
Evolvable Ha rdware for General ized N e u r a l Ne tworks

Masahi ro Murakawa Shuj i Yoshizawa Isamu K a j i t a n i * Tetsuya H i g u c h i * *

University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
* University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan

** Eleetrotechinical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan

Abs t rac t
This paper describes an evolvable hardware
(EHW) system for generalized neural network
learning. We have developed an ASIC VLSI
chip, which is a building block to configure a
scalable neural network hardware system. In
our system, both the topology and the hid­
den layer node functions of a neural network
mapped on the chips are dynamically changed
using a genetic algorithm. Thus, the most de­
sirable network topology and choice of node
function (e.g. Gaussian or sigmoid) for a given
application can be determined adaptively. This
approach is particularly suited to applications
requiring abil i ty to cope wi th time-varying
problems and real-time t iming constraints. The
chip consists of 15 Digital Signal Processors
(DSPs), whose functions and interconnections
are reconfigured dynamically according to the
chromosomes of the genetic algorithm. Incor­
poration of local learning hardware increases
the learning speed significantly. Simulation re­
sults on adaptive equalization in digital mobile
communication are also given. Our system is
two orders of magnitude faster than a Sun SS20
on the corresponding problem.

1 I n t r o d u c t i o n
The tradit ional applications of neural networks focused
on the off-line learning of a given function using a single
network whose weights are gradually modified. In recent
years, the alternative approach of on-line adapting by re­
shaping the network itself has been attract ing renewed
attention [Fiesler, 1994]. The on-line approach has the
advantages of efficiency and flexibility which are impos­
sible wi th the off-line approach. We embody this on-line
approach w i th evolvable hardware (EHW) [Higuchi et
al., 1992][Higuchi et al., 1994]. Abi l i ty of this method to
dynamically adapt to changing situations is particularly
suited to practical industrial applications.

However, opt imal performance for a given application
is produced by an architecture wi th the most suitable
topology and the most appropriate node functions (i.e.

sigmoid or Gaussian). Further, to meet the time con­
straints imposed by real-time applications, neural net­
work hardware systems need to be 'tai lored' to the size
of the ideal network for the problem. In general, it is
very difficult to design an optimal neural network and
process it wi th scalable parallel hardware.

To solve these two problems, we have developed (1) a
learning scheme which utilizes genetic algorithms (GAs)
to automatically select both the optimal network topol­
ogy and the node functions, and (2) an evolvable hard­
ware chip that functions as a building block for config­
uring a scalable neural network.

A concept of E H W is an innovative hardware de­
sign methodology for t ruly adaptive hardware systems
[Higuchi, 1997]. In systems designed by EHW concepts,
both the choice of the hardware function on each process­
ing element and the specification of these elements' in­
terconnections are determined by a GA [Goldberg, 1989]
and reconfigured dynamically. The particular chip that
we describe in this paper is an example of hardware de­
signed by the EHW concept aimed at generalized neural
network processing.

The paper is organized as follows. Section 2 reviews re­
lated work on learning neural networks wi th GAs, high­
lighting especially some of the shortcomings that our
learning scheme wi l l address. Section 3 describes the
concept of EHW. Section 4 explains our new scheme and
how EHW chips are dynamically configured to process
neural networks. In Section 5, we report simulation re­
sults on the problem of adaptive equalization in digital
mobile communication. Section 6 briefly describes the
chip, and Section 7 gives our conclusions.

2 Evo lu t ionary Neura l Networks
Many researchers have worked on designing neural net­
works with GAs. Since there are many thorough reviews
on this work [Schaffer et a/., 1992][Yao, 1993], we do not
attempt an exhaustive review here. Such approaches
typically utilize a GA to evolve the optimal topology of
an appropriate network, and then use back-propagation
to train the weights. However, using this approach on-
line for industrial applications would be difficult because
of the slow speed of both the back-propagation and GA
components.

1146 NEURAL NETWORKS

Figure 1: Evolvable Hardware at the Gate-Level

To improve the learning speed, radial basis function
(RBF) networks [Powell, 1987][Poggio and Girosi, 1990]
combined wi th genetic algorithms may be an appealing
choice. Indeed, the learning speed of RBF Networks
(RBFNs) can outperform multi-layer perception (MLP)
by up to three orders of magnitude [Moody and Darken,
1989J.Billings, for example, has worked on the genetic
synthesis of RBFNs [Billings and Zheng, 1995].

