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Abs t rac t 
This paper describes an evolvable hardware 
(EHW) system for generalized neural network 
learning. We have developed an ASIC VLSI 
chip, which is a building block to configure a 
scalable neural network hardware system. In 
our system, both the topology and the hid­
den layer node functions of a neural network 
mapped on the chips are dynamically changed 
using a genetic algorithm. Thus, the most de­
sirable network topology and choice of node 
function (e.g. Gaussian or sigmoid) for a given 
application can be determined adaptively. This 
approach is particularly suited to applications 
requiring abil i ty to cope wi th time-varying 
problems and real-time t iming constraints. The 
chip consists of 15 Digital Signal Processors 
(DSPs), whose functions and interconnections 
are reconfigured dynamically according to the 
chromosomes of the genetic algorithm. Incor­
poration of local learning hardware increases 
the learning speed significantly. Simulation re­
sults on adaptive equalization in digital mobile 
communication are also given. Our system is 
two orders of magnitude faster than a Sun SS20 
on the corresponding problem. 

1 I n t r o d u c t i o n 
The tradit ional applications of neural networks focused 
on the off-line learning of a given function using a single 
network whose weights are gradually modified. In recent 
years, the alternative approach of on-line adapting by re­
shaping the network itself has been attract ing renewed 
attention [Fiesler, 1994]. The on-line approach has the 
advantages of efficiency and flexibility which are impos­
sible wi th the off-line approach. We embody this on-line 
approach w i th evolvable hardware (EHW) [Higuchi et 
al., 1992][Higuchi et al., 1994]. Abi l i ty of this method to 
dynamically adapt to changing situations is particularly 
suited to practical industrial applications. 

However, opt imal performance for a given application 
is produced by an architecture wi th the most suitable 
topology and the most appropriate node functions (i.e. 

sigmoid or Gaussian). Further, to meet the time con­
straints imposed by real-time applications, neural net­
work hardware systems need to be 'tai lored' to the size 
of the ideal network for the problem. In general, it is 
very difficult to design an optimal neural network and 
process it wi th scalable parallel hardware. 

To solve these two problems, we have developed (1) a 
learning scheme which utilizes genetic algorithms (GAs) 
to automatically select both the optimal network topol­
ogy and the node functions, and (2) an evolvable hard­
ware chip that functions as a building block for config­
uring a scalable neural network. 

A concept of E H W is an innovative hardware de­
sign methodology for t ruly adaptive hardware systems 
[Higuchi, 1997]. In systems designed by EHW concepts, 
both the choice of the hardware function on each process­
ing element and the specification of these elements' in­
terconnections are determined by a GA [Goldberg, 1989] 
and reconfigured dynamically. The particular chip that 
we describe in this paper is an example of hardware de­
signed by the EHW concept aimed at generalized neural 
network processing. 

The paper is organized as follows. Section 2 reviews re­
lated work on learning neural networks wi th GAs, high­
lighting especially some of the shortcomings that our 
learning scheme wi l l address. Section 3 describes the 
concept of EHW. Section 4 explains our new scheme and 
how EHW chips are dynamically configured to process 
neural networks. In Section 5, we report simulation re­
sults on the problem of adaptive equalization in digital 
mobile communication. Section 6 briefly describes the 
chip, and Section 7 gives our conclusions. 

2 Evo lu t ionary Neura l Networks 
Many researchers have worked on designing neural net­
works with GAs. Since there are many thorough reviews 
on this work [Schaffer et a/., 1992][Yao, 1993], we do not 
attempt an exhaustive review here. Such approaches 
typically utilize a GA to evolve the optimal topology of 
an appropriate network, and then use back-propagation 
to train the weights. However, using this approach on-
line for industrial applications would be difficult because 
of the slow speed of both the back-propagation and GA 
components. 
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Figure 1: Evolvable Hardware at the Gate-Level 

To improve the learning speed, radial basis function 
(RBF) networks [Powell, 1987][Poggio and Girosi, 1990] 
combined wi th genetic algorithms may be an appealing 
choice. Indeed, the learning speed of RBF Networks 
(RBFNs) can outperform multi-layer perception (MLP) 
by up to three orders of magnitude [Moody and Darken, 
1989J.Billings, for example, has worked on the genetic 
synthesis of RBFNs [Billings and Zheng, 1995]. 

However, compared with the MLP, RBFN requires 
large numbers of hidden layer nodes, particularly for 
high-dimensional input /output spaces (the "curse of di­
mensionality"). It was therefore our idea to mix the 
use of RBFs and sigmoid functions within a single ar­
chitecture. Further, rather than specifying a priori how 
the two functions should be combined, we developed a 
method of using a GA to automatically tailor the node 
functions in a network to a given problem. To reduce the 
learning time, a local learning algorithm is first applied 
to bring the network weights to a reasonable level. This 
local learning is performed in parallel by hardware. 

