
SHOP: Simple Hierarchical Ordered Planner
DanaNau YueCao AmnonLotem Hector Muftoz-Avila

Department of Computer Science, and Institute for Systems Research
University of Maryland, College Paric, MD 20742

U.S.A.

Abstract
SHOP (Simple Hierarchical Ordered Planner) is a
domain-independent H T N planning system with the
following characteristics.

• SHOP plans for tasks in the same order that they
will later be executed. This avoids some goal-
interaction issues that arise in other HTN planners,
so that the planning algorithm is relatively simple.

• Since SHOP knows the complete world-state at
each step of the planning process, it can use highly
expressive domain representations. For example, it
can do planning problems that require complex
numeric computations.

• In our tests, SHOP was several orders of magnitude
faster man Blackbox and several times faster than
TLpian, even though SHOP is coded in Lisp and
the other planners are coded in C.

1 Introduction
"Conventional wisdom'' in Al planning holds that total-
order forward search is a bad idea because it causes
excessive backtracking. However, several groups of
researchers have begun to argue that the opposite is true:
that total-order forward-search allows planners to use a
more expressive domain representations, which can be
used to encode domain knowledge to make the planners
highly efficient. More specifically:
• Prodigy [Veloso and Blythe, 1994; Fink and Veloso,

1995] does a forward state-space search that is guided
by a means-end analysis male by backward chaining
on the goals. Veloso and Blythe [1994] showed that
causal link commitments can affect the performance of
partial-order planners when the goals have a property
called linkability. In their experiments, Prodigy ran
many times faster than SNLP [McAllester et a/., 1991].

• TLpian [Bacchus and Kabanza, 1996, 1998] does a
forward state-space search, using modal-logic axioms
to prune unpromising search paths. In Bacchus and
Kabanza9 s tests, TLpian ran several orders of
magnitude faster than Blackbox [Kautz and Selman,
1998], IPP [Koehler et a/., 1997], SatPlan [Kautz and

968 PLANNING AND SCHEDULING

Selman, 1996], Prodigy [Veloso and Blythe, 1994],
and UCPOP [Penberthy and Weld, 1992].

• Smith et al [1997, 1998] developed an approach that
combines HTN-style problem reduction with left-to-
right backtracking to produce a search strategy similar
to Prolog's. They used this approach successfully in
domain-specific planners for several practical
applications, including manufacturing planning [Smith
et a/., 1997] and the game of bridge [Smith et a/.,
1998]. They argued for the advantages of their
approach by analyzing the reasons for its success in
real-world applications [Nau et al 1998]. However,
they could not compare their approach head-to-head
against domain-independent planning algorithms,
because their implementations were domain-specific.

In order to test the performance of Smith et a/.'s
approach in a domain-independent setting, we have
created a domain-independent formalization of the
approach, and have implemented it in a planner called
SHOP (Simple Hierarchical Ordered Planner). SHOP is
available at <http://www.cs.umd.edu/projects/shop>,
under the terms of the GNU General Public License.
SHOP has the following characteristics:
1. SHOP plans for tasks in the same order that they will

be executed. By avoiding some task-interaction
issues, this makes SHOP simpler than HTN planners
such as such as NONLIN [Tate, 1977], SIPE-2
[Wilkins, 1990], O-PLAN [Currie and Tate, 1991],
and UMCP [Erol et a/., 1994]. It also makes it easier
to prove soundness and completeness results.

2. Since SHOP always knows the complete world-state
at each step of the planning process, it can use
considerably more expressivity in its domain
representations than most Al planners. For example,
SHOP has the ability to do Horn-clause inferencing,
numeric computations, and interactions with external
agents and external information sources.

3. SHOP'S expressive power can be used to create
highly efficient domain representations. In our tests
on blocks-world and logistics problems, SHOP was
several orders of magnitude faster than Blackbox and
several times faster than TLpian, even though SHOP

http://www.cs.umd.edu/projects/shop

is coded in Lisp and the other planners are in C.

2 Formal Definitions
This section defines the syntax and semantics used in
SHOP, as well as the SHOP planning algorithm. For
brevity, the definitions below are for a somewhat
simplified version of SHOP'S syntax and semantics.
Section 3 gives an informal overview of the additional
features that appear in the full syntax and semantics. For
a formal description of those features, see
<www.cs.umd.edu/projccts/shop/documentation.html>.