However, compared with the MLP, RBFN requires
large numbers of hidden layer nodes, particularly for
high-dimensional input /output spaces (the "curse of di­
mensionality"). It was therefore our idea to mix the
use of RBFs and sigmoid functions within a single ar­
chitecture. Further, rather than specifying a priori how
the two functions should be combined, we developed a
method of using a GA to automatically tailor the node
functions in a network to a given problem. To reduce the
learning time, a local learning algorithm is first applied
to bring the network weights to a reasonable level. This
local learning is performed in parallel by hardware.

One significant benefit of our approach is that the net­
work structure can vary in time. This is not possible with
conventional neural network hardware, but our chip al­
lows the optimal network structure and node functions
to be dynamically reconfigured even while the network is
being used on-line. In other words, our hardware system
is a parallel processor where the number of processing
elements is varied by a GA to continually produce the
best performance.

3 Evolvable Hardware
The method of the evolvable hardware design is to

change dynamically following two hardware configura­
tions according to the GA chromosomes: (1) choices
of a hardware function on each processing element of
a soft ware-reconfigurable device and (2) specification of
interconnections between these elements. These recon­
figurations can continue on-line to improve performance
adaptively. In the conventional hardware design, it is
necessary to prepare all the specifications of the hard­
ware functions in advance. On the other hand, EHW
can be reconfigured without such specifications. From
this, we can see that the EHW concept provides a con­
trasting bottom-up hardware design methodology to the
conventional top-down methodology. Thus, EHW is par­

ticularly suited to real-time applications where no hard­
ware specification can be given in advance.

To realize the EHW concept, most existing research
employs Field Programmable Gate Arrays (FPGAs)
and Programmable Logic Devices (PLDs) as software-
reconfigurable devices. Their internal circuit connections
and node logic functions can be reconfigured by down­
loading binary strings, called architecture bits. The basic
idea of these researches is to regard the architecture bits
as chromosomes and to evolve good hardware structures
by applying GAs to these strings, as shown in Figure 1.

Attempts to apply most research on EHW to practical
problems, however, would suffer from the common prob­
lem that only relatively small circuits can be evolved.
This is because the hardware evolution is based on prim­
itive gates such as AND-gates and OR-gates; we call the
evolution at this level gate-level evolution. The hardware
functions resulting from gate-level evolution are not typ­
ically powerful enough for use in industrial applications.

In order to solve this problem, we have proposed a
new type of hardware evolution: function-level evolu­
tion [Murakawa et a/., 1996]. Our proposal is that if
hardware is genetically synthesized from high-level hard­
ware functions (such as adders and multipliers) instead
of primitive gates (like AND and OR gates), more use­
ful hardware functions wil l be obtained. Depending on
the application, the high-level function and the topol­
ogy of the interconnection need to be determined care­
fully. This suggests that, there wil l be a variety of EHW
architectures at the function-level. The particular chip
that we describe in this paper is an example of hardware
designed for the function-level evolution. In the chip,
the high-level functions can be directly implemented by
a single DSP to perform the neural network processing
(e.g. summation, calculation of the sigmoid functions or
RBFs). The interconnections and the functions of each
DSP are then determined by the GA chromosomes.

4 Evolvable Hardware for Generalized
Neura l Networks

We have developed a learning scheme for a generalized
neural network [Murakawa et a/., 1997]. We describe
the genetic: learning and then show how the network
is mapped onto FPMD (Field Programmable Mult iple
DSPs) chips. FPMD is an evolvable hardware chip spe­
cially designed for implementing generalized neural net­
works.

4.1 Genetic Learning
The generalized neural network considered here is de­
fined as follows:

MURAKAWA, ET AL. 1147

Table 1: Genetic Operators

Figure 2: Evolvable Hardware for Generalized Neural
Networks

basis function (RBF) or sigmoid function:

The number of outputs in the network is assumed to be
one, but the architecture can be readily extended to cope
w i th mult i -output problems.

The genetic learning determines the network topology
(e.g. the number of nodes:n) and the choice of node
functions (e.g. Gaussian or sigmoid function) adaptively
for a given application.

The and the parameters of the node functions
(e.g. are tuned by local learning wi th
the steepest descent method. In Table 1, descriptions
of the genetic operators are given (for more details, see
[Murakawa et al., 1997]).

