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A b s t r a c t 

We analyze economic efficiency and equilib­
r ium properties in decentralized task alloca­
t ion problems involving hierarchical dependen­
cies and resource contention. We bound the in­
efficiency of a type of approximate equil ibrium 
in proportion to the number of agents and the 
bidding parameters in a particular market pro­
tocol. This protocol converges to an approx­
imate equil ibrium wi th respect to all agents, 
except those which may acquire unneeded in­
puts. We introduce a decommitment phase to 
allow such agents to decommit from their in­
put contracts. Experiments indicate that the 
augmented market protocol produces highly ef­
ficient allocations on average. 

1 I n t r o d u c t i o n 

We consider task allocation problems in which compet­
ing agents desire to accomplish tasks, which may re-
quire complex chains of production activity- In order 
to perform a particular task, an agent may need to 
achieve some subtasks, which may in turn be delegated 
to other agents, forming a supply chain through a hi­
erarchy of task achievement. Constraints on the task 
assignment arise from resource contention, where agents 
would need a common resource (e.g., a subtask achieve­
ment, or something tangible like a piece of equipment) 
to accomplish their own tasks. We assume that agents 
are self-interested and have private information, and so 
we must allocate in a decentralized manner. 

We take a market-based approach to decentralized 
resource allocation, uti l izing the large body of so­
lut ion methods and analytical techniques from eco­
nomics. Auctions mediate negotiation and determine 
prices and allocations. Prices indicate relative values of 
resources to guide local agent decisions. Experience wi th 
the market^oriented programming approach has verified 
that it works predictably and effectively in convex do­
mains [Wellman, 1993]. Discrete problems, such as the 
task allocation domain considered here, provide addi­
t ional challenges. 

In previous work [1998], we proposed a market proto­
col that reliably constructs supply chains in a decentral­
ized manner. In this paper we generalize the model and 
protocol to account for mult iple competing demands for 
mult iple end tasks. We bound the inefficiency of a type 
of approximate equi l ibr ium in proport ion to the num­
ber of agents and the bidding parameters in a particular 
market protocol. This protocol converges to an approxi­
mate equil ibrium wi th respect to all agents, except those 
which may acquire unneeded inputs. We introduce a de-
commitment phase to allow such agents to decommit 
from their input contracts. Experiments indicate that 
the augmented market protocol produces highly efficient 
allocations on average. 

We describe the task allocation problem in Section 2. 
We discuss price systems and competit ive equil ibrium in 
Section 3, and survey some market protocols for decen­
tralized resource allocation in Section 4. In Section 5 
we analyze the equil ibrium properties of the extended 
protocol, and in Section 6 we examine its efficiency. We 
describe related task allocation work in Section 7. 

2 P r o b l e m D e s c r i p t i o n 
Tasks are performed on behalf of particular agents; if two 
agents need a subtask then it would have to be performed 
twice to satisfy them both. In this way, tasks are the 
same as any other discrete resource. Hence we make no 
distinction in our model, and use the term "good" to 
refer to both. 

We describe the problem in terms of bipart i te graphs. 
A task dependency network is a directed, acyclic 
graph, The vertices are where G 
is the set of goods, is the set of agents, 
C is the set of consumers, II is the set of producers, and 
S is the set of suppliers. The edges, E, connects agents 
with goods they can use or provide. There exists an edge 
(g,a) from g G to a A when agent a can make use 
of one unit of g, and an edge (a,g) when a can provide 
one unit of g. When an agent can acquire or provide 
mult iple units of a good, we represent each unit as a 
separate edge. The goods can be traded only in integer 
quantities. 

A consumer wishes to acquire one unit of one good 
from a set of some high-level goods. A producer can 
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produce a single uni t of an output good conditional 
on acquiring a certain number each of some fixed set 
of input goods. A producer's input requirements are 
complementary in that it must acquire each of its in­
puts; it cannot accomplish anything wi th only a partial 
set. A supplier can supply a set of goods, up to some 
maximum quantity for each, wi thout requiring any input 
goods. 