2.1 Syntax
We use the usual first-ordcr-logic definitions of variable
and constant symbols, function and predicate symbols,
terms, atoms, conjuncts, most-general unifiers (mgu's),
and Horn clauses; with the notation adapted for Lisp. For
example, here are two Horn clauses, first in Prolog
notation and then in our notation:

A state is a set of ground atoms, and an axiom set is a
set of Horn clauses. If S and is a state and X is an axiom
set, then satisfies a conjunct C if there is a
substitution u (called a satisfier) such that entails
C. u is a most general satisfier (or mgs) if there is no
other satisfier v more general than u. In contrast to mgu's
(which are unique modulo lexical renaming), there may
be several distinct mgs's for C from S and X.

A task is a list of the form , where s
(the task's name) is a task symbol, and (the
task's arguments) are tarms. The task is primitive if s is a
primitive task symbol (a symbol whose first character is
an exclamation point) and it is compound if s is a
compound task symbol (a symbol whose first character is
not a special character). A task list is a list of tasks.

An operator is a expression (.operator h DA),
where h (the head) is a primitive task, and D and A (the
deletions and additions) are sets of atoms containing no
variable symbols other than those in h. For example,
here is an operator to put a block on the table:

A method is an expression that has the form (.method
h C T), where h (the method's head) is a compound
task, C (the method's precondition) is a conjunct, and T
(the method's tail) is a task list. For example, here is a
pair of methods for clearing the top of a block:

The first method says that if y is already clear we should
do nothing; the second says that if another block x is on
y, we should make x clear and then move x to the table.

2.2 Semantics
The intent of an operator o = (operator ft D A c)

is to specify that ft can be accomplished by modifying the
current state of the world to remove every atom in D and
add every atom in A. More specifically, if t is a primitive
task and there is an mgu u for t and ft such that ft* is
ground, then o is applicable to t,, and the list is a
simple plan for t. If we execute this plan in some state S,
it produces the state

The intent of a method m = {: method ft C T) is to
specify that if die current state of the world satisfies C,
thai ft can be accomplished by performing the tasks in T
in the order given. More specifically, let S be a state, X
be an axiom set, and t be a task atom. Suppose there is an
mgu u that unifies t with ft, and suppose satisfies C".
Than m is applicable to t in and the result of
applying m to t is the set of task lists : v is an
mgs for . Each task list r in R is a simple
reduction of t by m in

A plan is a list of heads of ground operator instances.
If p is a plan and 5 is a state, then p(S) is the state
produced by starting with S and executing the operator
instances in the order that their heads appear in p.

A planning problem is a tuple P = (S,T,D), where S is a
state, T is a task list, and D is a set of axioms, operators,
and methods. If (S,T,D) is a planning problem, then
II(S,T,D), the set of all plans for T from S in D, is defined
recursively as follows.

If T is empty, then II(S,TJD) contains exactly one plan,
namely the empty plan. Otherwise, let t be the first task
atom in T, and R be the remaining task atoms. There are
three cases. (1) If t is primitive and there is a simple plan
p for t then =
(2) If t is primitive and there is no simple plan for t, then

= . (3) If t is compound, then =
: r is a simple reduction of t].

2.3 Soundness and Completeness
The SHOP planning procedure is as follows:

procedure find-plan(S,T,D)
return seek-plan(S,T,D,m\)

end find-plan
procedure seek-plan(S, T,D, p)

if T = nil then return the list (p)
t as the first task in T; R = the remaining tasks
if / is primitive then

if there is a simple plan q for t then
return seek'plan(q{S),R,D,zppexid(p,q))

else return FAIL
else

for every simple reduction r for t in S
ans = seek-plan(S, append(r, R),D,p))
it ans FAIL then return ans

NAU, CAO, LOTEM, AND MUNOZ-AVILA 969

cud for
return FAIL

end if
end seek-plan

Since find-plan is a straightforward implementation of
the definition of Tl(S,T,D), it is easy to show it is sound.
For finite search spaces, find-plan is also complete. For
infinite search spaces, it is incomplete for the same
reason Prolog is incomplete: if the leftmost unexplored
path is infinite, it will never return from that path. It is
straightforward to make find-plan complete for infinite
search spaces, by doing an iterative-deepening search of
find-plan' s search space. Our implementation can do
iterative deepening (at the user's option), but in practice
we have found it more efficient not to use it

3 Example Planning Domain
To illustrate how SHOP works, we now describe a

simple transportation-planning domain. Table 1 defines
the domain, Table 2 shows a specific problem in that
domain, and Table 3 shows plans found by SHOP on
several problems in that domain.