Figure 2 illustrates this genetic learning. A chromo­
some of the GA represents one network. The network is
evolved by applying the genetic operators to the chro­
mosome. For example, Figure 2 shows how a network

[Coding
Gene

Selection

Crossover
Mutat ion |

Random
Immigrant |
Local
Learning |

| a chromosome consists of n genes
a gene represents one hidden layer node
(node function and the parameter)
tournament selection
(tournament size is 2)
modified two-point crossover
three types of mutations:
Insertion of a node - insert a RBF
node or a sigmoid node
Deletion of a node - delete a node
selected randomly |
Replacement of a node -
change the node function
10% of the population are replaced
wi th new individuals created randomly |
tune the node parameters by
iterations of the steepest descent method

wi th two hidden layer nodes (a) is evolved to have 16
nodes (b).

4.2 M a p p i n g o n the F P M D Ch ips
In Section 4.1, we have described how the most desirable
network structure and the choice of the node functions
are determined wi th genetic learning. Here we show how
the obtained network is mapped on the F P M D chips and
how they are reconfigured dynamically.

The F M P D chip is a building block to configure a
scalable neural network hardware. An arbitrary size of
neural network hardware can be configured wi th mult iple
FPMDs because the chip includes 15 DSPs connected in
a binary tree shape as shown in Figure 2(c).

The obtained neural network by genetic learning is
immediately mapped on FPMDs. For example, the net­
work in Figure 2(a) can be mapped onto F P M D No. l in
Figure 2(c). In this case, as the network is sti l l small,
only one F P M D is used.

Each DSP can perform any arithmetic function. So,
for example, by using the seven DSPs in F P M D No. l in
Figure 2(c) (on the right side), a sigmoid function is ef­
fectively implemented wi th the binary tree connections
uti l izing the inherent parallelism. Binary tree connec­
tions are also very useful when the summation of outputs
is calculated. For example, the F P M D No. 9 in Figure
2(d) is configured to conduct the summation in parallel.

The functions and interconnections of the F P M D chips
are dynamically controlled by rewrit ing the chromosome.
For example, the output of the F P M D No.9 in Figure
2(c) is connected to the DSP No . l . After evolution the
DSP No.4 is connected to the output in Figure 2(d).
Also, the 7 DSPs on the right side of the F P M D No. l in
Figure 2(c) calculate the sigmoid function. After recon­
figuration they are changed to the Gaussian function in
Figure 2(d).

1148 NEURAL NETWORKS

Figure 4: Adaptive Equalizers

5 Adap t i ve Equal izer in D ig i ta l Mob i le
Commun ica t ion

To examine the performance of our system, we con­
ducted a simulation of adaptive equalization in digi­
tal mobile communication. In particular, the ability to
adapt to a dynamically changing environment was of spe­
cial concern to us.

High-speed communications channels arc often im­
paired by linear and non-linear channel distortion and
additive noise. To obtain reliable data transmission in
such communications systems, adaptive equalizers are
required [Proakis, 1988], In digital mobile communica­
tions, the channel can be influenced by environmental
conditions such as landscape and the presence of build­
ings (Figure 3). The task of the equalizer is to recover
the transmitted symbols based on the channel observa­
tion y(t) .

Existing adaptive equalization techniques for time-
varying channels employ a linear transversal filter (Fig­
ure 4). However, if the non-linear channel distortion
is too severe, adaptive equalizers based on such linear
transversal filters suffer from severe performance degra­

Figure 5: Learning Performance of the EHW-Based
Equalizer (SNIl : 15 dB)

Figure 6: Bit Error Rate of the EHW-Based Equalizer
versus SNR

dation. For such channels, non-linear adaptive equal­
izers based on neural networks were proposed [Chen et
al., 1990][Chen et al., 1991]. But the algorithms are so
complicated for hardware implementation.

To overcome these difficulties, we apply our system to
the adaptive equalizer. A communications system that
employs the EHW-based adaptation equalizer is shown
in Figure 4. The transmitter sends a known training
sequence to the receiver, and the receiver adjusts the
EHW-based equalizer so that it reproduces the correct
transmitted symbols.

5.1 Learn ing Per formance of the
E H W - B a s e d Equal izer

We simulated the learning performance of the proposed
EHWT-based equalizer. The transfer function of the chan­
nel was given by and zero-mean
white Gaussian noise was added to the output of the
channel. The order of the equalizer was 2 (m = 2).

