
P a r - K A P : a Knowledge Acqu is i t i on Too l for B u i l d i n g Prac t i ca l
P lann ing Systems

L e l i a n e N u n e s d e B a r r o s and J a m e s H e n d l e r * V . R i c h a r d B e n j a m i n s +

University of Maryland Art ic i f ic ia l Intelligence Research Inst i tu te
Department of Computer Science CSIC, Campus U A B , 08013 Bellaterra

College Park, MD 20742, USA Spain, richard@iiia.csic.es, and
le l iane@cs.umd.edu, hendler@cs.umd.edu University of Amsterdam, S W I

Roetersstraat 15, 1018 WB Amsterdam
The Netherlands

A b s t r a c t

Recently, attention has been focused on provid­
ing Knowledge Acquisition (KA) support for
building practical planning systems. Such sup­
port is needed to guide a knowledge engineer in
selecting planning methods, as well as for build­
ing and validating the planning knowledge-base
for a given practical domain. Following cur­
rent practice in knowledge acquisition, devel­
oping KA tools for planning requires that a
number of planning knowledge components are
made explicit. This includes explicating (i)
a planning domain ontology, (ii) a library of
problem-solving methods (PSMs) used in plan­
ning, and (i i i) a set of domain requirements
that are used to select a suitable PSM. In this
paper, we summarize the planning knowledge
components which we have identified in previ­
ous work, and, based on these, present an im­
plementation (Par-KAP) that can exploit these
models to aid knowledge engineers in construct­
ing practical planning systems.

1 I n t r o d u c t i o n
Constructing a planner for a particular application is a
difficult job, for which few knowledge acquisition tools
currently exist. Due to an increasing need for the build­
ing of planning systems that can handle real world ap­
plications, knowledge engineering efforts need to focus
on the following questions:

1. Is a particular practical planning system from the
literature suitable for a given domain?

2. What type of domain knowledge is required for the
application and how can it be represented?

*This research was supported in part bv grants from ONR
(N00014-J-91-1451), ARPA (N00OI4-94-IO9O, DAST-95-
C003, F30602-93-C-0039), and the ARL (DAAH049610297).
Dr. Handler is also affiliated with the TIM Institute for Sys­
tems Research (NSF Grant NSF EEC 94-02384).Leliane is
also supported by CNPq,a Brazilian Research Grant.

* Author is supported by the Netherlands Computer Sci­
ence Research Foundation with financial support from the
Netherlands Organisation for Scientific Research (NWO),
and by the European Commission through a Marie Curie
Research Grant (TMR).

3. What are the most suitable planning methods for
the domain?

4. What control strategy can best satisfy a desired sys­
tem performance?

Although much is known about planning systems,
and the literature is extensive (cf. [Tate et a/., 1990;
Tate, 1996], the focus of past work has primari ly been on
the development of planning systems, as opposed to an­
swering questions such as those above. At the same time,
while knowledge acquisition research has focused on such
questions for other Al tasks [Schreiber et al., 1994], l i t­
tle attention has been given to planning. In is only re­
cently that research has started to focus on this sort of
KA for planning [Valente, 1995; Benjamins et ai, 1996;
de Barros et al, 1996; Cottam and Shadbolt, 1996;
Chien, 1996; Tu and Musen, 1996]. This work primari ly
builds on modern approaches to Knowledge Acquisition
which stress the importance of libraries with reusable
modeling components to support the knowledge engineer
in constructing the required system model [Breuker and
van de Velde, 1994]. Examples of l ibrary constituents in­
clude domain models, domain ontologies, generic tasks,
problem-solving methods, inference structures, control
knowledge, etc.

This paper builds on the work referred to above, and
explores the use of a library of problem-solving meth­
ods for planning, which consists of three main building
blocks.

1. A set of typical knowledge roles used in planning
methods. These roles characterize the main types
of domain knowledge used in planning, e.g. the do­
main ontology for planning. They also help in un­
derstanding the way knowledge is structured by pro­
viding an index to the domain models used to play
these roles.