The scenario for the domain is that we want to travel
from one location to another in a city. There are three
possible modes of transportation: taxi, bus, and foot.
Taxi travel involves hailing the taxi, riding to the
destination, and paying the driver $1.50 plus $1.00 for
each mile traveled. Bus travel involves hailing the bus,
paying the driver $1.00, and riding to the destination.
Foot travel just involves walking, but the maximum
feasible walking distance depends on the weather. Thus,
different plans are possible depending on what the layout
of the city is, where we start, where we want to go, how
much money we have, and what the weather is like.

As mentioned earlier, SHOP incorporates several
extensions to the syntax and semantics described in this
paper. To illustrate those extensions, the transportation-
planning domain uses most of them. In particular:
1. Axioms* tails and methods' preconditions can

include negations (which are evaluated using the
closed-world assumption) and calls to the Lisp
evaluator. For example, Axiom Al of Table 1 says
that the taxi fare is $1.50 plus $1 for each mile
traveled; and Method Mi's precondition says that to
pay the driver, we need sufficient money for the fare.

2. If a method's precondition is satisfied, then its entire
tail is passed to the Lisp evaluator. Lisp's quote,
backquote, and comma constructs can be used to
prevent evaluation (see Method M2) or to do
conditional evaluation (see Method Ml , which does
subtraction to create set-cash's second argument).

1. Axioms can have multiple tails, to be used in an "if-
then-else" fashion. For example, the axiom " (: -
head taill tail2 tail3)" says head is true if taill is
true, or if taill is false but taill is true, or if taill and
taill are false but tail3 is true. This gives

expressivity similar to a restricted version of Prolog's
"cut," but in a way that is easier to understand. For
example, Axiom A2 says that walking distance is < 3
miles in good weather, and < 1 mile otherwise.

970 PLANNING AND SCHEDULING

4. If the first element of a method's precondition or an
axiom's tail is : f i r s t , SHOP's theorem prover
returns after finding the first satisfier (just as Prolog
would do), rather than looking for all satisfiers. As
an example, in Method M3 this is used to tell SHOP
that it should only consider hailing the first taxi at
the taxi stand, rather than hailing all of them.

5. A method can have multiple pairs of preconditions
and tails, to be used in an "if-then-else" fashion. For
example, "(.method head prel taill prel tail2)"
says that the reduction of head is taill if prel is true,
or tail! if prel is false and pre! is true. Method M3
uses this to specify that we won't consider bus travel
unless we don't have enough money for taxi travel.

6. Operators have numeric costs (the default cost is 1),
and the cost of a plan is the sum of its operator costs.
The transportation domain does not illustrate this.

Although the transportation-planning domain is easy to
represent in SHOP, we believe that most other AI
planners would not have sufficient expressive power to
represent it fully, because of the numeric computations
that need to be done as part of the planning process.

4 Experiments
We have tested SHOP against two other planners:
Blackbox [Kautz and Selman, 1998], which was one of

the two fastest planners in the A1PS-98 planning compe­
tition [McDermott, 1998]; and TLplan [Bacchus and
Kabanza, 1998], which outperformed Blackbox by
several orders of magnitude in Bacchus and Kabanza's
tests.

4.1 Blocks-World Planning
To run SHOP in the blocks world, we encoded the
blocks-world planning algorithm of [Gupta and Nau,
1992] as a set of axioms, operators, and methods. We
tested SHOP, TLplan and Blackbox on the blocks-world
problems in the Blackbox software distribution. We ran
SHOP and TLplan on a 167-MHz Sun Ultra, and
Blackbox on a 143-MHz Sun Ultra. Both machines had
64 MB of RAM. The results are shown in Table 4.

Blackbox did worst: its time requirements increased far
more quickly with problem size than SHOP'S and
TLplan's. This was to be expected, because SHOP and
TLplan are guaranteed to run in low-order polynomial
time on blocks-world problems, whereas Blackbox does
an exponential-time search. Blackbox could not solve the
two largest problems at all, because it ran out of memory.

On the larger problems, TLplan took more time than
SHOP, and found longer plans. We should run more
tests to establish statistical significance, but the results
clearly are algorithmically significant: TLplan found
some non-optimal plans that the blocks-world algorithm
that encoded into SHOP'S methods and operators [Gupta
and Nau, 1992] had been designed to avoid.