One significant benefit of our approach is that the net­
work structure can vary in time. This is not possible with 
conventional neural network hardware, but our chip al­
lows the optimal network structure and node functions 
to be dynamically reconfigured even while the network is 
being used on-line. In other words, our hardware system 
is a parallel processor where the number of processing 
elements is varied by a GA to continually produce the 
best performance. 

3 Evolvable Hardware 
The method of the evolvable hardware design is to 

change dynamically following two hardware configura­
tions according to the GA chromosomes: (1) choices 
of a hardware function on each processing element of 
a soft ware-reconfigurable device and (2) specification of 
interconnections between these elements. These recon­
figurations can continue on-line to improve performance 
adaptively. In the conventional hardware design, it is 
necessary to prepare all the specifications of the hard­
ware functions in advance. On the other hand, EHW 
can be reconfigured without such specifications. From 
this, we can see that the EHW concept provides a con­
trasting bottom-up hardware design methodology to the 
conventional top-down methodology. Thus, EHW is par­

ticularly suited to real-time applications where no hard­
ware specification can be given in advance. 

To realize the EHW concept, most existing research 
employs Field Programmable Gate Arrays (FPGAs) 
and Programmable Logic Devices (PLDs) as software-
reconfigurable devices. Their internal circuit connections 
and node logic functions can be reconfigured by down­
loading binary strings, called architecture bits. The basic 
idea of these researches is to regard the architecture bits 
as chromosomes and to evolve good hardware structures 
by applying GAs to these strings, as shown in Figure 1. 

Attempts to apply most research on EHW to practical 
problems, however, would suffer from the common prob­
lem that only relatively small circuits can be evolved. 
This is because the hardware evolution is based on prim­
itive gates such as AND-gates and OR-gates; we call the 
evolution at this level gate-level evolution. The hardware 
functions resulting from gate-level evolution are not typ­
ically powerful enough for use in industrial applications. 

In order to solve this problem, we have proposed a 
new type of hardware evolution: function-level evolu­
tion [Murakawa et a/., 1996]. Our proposal is that if 
hardware is genetically synthesized from high-level hard­
ware functions (such as adders and multipliers) instead 
of primitive gates (like AND and OR gates), more use­
ful hardware functions wil l be obtained. Depending on 
the application, the high-level function and the topol­
ogy of the interconnection need to be determined care­
fully. This suggests that, there wil l be a variety of EHW 
architectures at the function-level. The particular chip 
that we describe in this paper is an example of hardware 
designed for the function-level evolution. In the chip, 
the high-level functions can be directly implemented by 
a single DSP to perform the neural network processing 
(e.g. summation, calculation of the sigmoid functions or 
RBFs). The interconnections and the functions of each 
DSP are then determined by the GA chromosomes. 

4 Evolvable Hardware for Generalized 
Neura l Networks 

We have developed a learning scheme for a generalized 
neural network [Murakawa et a/., 1997]. We describe 
the genetic: learning and then show how the network 
is mapped onto FPMD (Field Programmable Mult iple 
DSPs) chips. FPMD is an evolvable hardware chip spe­
cially designed for implementing generalized neural net­
works. 

4.1 Genetic Learning 
The generalized neural network considered here is de­
fined as follows: 
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Table 1: Genetic Operators 

Figure 2: Evolvable Hardware for Generalized Neural 
Networks 

basis function (RBF) or sigmoid function: 

The number of outputs in the network is assumed to be 
one, but the architecture can be readily extended to cope 
w i th mult i -output problems. 

The genetic learning determines the network topology 
(e.g. the number of nodes:n) and the choice of node 
functions (e.g. Gaussian or sigmoid function) adaptively 
for a given application. 

The and the parameters of the node functions 
(e.g. are tuned by local learning wi th 
the steepest descent method. In Table 1, descriptions 
of the genetic operators are given (for more details, see 
[Murakawa et al., 1997]). 

Figure 2 illustrates this genetic learning. A chromo­
some of the GA represents one network. The network is 
evolved by applying the genetic operators to the chro­
mosome. For example, Figure 2 shows how a network 

[ Coding 
Gene 

Selection 

Crossover 
Mutat ion | 

Random 
Immigrant | 
Local 
Learning | 

| a chromosome consists of n genes 
a gene represents one hidden layer node 
(node function and the parameter) 
tournament selection 
(tournament size is 2) 
modified two-point crossover 
three types of mutations: 
Insertion of a node - insert a RBF 
node or a sigmoid node 
Deletion of a node - delete a node 
selected randomly | 
Replacement of a node -
change the node function 
10% of the population are replaced 
wi th new individuals created randomly | 
tune the node parameters by 
iterations of the steepest descent method 

wi th two hidden layer nodes (a) is evolved to have 16 
nodes (b). 