2. A set of basic methods used in composing a planning
strategy. A task-method decomposition structure in­
dexes these basic methods by defining the different
ways in which a planning task can be (recursively)
decomposed into subtasks

3. A set of suitability criteria for problem-solving
methods which is used to specify the connection be­
tween the knowledge roles and the basic methods by
defining what domain knowledge a method needs in
order to be applicable in a particular application.

1246 PLANNING AND SCHEDULING

In previous work, we have presented different parts
of the l ibrary: knowledge roles and domain models [Va-
lente, 1995], basic methods and the task-method decom­
position structure [de Barros et a/., 1996], and suitability
criteria [Benjamins et ai, 1996]. In this paper, we fo­
cus on the extension of these methods to control knowl­
edge, and on the implementation of a KA system for
supporting the development of planners. In Section 2,
we briefly summarize our past work on a KA framework
for planning and on how it is extended for control knowl­
edge. This is followed in Section 3 with a discussion of
Par-KAP, an implemented KA prototype that uses our
framework. In Section 4 we give examples of how Par-
K A P supports the construction of planning systems. It-
should be noted that the aim of this work is not to cover
all existing planning methods in the AI literature1, but
to show how an extendible library can help to construct
planners for particular application domains by providing
a high-level, abstract synthesis of the available planning
methods.

2 A l i b ra ry of PSMs for p lanning
In this section we present an overview of our previous
work and discuss the extension to control knowledge for
planning.

2.1 A d o m a i n on to logy for p lann ing
One of the critical elements in the analysis of a plan­
ning method is specifying the different roles that do­
main knowledge plays during the planning process. In
the planning literature, domain knowledge is defined as
static knowledge about the world which is only consulted
during planning, but not manipulated. However, from a
KA perspective, we must consider how this same knowl­
edge is used by the planner itself in defining its dynam­
ically changing "model" of the world. Thus, we iden­
tify two roles for domain knowledge: static and dynamic
[Schreiber et a/., 1994].

S ta t i c know ledge roles i n p l a n n i n g
Figure 1 shows the hierarchical organization of static
knowledge roles for planning [Valente, 1995]. The leaves
of the hierarchy of static roles are associated with the
types of domain knowledge (domain models)2 that can
play these roles (through the "plays" relation).

The plan model role defines what a plan is and what it
is made of. It consists of two parts: a world description
and a plan description.

The w o r l d d e s c r i p t i o n role describes the world in
which planning occurs. It is comprised of two sub-roles.
(1) The state description role, which contains the knowl­
edge necessary to represent or describe the state of the
world (for example, a set of first order predicates as in
STRIPS or a set of fluents from the Situation Calculus
[McCarthy and Hayes, 1969]). (2) The state changes role
explicates the information connected to the specification

1In particular, we concentrate on what are known as
"classical" planners as defined in [Hendler and McDermott,
forthcoming].

2Our use of the term domain models for this knowledge is
based on the use of the term "model" in KA, as opposed to
in planning.

Figure 1: Hierarchy of static roles in planning and the
corresponding domain models that can play these roles.

of changes in the state of the world (e.g., STRIPS-like
operators or hierarchical task networks (HTNS)) .

The p lan desc r ip t i on role describes the structure
and features of the plan being generated, and comprises
two sub-roles: plan structure and the (optional) plan as­
sessment knowledge. (1) The p l a n s t r u c t u r e role spec­
ifies how the parts of a plan (actions, sub-plans) are as­
sembled together. It has two sub-roles: (a) the plan com­
position role, which describes whether the plan composi­
tion is total or partial order, whether it includes iteration
and/or conditional operators, and whether the composi­
tion is hierarchical (i.e. whether plans can be recursively
decomposed into sub-plans), (b) The state change data
role contains additional information about the plan such
as interval constraints for binding the variables involved
in the state changes. It is also possible to assign different
resources to each state change or sub-plan. Two partic­
ularly important resources are agents and time. (2) The
p l an assessment knowledge role determines whether
a certain plan (or sub-plan) is valid (hard assessment
knowledge), or whether a plan is better than another
(soft). Based on this knowledge, a plan can be modified
or criticized. An example of hard plan assessment knowl­
edge is a rule-based-criterion which could be used to find
out if a condition is true at some point in the plan (as in
the modal truth criterion in TWEAK [Chapman, 1987]).
Another example is the causal-link knowledge used in
SNLP [McAllester and Rosenblitt, 1991]. An example of
soft assessment knowledge would be the user preferences
which can guide planning in the SIPE planner [Tate et
al, 1990].

