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Abs t rac t 

Motivated by the need to reason about u t i l ­
ities, and inspired by the success of bayesian 
networks in representing and reasoning about 
probabilities, we introduce the notion of ut i l i ty 
distr ibutions, in which uti l i t ies have the struc­
ture of probabilit ies. We furthermore define 
the notion of a bi-d istr ibut ion, a structure that 
includes in a symmetric fashion both a prob­
abil i ty distr ibut ion and a u t i l i ty distr ibut ion. 
We give several examples of bi-distr ibutions. 
We also show that every state space wi th stan­
dard probabil i ty distr ibut ion and ut i l i ty func­
tion can be embedded in a bi-distr ibut ion, and 
provide bounds on the size requirements of 
this bi-distr ibut ion. Final ly, we suggest a re-
interpretation of the von-Neumann and Mor-
genstern theorem in l ight of this new model. 

1 i n t r oduc t i on 

AI enjoys a rich arsenal of tools wi th which to represent 
shades of certainty. One can formal ly represent varieties 
of certainty using logics of knowledge, nonmonotonic log­
ics, and, important ly, probabi l i ty theory. One reason the 
latter is particularly significant is that one has tools for 
efficiently representing and reasoning about probabil i­
ties, notably in the form of bayesian networks. 

Of course, AI is interested in uncertainty in general, 
and in probabil i ty in particular, only to the extent that 
it provides help w i th decision making. Whi le wi ldly suc­
cessful, bayesian networks constitute a mechanism to 
reason purely about probabilit ies. In contrast, AI has 
been fair ly impoverished when it comes to mechanisms 
for reasoning about the motivat ional components of de­
cision making, such as preferences, goals, and, impor­
tant ly, uti l i t ies. 

*This work was supported in part by NSF grant IRI-
9503109. 

I don' t mean that AI hasn't designed computational 
mechanisms to deal wi th some of these notions; obvi­
ously, the notions of goals and plans lie at the heart 
of AI planning research. What I mean is that there is 
not the analog of bayesian networks, that is, a simple 
and clear computational mechanism to effectively reason 
about preferences or uti l i t ies that rests on crisp, well-
understood mathematical foundations. 

Influence diagrams, and the related dynamic bayesian 
networks, are the closest we get to mechanisms for rea­
soning about uti l i t ies. However, while these mechanisms 
are undisputedly important and do contain a ut i l i ty com­
ponent, they provide very l i t t le power to reason about 
the ut i l i ty component. I wi l l discuss this further in the 
comparison section. 

Why might we want to reason purely about util it ies? 
The answer might be self evident, but here are a few 
examples: 

(Personalization) A recipe-generation program can use 
information about the user's gastronomical prefer­
ences to devise tailored recipes. 

(Software agency) A software agent needs to know its 
owner's preferences so as to act in the owner's best 
interests. 

(Electronic commerce) A software agent engaged in a 
strategic interaction wi th another (human or com­
puter) agent can exploit an understanding of the 
other agent's preferences to maximize its gain. For 
example, a software agent negotiating over access 
fees to a database might benefit from knowing that 
the database owner pays royalties to a th i rd party 
on certain items and not on others. 

It would be quite convenient if we had a mechanism 
analogous to bayesian networks to reason purely about 
ut i l i t ies, and this paper makes a contr ibut ion in that 
direction. At the heart of bayesian networks lie three 
concepts: probabi l i ty distr ibut ion, conditional probabil­
ity, and probabi l i ty independence. If we manage to mir­
ror those notions in the case of ut i l i t ies, we wi l l have 
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availed ourselves of a ready-made mechanism for reason­
ing about uti l i t ies. This paper is devoted to the first 
task, namely, defining a notion of distr ibution for u t i l i ­
ties. A companion paper [Sho97] completes the story by 
discussing conditional u t i l i ty and ut i l i ty independence. 

Perhaps the best start ing point for explaining the ap­
proach advocated here is to note the str iking asymme­
try between probabilities and uti l i t ies in the tradit ional 
view (e.g., [Kre88; Sav72; Fis69]). A probabil i ty dis­
t r ibut ion has a rich structure, which allows you among 
other things to compute the probabil i ty of an event (that 
is, a set of states) and to meaningfully add the probabil­
ities of disjoint events, whereas a ut i l i ty function allows 
neither. The crux of my argument wi l l be that this is an 
arbitrary choice, and that in fact one can define a coher­
ent notion of ut i l i ty distributions in which, for example, 
in makes perfect sense to add the uti l i t ies of disjoint 
events. In fact, the same argument wi l l suggest that in 
a symmetric fashion the notion of probabil i ty can be co­
herently weakened to a notion of graded certainty that 
has only the properties of tradit ional uti l i t ies. 