4.2 Logistics Problems
To run SHOP in the logistics domain, we encoded the
following procedure into methods, operators, and axioms.
• First remove from the current world-state all "useless

objects" that will not contribute to the plan. These
include packages not mentioned in the goal, and empty
trucks and airplanes in the same city with other trucks
and airplanes. Then do the following steps repeatedly
until every package is at its final destination:
1. If there is a truck or airplane at the same location as

some packages that need to be picked up or dropped
off, then pick them up or drop them off.

NAU, CAO, LOTEM, AND MUNQZ-AVILA 971

2. Else if there is a package p in some city c, and p's
destination is a city other than c, then choose any
airplane, and let d be the city that it is in. Use the
truck in city d to collect all packages in city d that
need to be moved. Bring to the airport all packages

972 PLANNING AND SCHEDULING

that need to go to the airport, and load them onto
the airplane. Then fly the airplane to city c.

3. Else if there is an airplane with at least one package
on board, then fly it to the destination of one of the
packages on board.

4. Else if there are one or more packages that need to
be picked up, then drive a truck to the location of
any one of them.

5. Else if there is a truck that is carrying one or more
packages, then drive it to the final destination of
one of the packages in the truck.

We ran SHOP and TLplan on logistics problems in the
Blackbox and TLplan distributions, on a 167-MHz Sun
Ultra with 64 MB of RAM. Because of Blackbox's
memory requirements, we did not run it ourselves.
Instead, we used published data for Blackbox on a
machine that is faster than ours and has 8 GB of RAM.1

Tables 5 and 6 show the results.
Again Blackbox did worst and SHOP did best.

Blackbox was several orders of magnitude slower than
both SHOP and TLplan, and it found significantly larger
plans. SHOP and TLplan found plans of comparable size,
but on most of the problems SHOP ran several times
faster than TLplan (more than an order of magnitude
faster on the more difficult problems).

5 Discussion and Conclusions
It did not surprise us that SHOP did so much better than
Blackbox, for SHOP'S methods and axioms contained
sophisticated domain knowledge that could not be
represented in Blaekbox's operators. However, it did
surprise that SHOP did so much better than TLplan.
Here, we think, are the primary reasons why it did so:
1. Although TLplan's modal-logic representation

capabilities are quite sophisticated, their use (at least
in the examples we have seen) has been limited to
writing pruning heuristics rather than actual planning
algorithms. SHOP's use of HTN methods makes it
easy to write efficient planning algorithms, as we did
for both the blocks world and the logistics domain.

2. TLplan's planning algorithm is basically a state-
space search, whereas SHOP uses HTN-style
problem reduction. Problem reduction can be much
more efficient than state-space search (even by an
exponential amount in some cases [Korf, 1987; Yang
et al 1992]).

Our results support the contention that total-order
forward search, combined with HTN-style problem
reduction, can "scale up" to complex planning problems
better than partial-order action-based planning. Our

1 We got the Blackbox performance data from Table 11 of
[Bacchus and Kabanza 1998]. According to Fahiem Bacchus,
the data came originally from the Blackbox distribution, and
the machine was a Silicon Graphics with 8 GB of RAM,
running at around 200 MHz.

results also illustrate the impact that planning
applications can have on planning theory: SHOP is a
domain-independent formalization and implementation
that evolved from our previous domain-specific work on
manufacturing planning and computer bridge.

Our ongoing and future work is as follows:
• We are doing additional experiments and analyses in

order to get a better understanding of the efficiency
issues discussed above.

• SHOP appears to be powerful enough to be of use in
complex applications such as noncombatant evacuation
operation planning [Mufioz-Avila et aL, 1999]. To
make it easier to embed SHOP in such applications, we
are creating an implementation of SHOP in Java.

• It is straightforward to prove soundness and
completeness using the definitions in Section 2, but it
is more difficult to prove soundness and completeness
in the presence of some of the extensions discussed in
Section 3 (such as the calls to the Lisp evaluator). We
have begun working with others who have experience
in these issues, to put this aspect of SHOP on a more
solid formal footing.

• We are developing a general way to handle some
partial-order-planning operations while preserving
SHOP'S expressivity and left-to-right control strategy.
We intend to describe this in a forthcoming paper.