D y n a m i c roles i n p l a n n i n g
Dynamic knowledge roles characterize planning in terms
of the relevant variables whose values are constantly up­
dated during the planning process. The dynamic roles
include: (1) The current state role, which is init ially filled

NUNES DE BARROS, HENDLER, & BENJAMINS 1247

by a description of the world at the beginning of the plan,
but is subsequently modified to represent intermediary
states in the plan. (2) The goal role, which describes
the active goal or subgoal being worked on by the plan­
ner. The content of goal can be a set of conditions or
a set of actions to be accomplished. Init ial ly, this role
points to the original goal, and during planning it may
be updated wi th subgoals or decompositions of the orig­
inal goal. (3) The conflict role contains the result of
checking the plan for inconsistencies with respect to its
conditions. (4) The plan role is a composite role consist­
ing of (a) plan-steps, (b) ordering constraints over the
plan-steps, (c) variable binding constraints, and (d) aux­
il iary constraints that represent temporal and t ruth con­
straints between plan-steps and conditions.

2.2 T h e tasks and methods for p lann ing
Based on an analysis of many classical planning systems,
we have identified relevant tasks and problem-solving
methods. We organize these into a task-method de­
composition structure [Orsvarn, 1996] and show these
in Figure 2 (where ellipses represent tasks and rectan­
gles methods). A method executes (solid lines) a num­
ber of subtasks and a (sub)task can be performed by
alternative (dashed lines) methods. The leaves of the
task-method tree are called primitive-methods and the
tasks they perform, primitive-tasks. Methods have two
additional types of knowledge associated with them (not
shown in the figure: control knowledge (Section 2.3) and
suitabil ity criteria (Section 2.4).

The class of planners we are dealing with share a gen­
eral, high-level problem-solving method called propose-
critique-modify (P C M) [Chandrasekaran, 1990]3. That is,
the planners all contain in one way or another these three
basic tasks: (i) propose expansion, (ii) critique plan and
(i i i) modify plan. Planners differ in the problem solving
methods (PSMs) they use to perform these three tasks.
These differences also reflect how planning knowledge
is represented. For example, in Figure 2, the propose-]
method consists of the three subtasks: select goal, pro­
pose expansion, and test for unachieved goals. The pro­
pose expansion task can, in its turn, be realized by three
different methods: smart propose, goal achievement pro­
pose, and decomposition propose. For a detailed descrip­
tion of all tasks and methods involved, see [de Barros et
al., 1996].

2.3 C o n t r o l knowledge
The task-method decomposition discussed above, defines
each method in terms of (sub)tasks. During planning,
these subtasks can be executed in various ways by the ap­
plication of different control regimes. In fact, many plan­
ning systems from the literature differ from each other
only wi th respect to their control knowledge. Therefore,
we associate control knowledge with every PSM that can
be decomposed into sub-tasks. Control knowledge in­
cludes the steps of a strategy, the order between them,
conditions, loops, backtracking points, exit points, etc.

3 In the literature, planning algorithms are usually not de­
scribed in a common terminology. We have tried to choose
fairly generic names that capture the whole array of these
approaches.

Figure 2: The task-method decomposition structure.
Solid lines stand for executes (a method executes its sub-
tasks), dashed lines denote performed-by (a task can be
performed by alternative methods).