The structure of the rest of the paper is as follows. 

• In Section 2 I review some of the importance man­
ifestations of the asymmetry between probabilities 
and uti l i t ies. Here I discuss only the more famil iar 
quanti tat ive case; in the long version of this paper I 
discuss also the (arguably more fundamental) qual­
i tat ive case. 

• In Section 3 I give an overview of an alternative, 
more symmetric model by way of a simple example, 
and accompanying intu i t ion. 

• In Section 4 I provide the mathematical definition 
of this alternative model, and explore some of its 
rudimentary properties. 

• In Section 5 I discuss the possible impact on the 
foundations of decision theory; specifically, 1 spec­
ulate on how one might re-interpet von Neumann 
and Morgenstern's seminal representation theorem. 

• Finally, in Section 6 I discuss related work. 

2 Asymmet r i es in quan t i ta t i ve 
probab i l i t ies and u t i l i t i es 

Here are some obvious asymmetries between the quanti­
tative models of probabilities and uti l i t ies, in the tradi­
t ional view. 

1. Probabi l i ty of each state lies in [0,1], and the prob-
abi l i ty of all states sum to 1. Uti l i t ies of states (or out­
comes, or prizes) do not have these constraints. This 
on the surface is no big deal; certainly in the finite case 
one can normalize the uti l i t ies to comply wi th these con­
straints. 

2. Under some conditions we can meaningfully add or 
subtract probabilities of different states; there appears to 
be no sense in performing similar arithmetic on utilities 
of states. This is perhaps the most tell ing asymmetry 
between current quantitative theories of probabil ity and 
ut i l i ty. 

3. The fundamental notion in the case of probability is 
a probabil i ty distr ibut ion (or lottery), a function applied 
to sets (specifically, a function defined over a algebra), 
whose values on different sets are constrained by the set-
theoretic relationships between these sets. In the case 
of ut i l i ty, the fundamental construct is a function ap­
plied to a single state (and, as it happens, yielding a real 
value). There is no principled way to l i f t this function to 
sets of states without appealing to the added notion of 
probabil ity, i.e., via the notion of expected ut i l i ty (but 
see section 6 for discussion on some proposals to l i ft an 
ordering on points to an ordering on sets of points). 

In short, there are fairly interesting things we can do 
wi th probabilities alone, and almost nothing we can do 
wi th uti l i t ies alone. 

3 Two examples 
In this section I wi l l explain all the important ingredi­
ents of the construction through two examples and in­
formal discussion; the formal definitions and results wi l l 
be given in the next section. 

Consider the possibility of owning any of three cars: 
a Rolls Royce (R), a Maserati (M) , and a Ford (F). 
This gives rise to eight different events, corresponding 
to whether each of these cars is owned. Suppose further­
more that we define a probabil i ty distr ibut ion over these 
events, and also attach uti l i t ies to each of the states, as 
follows: 

state 
prob. 
util. 

_ 
1/8 
0 

R 
1/8 
0.1 

M 
1/8 
0.2 

F 
1/8 
0.7 

RM 
1/8 
0.3 

RF 
1/8 
0.8 

FM 
1/8 
0.9 

RFM 
1/8 
1.0 

(The uniform distr ibut ion is chosen here for concrete-
ness; any other would do as well.) We can sum any of 
these probabilities and get something meaningful; for ex­
ample, we can compute the probabil i ty of owning a Ford 
by summing the probabilities of the four states that in­
clude a Ford, getting the value 1/2. We cannot mean­
ingfully sum any uti l i t ies we wish. However, it is easy 
to see that the ut i l i ty function in this example has a 
special structure. Specifically, it can be interpreted as 
arising from assigning the three cars the values 0.1, 0.2, 
and 0.7, respectively, and defining the ut i l i ty of any sub­
set of the three cars as the sum of the individual uti l i t ies 
of the cars in the subset.1 