An allocation is a subgraph For 
g G, an edge (a, g) means that agent a provides 
g, and (g,a) means a acquires g. An agent is in 
an allocation graph iff it acquires or provides a good. A 
good is in an allocation graph iff it is bought or sold. 

A producer is active iff it provides its output. A 
producer is feasible iff it is inactive or acquires all its 
inputs. Consumers and suppliers are always feasible. An 
allocation is feasible iff all producers are feasible and 
all goods are in material balance, that is the number 
of edges into a good equals the number of edges out. 

A solution is a feasible allocation such that one or 
more consumers acquire a desired good. If c C 
for solution then is a solution for c. 

Each supplier s has some opportunity cost . 
for supplying one unit of good g. The total 
opportunity cost to s for allocation E' is  

The cost might represent the value 
s could obtain from put t ing the goods to some other 
use, or some actual, direct cost incurred in supplying 
the goods. 

We assume that a consumer has preferences over dif­
ferent possible goods, but wishes to obtain only a single 
unit of one good.2 Thus, a consumer c obtains value 

for obtaining a single unit of good g, and, for allo­
cation , obtains value  

D e f i n i t i o n 1 (va lue of an a l l o c a t i o n ) The value of 
allocation is: 

D e f i n i t i o n 2 (e f f ic ient a l l oca t i ons ) The 
of efficient allocations contains all feasible 
locations such that  

'We overload the notation for opportunity cost and agent 
value, using as an argument either a single good or a set of 
edges. 

2More complicated consumer value functions can be ex­
pressed through combinations of multiple consumers and pro­
ducers. For instance, a group of consumers, each desiring a 
single separate good, effectively represents an additive value 
function over the set of goods. If a consumer has prefer­
ences over bundles of goods, the bundles can be represented 
as output goods of producers, with the inputs of a producer 
corresponding to the components of the respective output 
bundle. Note that transformations such as this may not be 
strategically equivalent, in that the group of consumers may 
not behave as would the single agent they represent. 

One could f ind efficient allocations using centralized 
search techniques, but we assume that we are con­
strained to solve the problem in a decentralized fashion. 
In the following, we examine an abstract framework for 
how a price system can guide decentralized task alloca­
t ion. We also examine market protocols for decentralized 
task allocation. 

3 Price Systems and Competit ive 
Equi l ibr ium 

In the general-equilibrium approach to economic re­
source allocation, we posit a price system ;;, which 
assigns to each good g a nonnegative number p(g) as 
its price. Intuit ively, prices indicate the relative global 
value of the goods. Therefore, agents may use the prices 
as a guide to their local decision making. 

We assume each agent has a quasilinear u t i l i ty func­
t ion. Its ut i l i ty is the sum of the "money" it holds and 
the value (or negative cost) obtained from its allocation 
of goods. Agents wish to maximize their surplus. 

D e f i n i t i o n 3 ( su rp lus ) The surplus, of 
agent a with allocation at prices p, is the utility gain 
from defined as follows: 

Informally, an allocation is a competitive 
equilibrium at prices p if is feasible and assigns 
to each agent an allocation that optimizes the agent's 
surplus at p. A competitive equil ibrium allocation is 
stable in the sense that no agent would want, a different 
allocation at the equil ibrium prices. 

We should generally expect that iterative1 auction pro­
tocols wi th discrete bid adjustments would overshoot, 
exact equil ibria by at least a small amount. However, 
approximate equil ibr ium is a useful concept for analyz­
ing such protocols [Demange et al., 1986; Walsh et al., 
1998]. We define and discuss properties and existence of 
a —a particular type of 
approximation equil ibr ium relevant to task dependency 
networks. The and parameterize an agent's maxi­
mum error in surplus opt imizat ion. 