A training set of eight data points was generated at
every generation. Using a population size of 80, the fit­
ness of each individual was determined by n/8, where n
was the number of correct classifications by the EHW.
The bit-error-rate (BER) was defined as the ratio of mis-
classified to correct symbols in the output of the best-of-
generation individual. The BER was evaluated at every
generation based on 105 random input symbols. Simu­
lations were carried out which restricted the maximum

MURAKAWA, ET AL. 1149

Figure 7: Non-linear Transmission Channel used in the
Simulations

number of the hidden layer nodes to 20.
Figure 5 shows the learning performance of this sim­

ulation for a signal-to-noise ratio (SNR) of 15 dB. The
solid curve was obtained by averaging the results of 100
independent runs. The broken line shows the learning
curve of a transversal-filter-based equalizer, whose to­
tal number of training sequences was the same as that
of the EHW. As can been seen, the BER of the EHW-
based equalizer is far lower. This is due to the abil i ty of
the generalized neural network to synthesize non-linear
functions.

Figure 6 shows the BER versus SNR achieved by the
EHW-based equalizer at generation 100. We found that
a significant improvement in the BER could be achieved
by the EHW-based equalizer, especially at a high SNR.

5.2 Adaptive Equalization of
Time-Varying Channels

In real communications systems, the characteristics of
the channel are usually t ime-varying. Hence, adaptive
equalizers are required to follow such changes and com­
pensate for the channel distort ion.

We therefore simulated the performance of the EHW-
based adaptive equalizer for time-varying channels, using
the non-linear channel shown in Figure 7. The transmit­
ted sequence is passed through a linear channel whose
transfer function is and the out­
put of the channel is added to the nonlinear harmonics.
The value of the gain coefficients d2 ,d3 ,and d4 deter­
mines how severe the nonlinear distortion wil l be. Such
non-linear channel models are frequently encountered in
data transmission over digital satellite links. The linear
transversal-filter-based adaptive equalizer can not com­
pensate for such non-linear channel distortion.

As before, we simulated the bit-error-rate achieved by
the EHW-based adaptive equalizer whose order m was
2. Simulations were performed for the case in which d\
changed drastically during evaluation (Figure 8) and for
the case in which d\ changed gradually (Figure 9). In the
simulations, the coefficients were set to d2 = 0.6, d3 =
0.5, and d4 = 0.4. The length of the training sequence
was 8. For the genetic learning, the maximum number
of the hidden layer nodes was restricted to 20 and the
population size was 80. The results were averaged over
100 independent runs.

Figure 8. Time-varying Figure 9. Time-varying
Channel (drastic change Channel (gradual change

in d\) in d\)

Figure 10. Adaptive
Equalization of the

EHW-based Equalizer
(SNR: 15 dB)

Figure 11. Adaptive
Equalization of the

EHW-based Equalizer
(SNR: 15 dB)

The BERs achieved by the EHW-based equalizer for
the channels of Figure 8 and Figure 9 are shown in the
graphs of Figure 10 and Figure 11, respectively. These
graphs demonstrate that EHW-based equalizers have the
abil i ty to follow both drastic and gradual environmental
change.

6 Hardware Imp lementa t ion
We have developed a prototype board and an ASIC VLSI
chip. The FPMD chip is designed to implement gener­
alized neural networks.

6.1 F P M D ch ip
The F P M D chip includes 15 DSPs connected in a tree
shape. The tree size is genetically controlled. Wi th in a
chip, broadcast hardware is included to speed up local
learning. Local learning is conducted in parallel at each
DSP. The chip has 250K gates and operates at a 33 MHz
clock speed. It wil l be available in July, 1997. For the
learning of the adaptive equalizer, we have a simulation
result that the execution wi th 9 F P M D chips takes 1.3
seconds while the execution on Sun SS20 takes 2 minutes.

6.2 The prototype board
The prototype board is designed to enable on-line adap­
tat ion. As shown in Figure 12, the prototype board in­
cludes two sets of F P M D chips. One of the two FPMD
sets is an execution F P M D set, which actually processes
the incoming data. The other set is a learning FPMD
set, which is continually used to find a better hardware

1150 NEURAL NETWORKS

ARM : architecture bit memory

Figure 12: Prototype Board

structure by genetic learning while the execution F P M D
set is processing the existing best work. The training
data are updated at regular intervals, enabling the ar­
chitecture to keep track of a changing environment.