*The reader familiar with multi-attribute utility theory 
will recognize that this is a special case of MAUT; more on 
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Given this observation, let us construct another space 
as follows: 

The first two rows of this structure form an instance 
of what I wi l l call a utility distribution. The states in 
this distributions wi l l be called factors. (From now on 
I'l l reserve the term 'states' to denote elements on which 
a probabil i ty distr ibut ion is defined, and 'factors' to de­
note elements on which a ut i l i ty distr ibut ion is defined.) 
Factors are informally thought of as the various indepen­
dent contributions to one's sense of satisfaction or well 
being. The uti l i t ies associated wi th each factor deter­
mine how much of one's sense of well being is supplied 
by that factor. A factor set is simply a set of factors, 
for example { r , f } , and it plays a role analogous to an 
event in a probabil i ty distr ibut ion; its contr ibut ion to 
one's satisfaction is simply the sum of the contributions 
of its members. One can addit ionally attach to factors 
"probabil i t ies" and on the basis of those compute ex­
pected uti l i t ies, but these are mere numbers that cannot 
be meaningfully added up. In other words, this structure 
is the exact dual of the structure we started out w i th . 

Finally, note that these two structures are int imately 
connected, in the sense that certain factors "co-occur" 
wi th certain states. Specifically, r co-occurs wi th all the 
states that contain R, and d i t to for m and f. So in 
fact, one need not explicit ly list the uti l i t ies in the first 
structure, nor the "probabil i t ies" in the second struc­
ture. These can be inferred: The ut i l i ty of a state is the 
sum of the "ut i l i t ies" of all factors that co-occur w i th 
i t , and the "probabi l i ty" of a factor is the sum of the 
probabilities of all states that co-occur wi th i t . 

This is a convenient si tuat ion; not only have we man­
aged to separate the representation of probabilit ies f rom 
that of uti l i t ies, but the representation of uti l i t ies is iden­
tical to that of probabil it ies, providing hope that we can 
use, e.g., the mechanism of bayesian networks to reason 
about uti l i t ies. 

On the face of i t , our example was contrived so as to 
make this separation possible. Can we view any given 
ut i l i ty function as having this particular form? We wi l l 
see in the next section that the answer is 'yes,' but that 
the set of factors might not be as small as this part icu­
lar example suggests. The next example illustrates this 
point, and also the fact that the notion of ' factor' is quite 
broad. 

Suppose we have seven envelopes; one contains one 
$1 b i l l , another contains two $1 bil ls, and so on up 
to seven $1 bil ls. A subject receives one of these en­
velopes drawn f rom a given distr ibut ion. For concrete-

this in the comparison section. 

ness, consider uniform distr ibut ion, and a sigmoid-like 
ut i l i ty function; the smallest-valued envelopes have l i t ­
tle value since there's l i t t le you can buy wi th them, then 
they start to pick up steam, and at some point their 
value starts to level off because there's just that many 
things you can buy. This is captured in the following 
table: 

state | 
prob. | 
util. 

$1 
1/7 
.03 

$2 
1/7 
.1 

$3 
1/7 
.3 

$4 
1/7 
.7 

$5 
1/7 
.9 

$6 
1/7 
.97 

$7 
1/7 
1.0 

As usual, it would make no intui t ive sense to ask what 
the numerical ut i l i ty was of the set consisting of the sec­
ond and fifth envelopes, wi thout appealing to probabil i­
ties. However, let us now construct the dual space where 
we can ask these sorts of questions. This t ime the factors 
wi l l consist of the seven pairs (k, k— i) for 1 < k < 7; the 
informal interpretation of the pair wi l l be the Ar-th "or­
der statist ic", that is, the k'th $ b i l l . The ut i l i ty of the 
k-th $ bi l l wi l l be defined as the difference between the 
uti l i t ies (in the first, "state" space) of the $k-envelope 
and the $(k — l)-envelope, that is, the marginal ut i l i ty 
of the k-th $1 bi l l (we take the ut i l i ty of a $0-envelope 
to be 0, to cover the case of k = 1). In our concrete ex­
ample, these marginal uti l i t ies form a bell-shaped curve; 
the marginal ut i l i ty drops the closer k is to either 1 or 
7. This is captured in the following table: 

factor ] 
util. 
prob. | 

1st 
.03 
1 

2nd 
.07 
6/7 

3rd 
.2 

5/7 

4th 
.4 

4/7 

5th 
.2 

3/7 

6th 
.07 
2/7 

7th 
.03 
1/7 

In this factor space it makes perfect sense to add the 
different contributions to joy: the second $1 bi l l adds an 
independent value from that of the fifth $1 b i l l . 