Denote as the maximum surplus that agent a 
can obtain in (V,E), at some prices p, subject to feasi­
bil ity. That is, 

such that a is feasible at  

D e f i n i t i o n 4 Given 
the parameters: 
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an allocation is in -competitive equil ibrium 
at prices p iff: 

Figure 1 shows a for  
1. Goods are indicated by circles, consumers and suppli­
ers arc1 represented as boxes, and producers are indicated 
by curved boxes. A solid arrow from a good to an agent 
indicates that the agent buys the good, and a solid ar­
row from an agent to a good indicates that the agent 
sells the good. Dashed arrows indicate input /output ca­
pabilities not part of the allocation. Shaded agents re­
ceive non-null allocations. Agent values and good prices 
are shown under their respective nodes. Note that for 

A competitive equi l ibr ium corresponds to the 
standard notion of a competit ive equil ibrium when 

— = 0 for all producers Bikhchandani and 
Mamer [1997] and Cu l and Stacchetti [1997] show that, 
in an exchange economy, any competit ive equil ibrium set, 
of prices supports an opt imal allocation. We extend this 
result belowr to the class of production economies repre­
sented by task allocation economies. We show this by 
proving the more general result that a 
equil ibrium is suboptimally efficient by a fixed bound, 

L e m m a 1 The value of a feasible allocation at 
any prices p, can he expressed as: 

(1) 
a E A 

Proof sketch.3 Since supply equals demand in a feasi­
ble allocation, all the. price terms cancel out and we are 

' Complete proofs of all results appear at 
http://www-personal.engin.umich.edu/~wew/Papers/ 
i jcai99-extended.ps.Z. 

Figure 2: An economy wi th a competitive equilib­
r ium solution when  

left wi th the original formula for the value of a solution 
(Definition 1).  

T h e o r e m 2 If is a -competitive equilibrium 
for (V, E) at some prices p, then is a feasible 
allocation with a nonnegative value that differs from the 
value of an efficient allocation by at most  

Proof sketch. We can compare the value of to 
another feasible allocation agent-wise, using 
Equation (1). The competit ive equil ibrium condi­
tions imposed on the agents imply a global value differ­
ence that obeys the stated bound.  

Not all task allocation economies have competitive 
equilibria (technically, this is due to complementarity of 
inputs for producers). However, we can always specify 

and values such that a competitive equil ibrium 
exists, even when a competit ive equil ibr ium does not ex­
ist. For example, we can do this by setting prices of the 
goods desired by the consumers higher than their val­
ues, and the prices of all other goods to zero (if there are 
any suppliers that could sell directly to consumers with 
positive surplus on both sides, we can set the prices so 
that only these suppliers trade wi th those consumers). 
We then set and the values sufficiently high such 
that for all Hence 
producers could obey the competit ive equil ibrium 
conditions by being inactive1. Unfortunately, we can­
not, generally specify a -competitive equil ibrium for 
some fixed, problem-independent values of and 
Indeed, the necessary values to obtain a non-solution 

equil ibrium are proport ional to the highest consumer 
value and the depth of the network. 

Figure 2 shows the constraints on and in 
order to have a solution in competit ive equil ibrium 
for a particular economy. The only solution involves all 
agents except B-C-D-to-E. The constraints on the prices 
of goods A and B ensure that suppliers A and B sell 
their goods. The constraint on the price of good C en­
sures that supplier C does not sell its good. The con­
straint on the price of good E ensures that A-B-to-E 
is active. The constraint on the price of good D en­
sures that B-C-D-to-E does not trade any goods. F i -
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nally, the constraint on the price of good F ensures 
that D-E-to-F is active and also tha t the consumer buys 
good F. The constra int on the price of good F requires 

1 to have a compet i t ive equi l ib­
r ium solut ion. Since this solut ion is the only efficient 
al locat ion, it is the only candidate a l locat ion for a pure 
compet i t ive equ i l ib r ium. Bu t since the parameters must 
be nonzero, there is no pure compet i t ive equ i l ib r ium. 
Note that to sustain the solut ion in compet i t ive equi­
l i b r ium the constraints on the prices for goods A and D. 
and hence the and values, rise l inearly w i th 
the cost, of supplier A. 

