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Abstract 
SHOP (Simple Hierarchical Ordered Planner) is a 
domain-independent H T N planning system with the 
following characteristics. 

• SHOP plans for tasks in the same order that they 
will later be executed. This avoids some goal-
interaction issues that arise in other HTN planners, 
so that the planning algorithm is relatively simple. 

• Since SHOP knows the complete world-state at 
each step of the planning process, it can use highly 
expressive domain representations. For example, it 
can do planning problems that require complex 
numeric computations. 

• In our tests, SHOP was several orders of magnitude 
faster man Blackbox and several times faster than 
TLpian, even though SHOP is coded in Lisp and 
the other planners are coded in C. 

1 Introduction 
"Conventional wisdom'' in Al planning holds that total-
order forward search is a bad idea because it causes 
excessive backtracking. However, several groups of 
researchers have begun to argue that the opposite is true: 
that total-order forward-search allows planners to use a 
more expressive domain representations, which can be 
used to encode domain knowledge to make the planners 
highly efficient. More specifically: 
• Prodigy [Veloso and Blythe, 1994; Fink and Veloso, 

1995] does a forward state-space search that is guided 
by a means-end analysis male by backward chaining 
on the goals. Veloso and Blythe [1994] showed that 
causal link commitments can affect the performance of 
partial-order planners when the goals have a property 
called linkability. In their experiments, Prodigy ran 
many times faster than SNLP [McAllester et a/., 1991]. 

• TLpian [Bacchus and Kabanza, 1996, 1998] does a 
forward state-space search, using modal-logic axioms 
to prune unpromising search paths. In Bacchus and 
Kabanza9 s tests, TLpian ran several orders of 
magnitude faster than Blackbox [Kautz and Selman, 
1998], IPP [Koehler et a/., 1997], SatPlan [Kautz and 
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Selman, 1996], Prodigy [Veloso and Blythe, 1994], 
and UCPOP [Penberthy and Weld, 1992]. 

• Smith et al [1997, 1998] developed an approach that 
combines HTN-style problem reduction with left-to-
right backtracking to produce a search strategy similar 
to Prolog's. They used this approach successfully in 
domain-specific planners for several practical 
applications, including manufacturing planning [Smith 
et a/., 1997] and the game of bridge [Smith et a/., 
1998]. They argued for the advantages of their 
approach by analyzing the reasons for its success in 
real-world applications [Nau et al 1998]. However, 
they could not compare their approach head-to-head 
against domain-independent planning algorithms, 
because their implementations were domain-specific. 

In order to test the performance of Smith et a/.'s 
approach in a domain-independent setting, we have 
created a domain-independent formalization of the 
approach, and have implemented it in a planner called 
SHOP (Simple Hierarchical Ordered Planner). SHOP is 
available at <http://www.cs.umd.edu/projects/shop>, 
under the terms of the GNU General Public License. 
SHOP has the following characteristics: 
1. SHOP plans for tasks in the same order that they will 

be executed. By avoiding some task-interaction 
issues, this makes SHOP simpler than HTN planners 
such as such as NONLIN [Tate, 1977], SIPE-2 
[Wilkins, 1990], O-PLAN [Currie and Tate, 1991], 
and UMCP [Erol et a/., 1994]. It also makes it easier 
to prove soundness and completeness results. 

2. Since SHOP always knows the complete world-state 
at each step of the planning process, it can use 
considerably more expressivity in its domain 
representations than most Al planners. For example, 
SHOP has the ability to do Horn-clause inferencing, 
numeric computations, and interactions with external 
agents and external information sources. 

3. SHOP'S expressive power can be used to create 
highly efficient domain representations. In our tests 
on blocks-world and logistics problems, SHOP was 
several orders of magnitude faster than Blackbox and 
several times faster than TLpian, even though SHOP 
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is coded in Lisp and the other planners are in C. 

2 Formal Definitions 
This section defines the syntax and semantics used in 
SHOP, as well as the SHOP planning algorithm. For 
brevity, the definitions below are for a somewhat 
simplified version of SHOP'S syntax and semantics. 
Section 3 gives an informal overview of the additional 
features that appear in the full syntax and semantics. For 
a formal description of those features, see 
<www.cs.umd.edu/projccts/shop/documentation.html>. 