Here's an important point. You might worry that " i t 
doesn't make sense to add up the uti l i t ies of only the 
second and fifth $1 bills, since we can't get the two bills 
without also getting all first five." But that's confusing 
states wi th factors; the fact that one cannot experience a 
particular combination of factors doesn't mean that this 
combination has no meaning or value. 

Of course, we would like to capture the fact that only 
certain factor combinations are possible, and here is 
where the co-occurrence relation between states and fac­
tors comes in. In the first example, for each combination 
of factors there was a state whose co-occurring factors 
were exactly that combination. This is not the case in 
this second example. Here, the k -th-$ factor co-occurs 
wi th the $/-envelope iff k < I. 

A final word about the numerical range of probabilit ies 
and uti l i t ies, before we move on to the formal treatment. 
Why do we insist that ut i l i t ies sum to 1? In fact we don' t 
have to, but nor do we in the case of probabilities. The 
question is whether we wish to model relative notions of 
"chunk of reality" or "chunk of satisfaction," or absolute 
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notions. Relative notions model total i ty of the quan­
t i t y as 1, and portions of total i ty as fractions. Absolute 
models have no notion of total i ty of the quantity, and 
measure portions in some arbitrary units. Tradit ionally, 
probabil i ty has been modeled as relative and ut i l i ty as 
absolute, but that (I believe) is an arbitrary choice. Here 
I wi l l continue to model both as relative. 

4 The fo rma l mode l 
In the formal treatment I'll only discuss finite, fully mea­
surable sets. The first definit ion is standard: 

D e f i n i t i o n 1 A distr ibut ion is a pair (5, F) such that 
S is a finite set (whose members are called components/, 

The previous definition intentionally avoids a partic­
ular interpretation of the notions, so that they can be 
applied to both probabilities and uti l i t ies. The following 
definitions could also be presented in neutral terms, but 
that generality is not needed in this paper. 

D e f i n i t i o n 2 A bi-distr ibut ion, also called a pu-
distr ibut ion, is a triple such that 

- (SP ,P) is a distribution called the probabil i ty distr i­

but ion, 

(SU , U) is a distribution called the u t i l i ty distr ibut ion, 

- Sp and Su are disjoint, and 

L is a nonempty subset of Sp x Su. 

Next, we use the structure to compute expected ut i l i ­
ties: 

P r o p o s i t i o n 1 Given a bi-distribution as above, 

The next proposition delivers on the promise that one 
need not get lucky to enjoy the bi-distr ibution represen­
tat ion: it states that given any probabil i ty distr ibution 
wi th an associated ut i l i ty function on its states, we can 
embed the probabil i ty distr ibut ion in a bi-distribution 
that induces back the original uti l i t ies on the compo­
nents of the probabil i ty distr ibut ion. 

This above construction appears to be wasteful in the 
number of factors created in order to represent a given 
ut i l i ty function. We might ask how small that set of 
factors might be. 

P r o p o s i t i o n 3 

(lower bound) Given any set S of n distinct natural 
(real) numbers, there does not exist a set T of less 
than log2 n natural (real) numbers such that each 
number in S is the sum of some numbers in T. 

(upper bound) There exist infinitely many sets S of n 
distinct natural (real) numbers (including infinitely 
many in the interval [0,I]), for which there does not 
exist a set T of less than n natural (real) numbers 
such that each number in S is the sum of some num­
bers in T. 

Proof: (lower bound) k numbers yield at most 2k 

distinct sums, (upper bound) Take S to be any finite 
set of distinct powers of 2, for example {1,2,4,8}, or 
any set of distinct negative powers of 2, for example 
{1,1/2,1/4,1/8} . 

These facts sti l l leave open several important ques­
tions. Perhaps the most important mathematical ques­
t ion is what is the minimal set of factors required for 
a given set of uti l i t ies. And most importantly, these 
mathematical constructions do not address the question 
of how natural the factors are. 