4 Market Protocols 
The previous section sidesteps the issue of how we might 
compute an approx imate compet i t ive equ i l ib r ium. The 
market-based approach, which we adopt , is to design 
an auction mechanism tha t mediates negot iat ion and 
determines prices and al locat ions. The auctions along 
w i th the agents const i tu te an economy, or market, for 
the task al locat ion problem. 

The agents' bidding policies govern their interact ion 
w i th the auct ions. The key d is t inct ion between the auc­
t ion mechanism and b idd ing policies is tha t the former 
is under the contro l of the system designers, whereas the 
latter are determined by ind iv idua l agents. Together, 
these specifications for behavior const i tu te a market 
protocol, t h e market protocol as a whole is our subject 
of analysis. 

In economies characterized by in f in i te d iv is ib i l i ty of 
goods, nonincreasing returns to scale, and gross sub­
st i tutes, equil ibria, always exist and the tatonnement 
protocol converges to a compet i t ive equ i l ib r ium. The 
WALRAS protocol is a var iant of ta tonnement , that 
can be implemented in a d is t r ibu ted manner across 
goods [Cheng and Wel lman, 1998]. Highly efficient allo­
cations can be achieved in discrete exchange economies 
for which each agent wants only a single good [Fried -
man and Rust , 1993; McAfee ' and M c M i l l a n . 1987; 
Yiekrey, 1001 ] or have non-complementary preferences 
for mul t ip le goods [Demange ct al. 198GJ. However, 
economies w i t h discrete goods and complementary pref­
erences of agents can lack equi l ibr ia , and thus provide a 
much greater challenge to obta in ing efficient, al locations. 

Many researchers have proposed combinator ia l auc­
tions to address the problem resul t ing f rom discrete1 

goods and complementar i t ies [Rassenti ct al.. 1982; 
Sandholm, to appear). Combinator ia l auctions allocate 
and price bundles of goods. W u r m a n and Wel lman have 
shown tha t there always exists a competit ive1 equ i l ib r ium 
set of prices on bundles tha t supports an efficient allo­
cat ion [1999]. App rox ima t i on techniques can be used to 
make the computa t ion t ractable [Fuj ishima et al., 1999; 
Sandholm, to appear). However, except in some re­
str ic ted domains [Rothkopf et al. , 1998; Sandholm, to 
appear] a combinator ia l auct ion must generally perform 
a search over a. combinator ia l number of bundles. 

In this work , we focus on computa t iona l ly feasible auc­

tions that price ind iv idua l goods. The ideal such auct ion 
would induce a protocol resul t ing in a (near) compet i ­
t ive equ i l ib r ium when one exists, and would produce a 
highly efficient al locations otherwise. Unfor tunate ly , no 
protocol has yet been proposed tha t always converges to 
near compet i t ive equ i l ib r ium, even when one exists, in 
economies w i th discrete goods and complementar i t ies. 

backing an ideal mechanism, many researchers have 
considered simultaneous ascending auctions [M i lg rom, 
1997]. When agents b id according to a s t ra ight forward 
rule, the auctions guarantee near-opt imal performance 
in economies w i t h no complementar i t ies [Demange ct a/., 
198G). Observations of their performance in the Uni ted 
States FCC radio spectrum sale suggests tha t they can 
produce high-qual i ty al locations even when complemen­
tar i t ies exist [McAfee and M c M i l l a n , 1996]. In the fol­
lowing sections we analyze a var iant simultaneous as­
cending auct ion for the task al locat ion prob lem. 

5 SAMP-SB Protocol 
In the "Simultaneous Ascending Price w i t h 
Simple Bidding'1 (SAMP-SB) protocol (extended f rom 
our previous work [1998] to allow mul t ip le consumers 
w i th preferences for mul t ip le goods), agents negotiate for 
the goods through auct ion mediators, one for each good. 
An auct ion in tu rn determines the price and al locat ion 
of its respective good. We assume reliable, asynchronous 
message passing. 