The specification of control knowledge is important
because it lets us relate the individual tasks and methods
to specific planners. We do this by recognizing certain
patterns of control as corresponding with well-known
planners when possible. In some cases, we can recog­
nize a well-defined pattern corresponding to a planner
from the literature, and recommend to a user the use of
that algorithm (i.e., STRIPS, NONLIN, SIPE, SNLP, UCPOP,
etc). In other cases, we can recommend certain control
regimes that may be of use in implementing a planner
for the specific application. We refer to the first of these
cases as a match with a "fully-specified" control regime,
and the second as matching a "partially-specified" con­
trol method.

As an example of a fully-specified control structure,
the following would be the definition in our system of
the SNLP planner [McAllester and Rosenblitt, 1991].

1. test-for-unachieved-goals (method: agenda-based-test)
2. if goal = empty then exi t
3. else select-goal (method: random-select)
4. propose-expansion (method: goal-achievement-

propose); backtracking-point
5. interaction-critique (method: causal-

link-based-critique)
6. consistency-critique (method: constraint-propagation)
7. if conflict ≠ empty then
8. modify-plan (method: causal-link-

based-modify); backtracking-point
9. else ; recursive-invocation

Besides these fully defined algorithms, our analysis
of classical planning systems shows that there are some
other control features that are common between multiple
algorithms. For example, in many planners a test-for-
unachieved-goals task is used as a termination-point, the
propose-expansion task is a backtracking point, a select-
goal task is always executed before the propose-expansion
task, etc. We can exploit this by including these pieces
of control knowledge in the KA system for making sug­
gestions when one of the known control regimes is not
a perfect fit. An example of the specification of one of
these partially-specified control structures is the method
propose-critique-modify:

Tasks:
STEP-1. propose; isa backtracking-point and exit-point

1248 PLANNING AND SCHEDULING

STEP-2. critique; isa fail-point
STEP-3. modify; isa backtracking-point and

has-a cond: (conflict ≠ empty)
Control ordering: STEP-2 is-before STEP-3 '

2.4 T h e su i tab i l i t y c r i te r ia
The use of suitabil i ty criteria for establishing the ap­
plicabil i ty of methods based on the domain specifica­
tion is an important part of knowledge acquisition [Ben­
jamins, 1995]. In our work, each planning method is as­
sociated wi th such criteria to specify constraints on the
domain features used to fill a knowledge role. For exam­
ple, the d e c o m p o s i t i o n propose method requires that
the static role world description is fulfilled by the domain
model HTN. The s m a r t p ropose method requires the
two role fillings plan composition = total order, and world
description = STRIPS-like operators. Similarly, suitability
criteria are used to establish the connection between the
control structure of a method and the domain knowledge.
A complete description of the suitabil ity criteria we use
is beyond the scope of this paper, but see [Benjamins et
a/., 1996] for a complete discussion.

In Par-KAP, we have also defined a number of meth­
ods corresponding to well known planners (like STRIPS,
N O N U N , SIPE, SNLP, UCPOP, etc.) which correspond to
specific subtrees in the task-method decomposition de­
scribed previously. These methods are directly linked to
their primitive-tasks and respective primitive-methods.
An example is shown in Figure 4. These specialized
methods are used during the KA process as described
in Section 4 below.

Figure 4: The SNLP method in Par-KAP.

3 P a r - K A P : an implemented KA too l
As discussed in the introduction, the goal of defining a
KA library such as the above one is to allow the imple­
mentation of a KA tool for developing planning systems.
We have implemented a system called Par-KAP which
uses the knowledge framework above for this purpose.
In this section we briefly present implementation details
and examples of the use of the system.

3.1 I m p l e m e n t a t i o n
Par-KAP (for Parka for Knowledge Acquisition in Plan­
ning) is implemented using the Parka knowledge repre­
sentation system developed at the University of Mary­
land [Andersen et a/., 1994]. Parka is a frame-based
KR language which can be used to represent an ontol­
ogy consisting of classes, subclasses, and individuals and
properties of these. Parka is implemented in C, using re­
lational databases to provide scaling to large knowledge
bases. Par-KAP uses Parka's Application Programming
Interface (API) but is itself implemented in Lisp, run­
ning on a Sparc workstation. In the remainder of this
section, we describe how the frame-language is used to
represent the planning KA library.
Task m e t h o d d e c o m p o s i t i o n s t r u c t u r e This struc­
ture is represented as a tree of methods and tasks, linked
by two types of relations, executes and is-performed-by.
A task is-performed-by a method (possibly by more than
one), and a method executes a task (as shown in Fig­
ure 3).