Acknowledgements
This work was supported in part by the following grants
and contracts: Army Research Laboratory DAAL01-97-
K0135, Naval Research Laboratory N00173981G007, Air
Force Research Laboratory F306029910013, and NSF
DMI-9713718.

References
[Bacchus and Kabanza, 1996] F. Bacchus and K.

Kabanza. Using temporal logic to control search in a
forward chaining planner. In M. Ghallab and A. Milani
(Eds.), New Directions in Planning, IOS Press,
141-153, 1996.

[Bacchus and Kabanza, 1998] F. Bacchus and K.
Kabanza. Using temporal logic to express search
control knowledge for planning.
<ftp.logos.uwaterloo.ca/pub/bacchus/BKTlplan.ps>.
Submitted to Artificial Intelligence, 1998.

[Currie and Tate, 1991] K. Currie and A. Tate. O-Plan:
The open planning architecture. Artificial Intelligence,
52:49-86,1991.

[Erol et aL, 1994] K. Erol, K, J. Hendler, and D. Nau.
UMCP: A sound and complete procedure for
Hierarchical Task-Network planning. Proc. 2nd Int'l
Conf. AI Planning Systems (AlPS-94), 249-254,1994.

[Fink and Veloso, 1995] E. Fink and M. Veloso.
Formalizing the Prodigy planning algorithm. In Proc.

European Workshop in AI Planning (EWSP-95), 1995.
[Gupta and Nau, 1992] N. Gupta and D. Nau. On the

complexity of blocks-world planning. Artificial
Intelligence 56(2-3), 223-254,1992.

[Kautz and Selman, 1998] H. Kautz and B. Selman.
Blackbox: A SAT-technology planning system.
<hup://www.research.att.com/-kautz/blackbox>, 1998.

[Koehier et aL, 1997] J. Koehlar, B. Nebel, J. Hoffmann,
and Y. Dimopoulos. Extending planning graphs to an
ADL subset. In ECP-97, 273-285, 1997.

[Korf, 1987] R. Korf. Planning as search: A quantitative
approach. Artificial Intelligence 33:65-88,1987.

[McAllester et al, 1991] D. MeAllester and D.
Rosenblitt. Systematic nonlinear planning. In Proc.
AAAI-9I,1991.

[McDermott, 1998] D. McDermott. AIPS-98 Planning
Competition Results, <http://ftp.cs.yale.edu/pub/
mcdermott/aipscomp-results.html>, 1998.

[Nau et aL, 1998] D. Nau, S. J. Smith, and K. Erol.
Control Strategies in HTN Planning: Theory versus
Practice. AAM-9&/IAAI-98, 1127-1133,1998.

[Munoz-Avila et aL, 1999] H. Munoz-Avila, D. Aha, J.
Ballas, L. Breslow, and D. Nau. Using guidelines to
constrain interactive case-based HTN planning. Tech.
Report AIC-99-004, Naval Center for Applied Research
on AI, Naval Research Lab., Washington, DC, 1999.

[Penberthy and Weld, 1992] J. S. Penberthy and D. Weld,
D. 1992. UCPOP: A sound, complete, partial order
planner for ADL. In Proc. KR-92, 1992.

[Sacerdoti, 1977] E. Sacerdoti. A Structure for Plans and
Behavior. American Elsevier, 1977.

[Smith et al, 1997] S. J. Smith, K. Hebbar, D. Nau, and
I. Minis. Integrating electrical and mechanical design
and process planning. In Martti Mantyla, Susan Finger
and Tetsuo Tomiyama (ed.), Knowledge Intensive
CAD, Volume 2, pp. 269-288, 1997.

[Smith et al, 1998] S. J. Smith, D. Nau, and T. Throop.
Computer bridge: a big win for AI planning. AI
Magazine 19(2), 93-105,1998.

[Tate, 1977] A. Tate. Generating project networks. In
Proc. UCAI-77, 888-893, 1977.

[Veloso and Blythe] M. Veloso and J. Blythe.
Linkability: Examining causal link commitments in
partial-order planning. In Proc. AIPS-94, 1994.

[Wilkins, 1990] D. Wilkins. Can AI planners solve
practical problems?. Computational Intelligence 6 (4):
232-246,1990.

[Yang et al., 1992] Q. Yang, D. Nau, and J. Hendler.
Merging separately generated plans with restricted
interactions. Computational Intelligence 8(2):648-676,
February 1992.

NAU, CAO, LOTEM, AND MUNOZ-AVILA 973