5.1 Auction Mechanism 

The task al locat ion market includes a separate auction 
for each good of potent ia l value. Auct ions operate simul­
taneously and asynchronously- Agents submit bids for 
goods they wish to buy or sell. A bid specifies the price 
below/above which the agent, is w i l l ing to buy/se l l . Auc­
tions respond w i t h price quotes. A price quote specifies 
the current going price and the number of uni ts the re­
cipient would trade at what price, given the current bid 
state. Agents may in tu rn respond w i t h fur ther bids. 
Each auct ion requires that an agent's successive bids in­
crease by no less than some (generally small) posit ive 
increment 6. 

When the market reaches quiescence a state in 
which no new bids or price quotes are issued- the auc-
t ions clear. Each bidder is not i f ied of the final prices 
and how many units it t ransacted in each good. The 
ascending rule serves a key role in establ ishing relat ion­
ships between market quiescence and solut ion conver­
gence of the economy [Walsh arid Wel lman. 1998]. In 
par t icu lar , the market always reaches quiescence wi th 
the b idd ing policies described in Section 5.2. 

Accord ing to the the (M I 1 )st-price rules [Satterth-
waite and Wi l l i ams , 1989; W u r m a n ct al., 1998], an 
auct ion balances reported supply and demand at a uni-
form clearing price. Winners include all buyers/sellers 
s t r ic t ly above/below the price, and. to maximize the 
benefits f rom t rade, some agents at the clearing price. 
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Figure 3: Prices and allocations determined by a run of 
SAMP-SB when  

5.2 Bidding Policies 
Although multiagent system designers do not generally 
have control over the agents' behaviors, any conclusions 
about the outcome of a protocol must be based on some 
assumptions about these behaviors. In this work, we in­
vestigate the equil ibrium and efficiency properties of a 
set of policies that obey the ascending auction bid con­
straints and require only local, private information. 

Let the current going prices specified by the last price 
quotes be p. Supplier s places a one-time bid of 
for each unit it can supply. When consumer 
c is not winning a good, it bids = 
arg  
otherwise it stops bidding. A producer ini t ial ly bids 
zero for its output When the prices of its inputs 
change, bids  
where k is the number of input bids is currently los­
ing, and is its previous bid for A producer init ial ly 
bids zero for each input good, and raises its bid on input 
cj by when it is winning its output but losing its bid 
for g. The and parameters correspond to parame­
ters in a competit ive equi l ibr ium, as described in the 
following section. 

5.3 Equilibrium Convergence of SAMP-SB 
competitive equil ibria do not always exist for fixed 

and and even when they do, the SAMP-SB protocol 
is not guaranteed to converge to one. Figure 3 shows 
the results of a run4 of SAMP-SB when — 1 for 
all producers Note that B-C-D-to-E has a negative 
surplus, which is a violation of defining Condit ion (1) of 
a competitive equi l ibr ium. However, if no inactive 
producer buys a positive-price input in quiescence, then 
the economy is in competitive equi l ibr ium. 

T h e o r e m 3 The prices and allocation determined in 
quiescence by the SAMP-SB protocol is a competitive 
equilibrium iff no inactive producer buys any positive-
price input. 

Proof sketch. Case only if: Condit ion (3) of 
competit ive equil ibrium fails if an inactive producer buys 
any positive-price input. Case if: The bidding policies, 

4The nondeterminism of an asynchronous system implies 
that different runs may produce different results. 

auctions, and theorem conditions ensure 
for all a A. Consumer c C maintains at most a single 
bid such that If is active 
in quiescence, The theorem guar­
antees when is inactive, which occurs 
only if The bidding policies ensure 

is feasible. Supplier s S sells iff 
hence The auctions ensure material 
balance.  