Finally, a short and somewhat whimsical comment on 
expected uti l i t ies. So far, we've discussed probability 
and ut i l i ty as rich notions, but expected ut i l i ty as l i t t le 
more than the result of numerical calculations on given 
probabilities and uti l i t ies. I t 's possible to invert the pic­
ture, and view the links of a bi-distr ibution as the basic 
elements of our world model. The l ink (s,t) wi l l be as­
signed the weight P(s)U(t), and the weight of sets of 
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l inks wi l l be simply the sum of their weights. What do 
those links represent? Well , if the state s describes a 
piece of reality, and the factor t describes a piece of joy, 
then surely the pair (s,t) describe a piece of real(ized) 
joy. Whi le i t 's hard to object to a theory of real joy, this 
line of reasoning does not play a role in the paper and is 
not developed further. 

5 The scr iptures rev is i ted 
The pr imary motivat ion for this paper has been the 
search for a mechanism for reasoning about uti l i t ies. In 
service of this goal, the particular focus of this paper 
has been to level the playing field between probabilities 
and uti l i t ies. However, the notion of u t i l i ty distributions 
calls into question foundational assumptions in choice 
theory regarding the asymmetric roles and structure of 
probabilit ies and uti l i t ies. Indeed, it suggests a reinter-
pretation of some of the most influential developments in 
choice theory. Here we wi l l discuss one of them the rep­
resentation theorem of von Neumann and Morgenstern.2 

In the foundations of decision theory, mental notions 
such as uti l i t ies are usually presented as convenient aux­
i l iary constructs, to be justif ied based on other, observ­
able phenomena such as choices made. The represen­
tat ion theorem of von Neumann and Morgenstern, and 
especially that of Savage (the "crowning achievement of 
decision theory," to quote one mathematical economist), 
are among the deepest embodiments of this "revealed 
preference" doctrine. Some economists have argued to 
me in private that the fact that the tradi t ional properties 
of probabilities and uti l i t ies enable these deep theorems 
is in itself just i f ication for accepting these properties. 

Recall von Neumann and Morgenstern's theorem (here 
presented in its finite version). The setting is a finite set 
of prizes (or outcomes) Z, the set P of all (!) probabil i ty 
distr ibutions over Z, and a binary relation > on P. The 
intended interpretation of p > q is "p is preferred to q." 

v N M introduce the following three postulates: 

(wi th the usual overloading of the > symbol). Further­
more, u is unique up to positive affine transformation. 

I wi l l now present a new representation theorem, which 
I ' l l call the v M N theorem. The setting for the v M N 
theorem consists of a set of factors Z, the set P of all 
u t i l i ty distr ibutions over Z, and an ordering > on P. The 
intended interpretation of p > q is "p is preferred to q."3 

We are now ready to present the v M N theorem, but 
we need not; it is identical to the theorem. 

This is of course tongue-in-cheek; I've presented no 
new mathematics, and have merely re-interpreted the 
vNM theorem. However, I have hopefully made the point 
that the conceptual foundations of the v N M theorem are 
open to debate. Whi le the theorem was presented wi th 
a certain interpretation in mind, it admits at least one 
other interpretation as well, in which the roles of prob­
abilities and uti l i t ies are reversed. Specifically, the orig­
inal interpretation suggests a picture of a selfish person 
at tempt ing to select among lotteries presented to h im 
so as to maximize his own expected payoff. The new 
interpretation suggests a picture of a benevolent person 
at tempt ing to select among mult iple other people wi th 
varying tastes, in order to maximize the payoff to the se­
lected person. (Note that the properties represented by 
the three postulates seem to make as much sense under 
the reverse interpretation as under the intended one). 

Note, by the way, that this re-interpretation of the 
v N M theorem flies in the face of its reputation as the 
most extreme embodiment of objectivist view on proba­
bilit ies. In the re-interpretation, the uti l i t ies are exoge­
nous, or objective, and the "probabil it ies" (quoted here 
since they no longer have the rich structure of a distr i­
bution) are imputed, or subjective. 

I believe similar discussion is possible in the context 
of the more complex representation theorem of Savage, 
but that is beyond the scope of this paper. 