Figure 3: Representation of a task-method decomposi­
t ion in Par-KAP.

Know ledge roles and d o m a i n requ i remen ts . In
Par-KAP, knowledge roles are represented as an isa link
(class/subclass) hierarchy. Individual domain models
are represented as instances of the general class domain
model, and these have plays links to the knowledge roles
as was shown previously in Figure 1.

As discussed above, during KA the methods and
knowledge roles are associated to each other by suit­
ability criteria. Suitability criteria are also used to link
control knowledge with methods. Figure 5 illustrates
how Par-KAP represents suitability criteria, using the
example of recognizing that the decomposition-propose
method can only be used if the world description is in
the form of Hierarchical Task Networks.

Figure 5: A suitability criterion for the decomposition-
propose method.

C o n t r o l - s t r u c t u r e . Representing the control relation­
ships among the tasks is done by linking methods to con­
trol methods via the property controls. Control methods
are defined in terms of steps, which are related to the
(sub)tasks which are executed by the method. The con­
trol method provides ordering and algorithmic relations
between these steps, using pointers to various control-
specific terms such as backtracking-point, exit-point, etc.
Thus, the control information for the propose-critique-
modify method shown in Section 2.3 can be represented
as shown in Figure 6. Methods can be associated with
more than one control regime, and as we have mentioned
before, domain requirements must be used as a criterion
to select between them.

NUNES DE BARROS, HENDLER, & BENJAMINS 1249

Figure 6: Control structure knowledge for the propose-
critique-modify method.

4 Knowledge acquisi t ion
In this section, we provide two examples of how Par-
KAP supports knowledge acquisition in planning. The
first example is to find a list of the domain requirements
necessary for a given planning method to be applied.
The second is to find a set of possible planning methods,
given a domain specification.
D o m a i n r equ i r emen ts . One use of Model-based
Knowledge Acquisition tools is to find a set of domain
requirements imposed by a particular problem solving
methodology. For planning, Par-KAP can thus assist a
knowledge engineer in identifying restrictions on the do­
main knowledge if a particular planning strategy is used.
This could be used by a knowledge engineer to help build
a planning knowledge base. Par-KAP assists the user by
specifying what type of knowledge has to be acquired
and how it should be represented.

The input to Par-KAP for this type of KA request is a
planning strategy, which can be a well known strategy or
a new one given by the user (defined in terms of a set of
basic planning methods plus a control structure). Par-
KAP returns a list of domain requirements associated
with each method involved in the input strategy, and also
the requirements associated with the specified control
structure.

A simple example of this use of Par-KAP is to input
a known planning method. Par-KAP produces the in­
formation about how the plan is represented, assessed
and composed. Thus, if the input is the known planner
SNLP, the output is simply

state-changes = STRIPS-operators
plan-assessment-knowledge = causal - l ink-protect ion
plan-composition = par t i a l -o rder

In a more complex example, the system could also
output information about state descriptions, how state
changes are tracked, and specific information about con­
trol regimes.
P l a n n i n g s t ra tegy . Another use of such a KA tool is
to help identify a problem solving strategy given a set of
known domain features (expressed as domain modeling
features as discussed in Section 2). In order to construct
a planning strategy, Par-KAP takes as input a specifi­
cation from the knowledge engineer of what sorts of fea­
tures can be elicited from domain experts, literature, etc.
Par-KAP then outputs either a known algorithm (if it

Figure 7: Par-KAP Output

covers all the features) or a set of techniques that would
need to be combined to process this sort of domain.