5.4 Contract Decommitment 
Value is lost when inactive producers purchase some 
inputs at positive prices. Figure 3 shows a run of 
SAMP-SB in which B-C-D-to-E buys good C, even 
though it does not sell its output . A straightforward 
protocol extension for correcting the inefficiency is to 
remove the wasteful dead ends by selective contract de-
commitment. 

We propose a contract decommitment protocol 
that is applied after SAMP-SB reaches quiescence. Each 
inactive producer that wins some inputs at a positive 
price can deconimit from its contracts for its inputs. 
The protocol is applied recursively to the producers 
that lose their outputs due to decommitment (we refer 
to SAMP-SB wi th decommitment as SAMP-SB-D). 
When the decommitment process terminates, agents ex­
change goods as specified by the remaining contracts. 

In Figure 3, both B-C-D-to-E would deconimit from 
its contract wi th supplier C. Clearly, Theorem 3 implies 
that no agent decommits iff SAMP-SB produced a 
competit ive equi l ibr ium. Moreover, if we remove all pro­
ducers that deconimit, and all supplier resources corre­
sponding to decommited contracts, the remaining agents 
are in competit ive equi l ibr ium. Note that whereas 
some producers can lose money in the SAMP-SB proto­
col, no agent receives a negative surplus from participat­
ing in SAMP-SB-D. 

6 Empir ical Efficiency and Equi l ibr ium 
Analysis of SAMP-SB 

We conducted a series of 3300 randomly generated 
simulations in order to empirically evaluate how often 
SAMP-SB converges to equi l ibr ium as well as its aver­
age quality. We ran 100 trials for each of 5 15 goods and 
each of 13 consumers. 

For a t r ia l wi th N goods, we imposed a total order 
on the goods. Goods N and N - 1 had a number 
chosen from [1,4]—of suppliers. A l l other goods i had 
a number chosen from [1,4]—of sellers w i th output i, 
each of which had a 2/N chance of being a supplier and 
a (TV - 2)/TV chance of being a producer. To ensure the 
network was acyclic, a producer w i th output i had two 
randomly chosen input goods j and k, such that j, A: i. 
Each consumer desired a single good. One consumer de­
sired good 1, and the other consumers desired randomly 
chosen goods. We drew consumer valuations uniformly 
from [0, 10N] and supplier costs uniformly from [0 ,5N] . 
We fixed = 1. 
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PEV range SAMP-SB SAMP-SB-D 
< 0 79 0 

0 7 46 
1-9 6 0 

10 19 10 1 
20-29 22 1 
30-39 24 4 
40-49 32 1 
50 59 55 7 
60 69 80 15 
70-79 .158 23 
80-89 329 58 
90 99 1203 331 

100 1305 2813 

Mean PF.V for SAMP-SB 83 
Mean PEV for SAMP-SB-D 97 
Percentage of trials in equil ibrium 37 
Mean non-equil ibrium PEV of SAMP-SB 73 
Mean non-equil ibrium PEV of SAMP-SB-D 95 

Table 1: Distr ibutions over percentage of the efficient 
value (PEV) ranges, mean PEV, and equil ibrium attain­
ment for 3300 trials. 

As a benchmark, for each economy we computed the 
value of an efficient (optimal) allocation using A* search 
with an admissible heuristic. We ran SAMP-SB and 
SAMP-SB-D, and computed the resulting percentage 
of the efficient value (PEV). We discarded all trials 
for which the efficient value was zero, and substituted 
a new tr ial using a different configuration but the same 
number of consumers and goods. 

Table 1 shows the distributions over ranges of PEV 
and mean PEV for SAMP-SB and SAMP-SB-D. The 
decommitment protocol greatly increases the PEV of 
SAMP-SB, raising the overall mean from 83% to 97%. 
The distr ibut ion of the PEV of SAMP-SB-D is quite 
high: 85%) of the trials had 100% efficiency and 95%) of 
the trials had at least 90% efficiency. 