4.2 M a p p i n g o n the F P M D Ch ips 
In Section 4.1, we have described how the most desirable 
network structure and the choice of the node functions 
are determined wi th genetic learning. Here we show how 
the obtained network is mapped on the F P M D chips and 
how they are reconfigured dynamically. 

The F M P D chip is a building block to configure a 
scalable neural network hardware. An arbitrary size of 
neural network hardware can be configured wi th mult iple 
FPMDs because the chip includes 15 DSPs connected in 
a binary tree shape as shown in Figure 2(c). 

The obtained neural network by genetic learning is 
immediately mapped on FPMDs. For example, the net­
work in Figure 2(a) can be mapped onto F P M D No. l in 
Figure 2(c). In this case, as the network is sti l l small, 
only one F P M D is used. 

Each DSP can perform any arithmetic function. So, 
for example, by using the seven DSPs in F P M D No. l in 
Figure 2(c) (on the right side), a sigmoid function is ef­
fectively implemented wi th the binary tree connections 
uti l izing the inherent parallelism. Binary tree connec­
tions are also very useful when the summation of outputs 
is calculated. For example, the F P M D No. 9 in Figure 
2(d) is configured to conduct the summation in parallel. 

The functions and interconnections of the F P M D chips 
are dynamically controlled by rewrit ing the chromosome. 
For example, the output of the F P M D No.9 in Figure 
2(c) is connected to the DSP No . l . After evolution the 
DSP No.4 is connected to the output in Figure 2(d). 
Also, the 7 DSPs on the right side of the F P M D No. l in 
Figure 2(c) calculate the sigmoid function. After recon­
figuration they are changed to the Gaussian function in 
Figure 2(d). 
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Figure 4: Adaptive Equalizers 

5 Adap t i ve Equal izer in D ig i ta l Mob i le 
Commun ica t ion 

To examine the performance of our system, we con­
ducted a simulation of adaptive equalization in digi­
tal mobile communication. In particular, the ability to 
adapt to a dynamically changing environment was of spe­
cial concern to us. 

High-speed communications channels arc often im­
paired by linear and non-linear channel distortion and 
additive noise. To obtain reliable data transmission in 
such communications systems, adaptive equalizers are 
required [Proakis, 1988], In digital mobile communica­
tions, the channel can be influenced by environmental 
conditions such as landscape and the presence of build­
ings (Figure 3). The task of the equalizer is to recover 
the transmitted symbols based on the channel observa­
tion y( t ) . 

Existing adaptive equalization techniques for time-
varying channels employ a linear transversal filter (Fig­
ure 4). However, if the non-linear channel distortion 
is too severe, adaptive equalizers based on such linear 
transversal filters suffer from severe performance degra­

Figure 5: Learning Performance of the EHW-Based 
Equalizer (SNIl : 15 dB) 

Figure 6: Bit Error Rate of the EHW-Based Equalizer 
versus SNR 

dation. For such channels, non-linear adaptive equal­
izers based on neural networks were proposed [Chen et 
al., 1990][Chen et al., 1991]. But the algorithms are so 
complicated for hardware implementation. 

To overcome these difficulties, we apply our system to 
the adaptive equalizer. A communications system that 
employs the EHW-based adaptation equalizer is shown 
in Figure 4. The transmitter sends a known training 
sequence to the receiver, and the receiver adjusts the 
EHW-based equalizer so that it reproduces the correct 
transmitted symbols. 

5.1 Learn ing Per formance of the 
E H W - B a s e d Equal izer 

We simulated the learning performance of the proposed 
EHWT-based equalizer. The transfer function of the chan­
nel was given by and zero-mean 
white Gaussian noise was added to the output of the 
channel. The order of the equalizer was 2 (m = 2). 

A training set of eight data points was generated at 
every generation. Using a population size of 80, the fit­
ness of each individual was determined by n/8, where n 
was the number of correct classifications by the EHW. 
The bit-error-rate (BER) was defined as the ratio of mis-
classified to correct symbols in the output of the best-of-
generation individual. The BER was evaluated at every 
generation based on 105 random input symbols. Simu­
lations were carried out which restricted the maximum 
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Figure 7: Non-linear Transmission Channel used in the 
Simulations 

number of the hidden layer nodes to 20. 
Figure 5 shows the learning performance of this sim­

ulation for a signal-to-noise ratio (SNR) of 15 dB. The 
solid curve was obtained by averaging the results of 100 
independent runs. The broken line shows the learning 
curve of a transversal-filter-based equalizer, whose to­
tal number of training sequences was the same as that 
of the EHW. As can been seen, the BER of the EHW-
based equalizer is far lower. This is due to the abil i ty of 
the generalized neural network to synthesize non-linear 
functions. 