To do this, Par-KAP uses the task-method decomposi­
tion structure shown previously in Figure 2. The system
finds those tasks which are achieved by a method that
could be applicable given the domain specification. A
method is considered applicable if it meets two condi­
tions. First, all of its domain requirements (i f any) must
be satisfied within the given domain specification. Sec­
ond, for each of its subtasks, there exists at least one
method which is applicable to perform that (sub)task.
This essentially defines a recursion which bottoms out
when it finds primit ive methods matching the domain
specification.

After generating a list of tasks and the correspond­
ing primitive-methods, Par-KAP has to select a suitable
control regime for the application. As described in Sec­
tion 2.3 in Par-KAP, control knowledge can be fully-
specified or partially-specified.

A fully-specified control regime may be selected (i)
when the list of selected primitive-methods match with
the primitive-methods of a well known planner (as in Fig­
ure 4) and (ii) when all that planner's domain require­
ments are satisfied by the domain specification. When
none of the fully-specified control regimes can be se­
lected, Par-KAP suggests the partially-specified control
regime associated to each of the applicable non-primitive
methods. (A better result would be to allow the in­
terleaving or other complex composition of the control
techniques suggested by Par-KAP. This sort of algorithm
composition for planning is a topic of future research.)

As an example, suppose we give Par-KAP the follow­
ing domain specification:

state changes = HTN
plan-assessment-knowledge ■ causa l - l ink-pro tec t ion
plan-composition = pa r t i a l -o rde r
state-change-data = resources
s ta te-descr ip t ion - log ica l -pred icates

The system returns a list of how the high-level tasks
can be decomposed into the primit ive tasks shown in
Figure 7. This figure also gives an example of one of the
control structures that is returned for these inputs.

1250 PLANNING A N D SCHEDULING

5 Conclusion
We have presented a knowledge-acquis i t ion l i b ra ry w i t h
componen ts , designed for cons t ruc t ing p lann ing systems.
T h e l i b r a r y is compr ised of the essential ingredients
needed for g i v i n g concrete suppor t when bu i l d ing a p lan­
ner: p rob l em-so l v i ng me thods i nc lud ing contro l know l ­
edge and a charac te r i za t ion of the doma in knowledge
used in p l a n n i n g . S u i t a b i l i t y c r i te r ia , t ha t f o r m the
connect ion between p l a n n i n g methods and both doma in
knowledge and con t ro l s t ruc tu re , are also inc luded. A
p r o t o t y p e KA t o o l for p l a n n i n g systems, P a r - K A P has
been i m p l e m e n t e d us ing th is l i b ra ry .

P a r - K A P shows t h a t such a f ramework can prov ide
concrete suppo r t to knowledge engineers bu i l d ing p lan­
n ing systems. In pa r t i cu l a r , P a r - K A P gives two k inds
of s u p p o r t : (1) g iven some p l ann ing st rategy, sup­
p o r t the (knowledge acqu is i t i on) process o f bu i l d i ng the
knowledge-base to wh i ch to app ly the p rob lem-so lv ing
s t ra tegy ; (2) g iven a charac te r iza t ion of a d o m a i n , gener­
ate a p l a n n i n g sys tem s t ra tegy su i tab le for t ha t d o m a i n .

One feature o f P a r - K A P is t ha t the p l ann ing f rame-
work is represented us ing Parka , an eff ic ient, f rame-
based AI language. T h i s a l lows easy inspect ion and
ma in tenance of the knowledge. In f u t u re versions of Par-
K A P , we w i l l i n t roduce a user interface to the p lann ing
l i b ra ry , in order to a l low the cont inuous upda te and re­
f inement of the p l a n n i n g knowledge. We are also w o r k i n g
to make the P a r - K A P too l avai lab le over the In ternet to
a l low i t to be remote ly accessed and used.

References
[Andersen et al, 1994]

W. Andersen , J . Hendler , M. Eve t t , and B . Ke t te r .
Massive para l le l m a t c h i n g o f knowledge s t ructures. In
H. K i t a n o and J. Hendler , ed i to rs , Massively Paral le l
Artificial Intelligence. A A A I / M 1 T Press, 1994.