The SAMP-SB protocol reached equil ibrium in 
over 37% of the trials. When we remove all 
equil ibrium trials from the t r ia l set, the mean PEV of 
SAMP-SB decreases from 83% to 73%. This is not sur­
prising because the trials that reach equil ibrium have 
high PEV values (Theorem 2). However, the PEV of 
SAMP-SB-D decreases only a small amount, from 97% 
to 95%. We might conclude from these simulations that 
the major i ty of efficiency loss from the SAMP-SB proto­
col can be at t r ibuted to inactive producers that acquire 
some inputs, w i th the resulting wasted costs of suppliers 
that feed into them. 

We note that the PEV numbers we report are some­
what arbi t rary in that they depend on the particular 
method for generating trials. Moreover, if a solution 
forms for a consumer in a particular economy, then we 
can get an arbi t rar i ly high PEV by setting the con­
sumer's value arbi t rar i ly high, while holding constant 

the rest of the configuration. We attempted to mit igate 
this effect by setting consumer values at reasonable lev­
els. 

7 Related Work in Task Al location 
The C O N T R A C T NET protocol forms supply chains top-
down in a greedy fashion [Davis and Smith, 1983]. This 
approach produces satisficing allocations when there are 
no resource l imitations. However, the f i rm resource con­
straints we impose in our model would generally require 
C O N T R A C T N E T to backtrack in order to guarantee a fea­
sible allocation. Addit ionally, since the allocation policy 
is loosely specified in the original work, we cannot draw 
any conclusions about the efficiency of the approach. 

Sandholm [1993] examines a specialization of C O N ­
T R A C T N E T for a generalization of Task Oriented Do­
mains (TODs) [Rosenschein and Zlotk in, 1994]. Agents 
begin wi th an ini t ial allocation of tasks and negotiate 
task exchanges unt i l there are no more mutual ly ben­
eficial trades. The trades can greatly increase the al­
location quality, but the system may get stuck in local 
minima. 

Sandholm's model includes local constraints on task 
achievement, but does not impose a hierarchical depen­
dency structure. Thus each locally feasible bilateral 
trade can be executed immediately and independently 
of other trades. We cannot generally apply an incre­
mental trading protocol to our task allocation model. A 
local exchange may require reallocation throughout the 
entire network to maintain production feasibility. 

Andersson and Sandholm [1998] find that decommit­
ment protocols increase the quality of the resulting allo­
cations in variants of TODs. W i t h incremental trading, 
decommitment gives agents the opportunity to engage 
in other more cost-effective task allocation contracts. 

8 Conclusions and Future Work 
We have shown that we can bound the inefficiency of a 
A-(S-competitive equil ibr ium in a task dependency net­
work in proport ion to the number of agents and the bid­
ding parameters in the SAMP-SB protocol. SAMP-SB 
can sometimes converge to a A-^-compctitive equilib­
r ium, when one exists. When combined wi th contract 
decommitment, SAMP-SB produces highly efficient al­
locations on average. 

SAMP-SB relies on the competitive assumption that 
agents take price quotes as the actual prices, and do not 
attempt to manipulate them. Al though this assump­
tion is reasonable when there are many agents trading 
in each good—and hence no agent has significant market 
power-—this assumption is less realistic in thinner mar­
kets. An agent may have opportunit ies to gain higher 
surplus by using other bidding policies, particularly if 
it has knowledge of other agents' preferences or behav­
ior. An enforcement mechanism could ensure that agents 
correctly follow the decommitment protocol, but the po­
tential to decommit may st i l l affect agents' negotiation 
policies. We seek to establish conditions under which it 
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is rational for agents to play SAMP-SB-D, and to an­
alyze strategic behavior when these conditions do not 
hold. 

We wish to examine the possibility of including com­
binatorial auctions wi th SAMP-SB in the task allocation 
market. If we can identify portions of task networks with 
structures amenable to feasible bundle pricing, we may 
be able to increase the efficiency of allocations. 
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