2.1 Syntax 
We use the usual first-ordcr-logic definitions of variable 
and constant symbols, function and predicate symbols, 
terms, atoms, conjuncts, most-general unifiers (mgu's), 
and Horn clauses; with the notation adapted for Lisp. For 
example, here are two Horn clauses, first in Prolog 
notation and then in our notation: 

A state is a set of ground atoms, and an axiom set is a 
set of Horn clauses. If S and is a state and X is an axiom 
set, then satisfies a conjunct C if there is a 
substitution u (called a satisfier) such that entails 
C. u is a most general satisfier (or mgs) if there is no 
other satisfier v more general than u. In contrast to mgu's 
(which are unique modulo lexical renaming), there may 
be several distinct mgs's for C from S and X. 

A task is a list of the form , where s 
(the task's name) is a task symbol, and (the 
task's arguments) are tarms. The task is primitive if s is a 
primitive task symbol (a symbol whose first character is 
an exclamation point) and it is compound if s is a 
compound task symbol (a symbol whose first character is 
not a special character). A task list is a list of tasks. 

An operator is a expression (.operator h DA), 
where h (the head) is a primitive task, and D and A (the 
deletions and additions) are sets of atoms containing no 
variable symbols other than those in h. For example, 
here is an operator to put a block on the table: 

A method is an expression that has the form (.method 
h C T), where h (the method's head) is a compound 
task, C (the method's precondition) is a conjunct, and T 
(the method's tail) is a task list. For example, here is a 
pair of methods for clearing the top of a block: 

The first method says that if y is already clear we should 
do nothing; the second says that if another block x is on 
y, we should make x clear and then move x to the table. 

2.2 Semantics 
The intent of an operator o = (operator ft D A c) 

is to specify that ft can be accomplished by modifying the 
current state of the world to remove every atom in D and 
add every atom in A. More specifically, if t is a primitive 
task and there is an mgu u for t and ft such that ft* is 
ground, then o is applicable to t,, and the list is a 
simple plan for t. If we execute this plan in some state S, 
it produces the state 

The intent of a method m = {: method ft C T) is to 
specify that if die current state of the world satisfies C, 
thai ft can be accomplished by performing the tasks in T 
in the order given. More specifically, let S be a state, X 
be an axiom set, and t be a task atom. Suppose there is an 
mgu u that unifies t with ft, and suppose satisfies C". 
Than m is applicable to t in and the result of 
applying m to t is the set of task lists : v is an 
mgs for . Each task list r in R is a simple 
reduction of t by m in 

A plan is a list of heads of ground operator instances. 
If p is a plan and 5 is a state, then p(S) is the state 
produced by starting with S and executing the operator 
instances in the order that their heads appear in p. 

A planning problem is a tuple P = (S,T,D), where S is a 
state, T is a task list, and D is a set of axioms, operators, 
and methods. If (S,T,D) is a planning problem, then 
II(S,T,D), the set of all plans for T from S in D, is defined 
recursively as follows. 

If T is empty, then II(S,TJD) contains exactly one plan, 
namely the empty plan. Otherwise, let t be the first task 
atom in T, and R be the remaining task atoms. There are 
three cases. (1) If t is primitive and there is a simple plan 
p for t then = 
(2) If t is primitive and there is no simple plan for t, then 

= . (3) If t is compound, then = 
: r is a simple reduction of t]. 