If the performance of the learning FPMD set is im­
proved, then the execution F P M D set is reconfigured
using the chromosome obtained by the learning FPMD
set. Thus, the system realizes on-line adaptation.

The design of the prototype board allows it to be con­
nected to the PCI bus of a personal computer. The GA
calculation is performed outside the board, by the per­
sonal computer.

7 Conclusion
We have described a learning scheme and an evolvable
hardware chip for generalized neural network learning.
This development is aimed at the use in practical in­
dustrial applications, especially those which require the
abil ity to cope wi th time-varying problems and real-time
t iming constraints. The need for such applications has
been increasing recently. So, in addition to the adaptive
equalizer, we are now working on loss-less data compres­
sion and A T M buffer control.

References
[Billings and Zheng, 1995] S. A. Billings and G. L.

Zheng. Radial basis function network configuration
using genetic algorithms. Neural Networks, 8(6):877
890, 1995.

[Chen et ai, 1990] S. Chen, G. J. Gibson, F. N. Cowan,
and P. M. Grant. Adaptive equalization of finite non­

linear channels using multilayer perceptrons. Signal
Processing, 20(2):107 119, 1990.

[Chen et a / , 1991] S. Chen, G. J. Gibson, F. N. Cowan,
and P. M. Grant. Reconstruction of binary signals us­
ing an adaptive radial basis function equalizer. Signal
Processing, 22(1):77 93, 1991.

[Fiesler, 1994] E. Fiesler. Comparative bibliography of
ontogenic neural networks. In International Confer­
ence on Artificial Neural Networks, 1994.

[Goldberg, 1989] David E. Goldberg. Genetic Algo­
rithms in Search, Optimization, and Machine Learn­
ing. Addison Wesley, 1989.

[Higuchi et al., 1992] T. Higuchi, T. N iwaT. , TanakaH.
Iba, H. Garis, and T. Furuya. Evolvable hardware
with genetic learning. In Simulation of Adaptive Be­
havior. M I T Press, 1992.

[Higuchi et al, 1994] T. Higuchi, H. Iba, and B. Mand-
erick. Evolvable hardware with genetic learning. In
H. Kitano, editor, Massively Parallel Artificial Intel­
ligence. M I T Press, 1994.

[Higuchi, 1997] T. Higuchi, editor. First International
Conference on Evolvable Systems. Springer Verlag,
1997.

[Moody and Darken, 1989] J. Moody and C. J. Darken.
Fast learning in networks of locally-tuned processing
units. Neural Computation, 1:281-294, 1989.

[Murakawa et al, 1996] M. Murakawa, S. Yoshizawa,
I. Kaj i tani , T. Furuya, M. Iwata, and T. Higuchi.
Hardware evolution at function level. In Parallel Prob­
lem Solving from Nature IV, pages 62 71. Springer
Verlag, 1996.

[Murakawa et ai, 1997] M. Murakawa, S. Yoshizawa,
I. Kaj i tani , and T. Higuchi. On-line adaptation of neu­
ral networks wi th evolvable hardware. In Seventh In­
ternational Conference on Genetic Algorithms. Mor­
gan Kaufmann, 1997.

[Poggio and Girosi, 1990] T. Poggio and F. Girosi. Net­
works for approximation and learning. Proc. IEEE,
78:1481-1497, 1990.

[Powell, 1987] M. J. D. Powell. Radial basis functions for
multivariable interpolation: A review. In M. G. Cox,
editor, Algorithms for Approximation, pages 143-167.
Clarendon Press, 1987.

[Proakis, 1988] J. Proakis. Digital Communications.
Prentice Hall Inc., 1988.

[Schaffer et ai, 1992] J. D. Schaffer, D. Whitley, and
L. J. Eshelman. Combinations of genetic algorithms
and neural networks: A survey of the state of the art.
In L. D. Whitley and J. D. Schaffer, editors, Combi­
nations of Genetic Algorithms and Neural Networks,
pages 1 37. IEEE Computer Soc. Press, 1992.

[Yao, 1993] X. Yao. A review of evolutionary artificial
neural networks. Int. J. Intelligent Systems, 8(4):539
567, 1993.

MURAKAWA, ET AL. 1151

PLANNING A N D SCHEDULING

PLANNING AND SCHEDULING

Planning 1: Relations among Techniques