Figure 6 shows the BER versus SNR achieved by the 
EHW-based equalizer at generation 100. We found that 
a significant improvement in the BER could be achieved 
by the EHW-based equalizer, especially at a high SNR. 

5.2 Adaptive Equalization of 
Time-Varying Channels 

In real communications systems, the characteristics of 
the channel are usually t ime-varying. Hence, adaptive 
equalizers are required to follow such changes and com­
pensate for the channel distort ion. 

We therefore simulated the performance of the EHW-
based adaptive equalizer for time-varying channels, using 
the non-linear channel shown in Figure 7. The transmit­
ted sequence is passed through a linear channel whose 
transfer function is and the out­
put of the channel is added to the nonlinear harmonics. 
The value of the gain coefficients d2 ,d3 ,and d4 deter­
mines how severe the nonlinear distortion wil l be. Such 
non-linear channel models are frequently encountered in 
data transmission over digital satellite links. The linear 
transversal-filter-based adaptive equalizer can not com­
pensate for such non-linear channel distortion. 

As before, we simulated the bit-error-rate achieved by 
the EHW-based adaptive equalizer whose order m was 
2. Simulations were performed for the case in which d\ 
changed drastically during evaluation (Figure 8) and for 
the case in which d\ changed gradually (Figure 9). In the 
simulations, the coefficients were set to d2 = 0.6, d3 = 
0.5, and d4 = 0.4. The length of the training sequence 
was 8. For the genetic learning, the maximum number 
of the hidden layer nodes was restricted to 20 and the 
population size was 80. The results were averaged over 
100 independent runs. 

Figure 8. Time-varying Figure 9. Time-varying 
Channel (drastic change Channel (gradual change 

in d\) in d\) 

Figure 10. Adaptive 
Equalization of the 

EHW-based Equalizer 
(SNR: 15 dB) 

Figure 11. Adaptive 
Equalization of the 

EHW-based Equalizer 
(SNR: 15 dB) 

The BERs achieved by the EHW-based equalizer for 
the channels of Figure 8 and Figure 9 are shown in the 
graphs of Figure 10 and Figure 11, respectively. These 
graphs demonstrate that EHW-based equalizers have the 
abil i ty to follow both drastic and gradual environmental 
change. 

6 Hardware Imp lementa t ion 
We have developed a prototype board and an ASIC VLSI 
chip. The FPMD chip is designed to implement gener­
alized neural networks. 

6.1 F P M D ch ip 
The F P M D chip includes 15 DSPs connected in a tree 
shape. The tree size is genetically controlled. Wi th in a 
chip, broadcast hardware is included to speed up local 
learning. Local learning is conducted in parallel at each 
DSP. The chip has 250K gates and operates at a 33 MHz 
clock speed. It wil l be available in July, 1997. For the 
learning of the adaptive equalizer, we have a simulation 
result that the execution wi th 9 F P M D chips takes 1.3 
seconds while the execution on Sun SS20 takes 2 minutes. 

6.2 The prototype board 
The prototype board is designed to enable on-line adap­
tat ion. As shown in Figure 12, the prototype board in­
cludes two sets of F P M D chips. One of the two FPMD 
sets is an execution F P M D set, which actually processes 
the incoming data. The other set is a learning FPMD 
set, which is continually used to find a better hardware 
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ARM : architecture bit memory 

Figure 12: Prototype Board 

structure by genetic learning while the execution F P M D 
set is processing the existing best work. The training 
data are updated at regular intervals, enabling the ar­
chitecture to keep track of a changing environment. 

If the performance of the learning FPMD set is im­
proved, then the execution F P M D set is reconfigured 
using the chromosome obtained by the learning FPMD 
set. Thus, the system realizes on-line adaptation. 

The design of the prototype board allows it to be con­
nected to the PCI bus of a personal computer. The GA 
calculation is performed outside the board, by the per­
sonal computer. 

7 Conclusion 
We have described a learning scheme and an evolvable 
hardware chip for generalized neural network learning. 
This development is aimed at the use in practical in­
dustrial applications, especially those which require the 
abil ity to cope wi th time-varying problems and real-time 
t iming constraints. The need for such applications has 
been increasing recently. So, in addition to the adaptive 
equalizer, we are now working on loss-less data compres­
sion and A T M buffer control. 
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PLANNING A N D SCHEDULING 





PLANNING AND SCHEDULING 

Planning 1: Relations among Techniques 