[Ben jam ins et al, 1996] V. R ichard Ben­
j a m i n s , Le l iane Nunes de Barros, and A n d r e Valente.
C o n s t r u c t i n g p lanners t h r o u g h p rob lem-so lv ing m e t h ­
ods. In Knowledge Acquisition Workshop - KAW'96
(Banff), 1996.

[Ben jam ins , 1995] V. R. Ben jam ins . P rob lem-so lv ing
me thods for d iagnosis and the i r role in knowledge ac­
qu i s i t i on . International Journal of Expert Systems:
Research and Applications, 8 (2) :93 -120 , 1995."

[Breuker and van de Velde, 1994] J. Breuker
and W. van de Velde, ed i tors . CommonKADS Library
for Expertise Modeling. I O S Press, A m s t e r d a m , T h e
Ne ther lands , 1994.

[Chandrasekaran , 1990] B. Chandrasekaran . Design
p r o b l e m so lv ing : A task analysis. Al Magazine, 11:59-
7 1 , 1990.

[C h a p m a n , 1987] D. C h a p m a n . P l a n n i n g for conjunc­
t i ve goals. Al, 32 :333-377 , 1987.

[Ch ien , 1996] Steve A. Ch ien . Knowledge acqu is i t ion ,
va l i da t i on and ma in tenance in a p lann ing system for
a u t o m a t e d image processing . In KAW'96. Banff,
1996.

[C o t t a m and S h a d b o l t , 1996] H u g h C o t t a m and Nigel
Shadbo l t . Know ledge acqu is i t ion for search and res­
cue. In KAW96. Banff, 1996.

[de Barros el al., 1996] L. Nunes de Barros, A. Valente,
and V. R. Ben jamins . Mode l ing p lann ing tasks. In
AlPS-96, pages 11-18, 1996.

[Hendler and M c D e r m o t t , fo r thcoming] J . Hendler and
D. JVIcDermott. AI Planning Systems, chapters circu­
lated for review. Morgan K a u f m a n n , f o r t hcom ing .

[McAl lester and Rosenbl i t t , 1991] D. McAl les ter and
D. Rosenblitt,. Systemat ic nonl inear p lann ing . In Proc.
of AAAl-91 pages 634-639, A n a h e i m , C A , 1991.

[McCar thy and Hayes, 1969] J. M c C a r t h y and P. J.
Hayes. Some phi losophical prob lems f rom the stand-
po in t of ar t i f i c ia l intel l igence. In Machine Intelligence
4, 1969.

[Orsvarn , 1996] K. Orsva rn . Pr incip les for l ibrar ies
of task decomposi t ion methods - conclusions f r om
a case-study. In N. Shadbo l t , K. O 'Ha ra , and
G. Schreiber, edi tors, Lecture Notes in Artificial In­
telligence, 1076, EKAW-96, pages 4 8 6 5 . Springer-
Ver lag, 1996.

[Schreiber et al, 1994] A. T h . Schreiber, B..J. W ie l i nga ,
R. de Hoog, J. M. Akke rmans , and W. Van de Velde.
C o m m o n K A D S : A comprehensive methodo logy for
K B S development . IEEE Expert, 9(6):28 37, Decem­
ber 1994.

[Tate et al, 1990] A. Ta te , J. Hendler , and M. D r u m -
inond . Readings in p l ann ing , 1990.

[Tate, 1996] A. Ta te , ed i tor . Advanced planning technol­
ogy - technological achievements of the ARPA/Rome
Planning Initiative. A A A I Press, 1996.

[Tu and Musen, 1996] Samson W. Tu and Mark A.
Musen. Episodic re f inment of episodic skeletal p lan
re f inment , In KAW'96. Banff, 1996.

[Valente, 1995] A. Valente. Knowledge level analysis of
p lann ing . SIGART Bulletin, 6(1):33 4 1 , 1995.

N U N E S DE B A R R O S , H E N D L E R , & B E N J A M I N S 1251