6 Re la ted work 
The advertized mot ivat ion for the work described here 
is a dearth of mechanisms to reason about uti l i t ies. 
We should mention one weak exception to this dearth, 
namely influence diagrams [Sha90]. These have (in addi­
t ion to chance and decision nodes) a special node called 
a value node. This node, which can have no successors 
and cannot be part of the evidence set, is merely used to 
compute a given expected ut i l i ty function as a result of 
evidence propagation. The usual way this u t i l i t y is used 
is to search the space of values for decision nodes so as to 
maximize this ut i l i ty . Thus, while technically speaking 

3 Yet a different version would substitute here "p is mroe 
likely than g," but we do not pursue this further here. 
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influence diagrams reason wi th uti l i t ies, in fact all their 
smarts is in how they represent probabilities. 

One minor modification of the basic influence diagram 
is to introduce several value nodes, and to sum the u t i l ­
ities of all the value nodes. This is based on assump­
t ion that the ut i l i ty function is decomposable in such 
as way. The theory governing such decomposable ut i l ­
i ty functions is mul t i -at t r ibute ut i l i ty theory ( M A U T ) 
[KR76]. M A U T has attracted some attention in AI in 
recent years, since it seems to offer a handle on com­
plexity. Indeed, u t i l i ty distributions are closely related 
to M A U functions. It is beyond the scope of this paper 
to discuss this connection in detai l ; this is precisely the 
topic of the companion paper [Sho97]. Here I wi l l only 
remark that f rom the mathematical point of view ut i l i ty 
distr ibutions can be seen as a special case of additive 
mul t i -a t t r ibute ut i l i ty functions, but that the difference 
is also conceptual in nature, and hinges on novels senses 
of condit ional u t i l i ty and ut i l i ty independence. 

The main "complaint" in the paper about the stan­
dard notion of u t i l i ty function has been that it applies 
to states but not to events, or sets of states. There have 
been several proposals in AI to l i f t an ordering defined 
on points (whether the ordering reflects a degree of cer­
tainty or a preference) to an ordering on sets, for exam­
ple by Doyle and Wellman [DW95] and Halpern [Hal96]. 
A l l these proposals are qualitative in nature; they usu­
ally boi l down to quantifying over points in various sets, 
which reduces to using the Min and Max operations in 
some combination. None of these proposals have the 
quanti tat ive flavor afforded by (probabil i ty or ut i l i ty) 
distr ibutions. 

7 S u m m a r y and what 's next 
There is growing interest in AI in representing and rea­
soning about uti l i t ies. We have suggested that endowing 
uti l i t ies wi th the properties of uti l i t ies wi l l get us closer 
to the goal of applying bayesian-network-like mecha­
nisms to uti l i t ies. The primary contr ibution of this paper 
has been to introduce the notion of u t i l i ty distr ibut ion, 
and the related notion of bi-distr ibut ion. A side effect of 
this development has been to call into question conven­
t ional wisdom from mathematical decision theory. 

This is clearly only the beginning of the story. Now 
that we have a sense for u t i l i ty distr ibutions, we can re­
visit the famil iar notions of conditional u t i l i ty and ut i l ­
i ty independence. As was mentioned, this is the topic of 
[Sho97], where we show new senses of these notions that 
are isomorphic to their probabilistic counterparts. This 
means that , at least in principle, we can use the mech­
anism of bayesian networks (that would more aptly be 
called utility networks in this context) to reason about 
ut i l i t ies. However, whether this promise can be realized, 
depends on whether one can take these formal ideas and 

apply them in practice. Can one identify natural factors 
in realistically large and natural domains? Can we in 
fact elicit preferences using the new model? It must be 
admitted that at this time factors seem more mysterious 
than states. It is not clear to me if this is a reflection 
of their novelty, the inherent elusiveness of mental state, 
or the fact that factors are not in general a natural cat­
egory. While I'd like to believe that the framework de­
scribed here, and further developed in [Sho97], is more 
than an idle exercise, only time wi l l tel l . 

A c k n o w l e d g e m e n t s . I have discussed the ideas de­
scribed here informally wi th many people, who have 
made very useful suggestions and other comments. 
Among the A I /CS people are Xavier Boyen, Urszula 
Chajewska, Denise Draper, Moises Goldszmidt, Daphne 
Roller, Christos Papadimitr iou, Stuart Russell, and 
Mike Wellman. Among the economists are Ken Arrow, 
Paul Mi lgrom, and especially Tzachi Gilboa. In addition 
the referees made useful comments on an earlier draft of 
the paper. This, however, does not imply that any of the 
above necessarily agree wi th the ideas expressed here. 
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