving
each stale represents 2% or about one lullion paths
each corresponding Lo a potential Lranslation

( ensequently, a meihod 15 needed 1o (CHiciently search
the word laltice and select a sinall set of hughly hkely
translations  Yve adopted the N bt algorithm for this
purpose [Chow and Schwariz 1989] Unlitke the widdly
used Viterbn algonthm [Viterbi, 1967] which only pro-
duces a single best sconng path this algonthim offers
the advantage of producing any number of the Inglcst
scoring paths in the laltice, (s paths can then be
rescorcd with a more extcusive (and «xpensive ) method
It also offers controllcd accuracy (1€, the cxtent of sulr
aptimahly ran bo arbitranly decreased by the ammount
of memory made available Lo the search) and empirical
studis [Nguyen ef al, 1904] have shown that 1t per
forms equally well with olher mog tomnplicated meth
ods  Finally, no forward eslimatis of the viabilily of
a partial path are required {(as 15 for example the
case 2 the A* or stack decoder [Jehnek ¢f ol 1975
Bahl et a! 1983] algonthm)

We firat perform a topological sort of the siales 1n
Lhe word latlice, 5o that wo can visil each state after all
its predecessors have bocn processed  As we proress o
given slate, we keep a list of the besl scormg sequences
of words rcaching Lhal state [romn the starl stale of the

Hog(Pr(A)Pr{B) Pr(C)) 15 ancther predictor wluch we
believe may calperform lag{Pr( 18} Pr(< 1) because 1 1 less
correlated with log(Pr{48C)) Bul compoting this altcrna
tive predictor even offl ine 1 impras Lical because of Lhe vary
large number of possible trigrams
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lattice At each state, we extend all word sequences end-
ing at the predecessors the the current state, recompute
their scores, and prune the search space by keeping only a
prespecified number of sequences, specified by the width
of the global search beam In practice, we have found
that a beam of 1,000 hypotheses per node gives accu-
rate results at reasonable search speed The sequences
are stored compactly via pointers to the preceding states
(along with information about the specific arc taken at
each step), and maintained in a fast priority queue to
avoid sorting This allows us to simulate an HMM of
anv order, as well as trace any number of final sentences
(up to the beam width) when the final state of the lat-
tice is reached The complexity of the search algorithm
is slightly superhnear in terms of the beam width, the
number of slates, the n-gram length used in the model,
and the average fan-out in the lattice (number of arcs
leaving each state)

5 Results

The glosser is currently being used in our machine trans-
lation system as a fall-back component in cases of pars-
ing or semantic transfer failures WE participated in
the most recent (September 1994) ARPA evaluation of
machine translation systems (see [White and O'Connell,
1994] for a discussion of the evaluation methodology em-
ployed) with promising results A sample of translations
produced by the glossing module is given below, in the
form of Japanese input followed by the correct transla-
tion and the translation given by the glosser Due to
space limitations, we are showing output on small ex-
ample sentences, although JAPANGLOSS typically op-
erates on much longer sentences characteristic of news-
paper text

BeEBCTFHAGATEYXH > T3,
He hay unusual abilty 1in English

He holds a talent that exceeded the English
language

rtOWMABREE - ko
The news gol abroad

The ainformation epread

T Ewi Ao RIE TR BhEAED
kv,

Liming creatures must be adaptable to entmironmental
Chﬂﬂg(’

Animal circumstances accommodation variation
does not enable

HEACEIREXZER S T >R WATHDL

LnetdE5,

Visilors {o Japan always admire Mi Fup

Tourigts that coming in Japan be déacided, and
aay that Mt Fujl 1s splendad

rRBACEATD &,

He 18 adverse 1o violence
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He has the contrary to violence

All the above translations have been obtained with
the bigram language model, as heavy computational and
storage demands have delayed the deployment of the
more precise trigram model We expect higher qual-
ity output when the Ingram model becomes fully oper-
ational

6 Related Work and Discussion

The glosser described in this paper is a type of transfer
MT, and it follows in the tradition of syntax-based MT
systems like SYSTRAN However, our use of statistics
allowed us to avoid much of the traditional hand-coding
and to produce a competitive MT system in nine months
Other statistical approaches to MT include CANDIDF
[Brown el ai 1993], which docs not do a syntactic anal-
ysis of the source text, and LINGSTAT [Yamron {t al,
1994], which does probabilistic parsing Both LING
STAT and JAPANGLOSS require syntax because they
translate between languages with radically different word
orders

Our use of features in syntax, glossing, and seman-
tics gives us the flexibility to correct translation errors
capture generalizations, and rapidly build up a complete
MT system As the features become more abstract the
analysis deepens, and our translations improve—this is
knowledge-based work improvement will also come
from better statistical modeling Our future work will be
directed at finding these improvements, and at studying
the interaction between knowledge bases and statistics
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