2.3 Soundness and Completeness 
The SHOP planning procedure is as follows: 

procedure find-plan(S,T,D) 
return seek-plan(S,T,D,m\) 

end find-plan 
procedure seek-plan(S, T,D, p) 

if T = nil then return the list (p) 
t as the first task in T; R = the remaining tasks 
if / is primitive then 

if there is a simple plan q for t then 
return seek'plan(q{S),R,D,zppexid(p,q)) 

else return FAIL 
else 

for every simple reduction r for t in S 
ans = seek-plan(S, append(r, R),D,p)) 
it ans FAIL then return ans 
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cud for 
return FAIL 

end if 
end seek-plan 

Since find-plan is a straightforward implementation of 
the definition of Tl(S,T,D), it is easy to show it is sound. 
For finite search spaces, find-plan is also complete. For 
infinite search spaces, it is incomplete for the same 
reason Prolog is incomplete: if the leftmost unexplored 
path is infinite, it will never return from that path. It is 
straightforward to make find-plan complete for infinite 
search spaces, by doing an iterative-deepening search of 
find-plan' s search space. Our implementation can do 
iterative deepening (at the user's option), but in practice 
we have found it more efficient not to use it 

3 Example Planning Domain 
To illustrate how SHOP works, we now describe a 

simple transportation-planning domain. Table 1 defines 
the domain, Table 2 shows a specific problem in that 
domain, and Table 3 shows plans found by SHOP on 
several problems in that domain. 

The scenario for the domain is that we want to travel 
from one location to another in a city. There are three 
possible modes of transportation: taxi, bus, and foot. 
Taxi travel involves hailing the taxi, riding to the 
destination, and paying the driver $1.50 plus $1.00 for 
each mile traveled. Bus travel involves hailing the bus, 
paying the driver $1.00, and riding to the destination. 
Foot travel just involves walking, but the maximum 
feasible walking distance depends on the weather. Thus, 
different plans are possible depending on what the layout 
of the city is, where we start, where we want to go, how 
much money we have, and what the weather is like. 

As mentioned earlier, SHOP incorporates several 
extensions to the syntax and semantics described in this 
paper. To illustrate those extensions, the transportation-
planning domain uses most of them. In particular: 
1. Axioms* tails and methods' preconditions can 

include negations (which are evaluated using the 
closed-world assumption) and calls to the Lisp 
evaluator. For example, Axiom Al of Table 1 says 
that the taxi fare is $1.50 plus $1 for each mile 
traveled; and Method Mi's precondition says that to 
pay the driver, we need sufficient money for the fare. 

2. If a method's precondition is satisfied, then its entire 
tail is passed to the Lisp evaluator. Lisp's quote, 
backquote, and comma constructs can be used to 
prevent evaluation (see Method M2) or to do 
conditional evaluation (see Method Ml , which does 
subtraction to create set-cash's second argument). 

1. Axioms can have multiple tails, to be used in an "if-
then-else" fashion. For example, the axiom " ( : -
head taill tail2 tail3)" says head is true if taill is 
true, or if taill is false but taill is true, or if taill and 
taill are false but tail3 is true. This gives 

expressivity similar to a restricted version of Prolog's 
"cut," but in a way that is easier to understand. For 
example, Axiom A2 says that walking distance is < 3 
miles in good weather, and < 1 mile otherwise. 
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4. If the first element of a method's precondition or an 
axiom's tail is : f i r s t , SHOP's theorem prover 
returns after finding the first satisfier (just as Prolog 
would do), rather than looking for all satisfiers. As 
an example, in Method M3 this is used to tell SHOP 
that it should only consider hailing the first taxi at 
the taxi stand, rather than hailing all of them. 

5. A method can have multiple pairs of preconditions 
and tails, to be used in an "if-then-else" fashion. For 
example, "(.method head prel taill prel tail2)" 
says that the reduction of head is taill if prel is true, 
or tail! if prel is false and pre! is true. Method M3 
uses this to specify that we won't consider bus travel 
unless we don't have enough money for taxi travel. 

6. Operators have numeric costs (the default cost is 1), 
and the cost of a plan is the sum of its operator costs. 
The transportation domain does not illustrate this. 

Although the transportation-planning domain is easy to 
represent in SHOP, we believe that most other AI 
planners would not have sufficient expressive power to 
represent it fully, because of the numeric computations 
that need to be done as part of the planning process. 

4 Experiments 
We have tested SHOP against two other planners: 
Blackbox [Kautz and Selman, 1998], which was one of 

the two fastest planners in the A1PS-98 planning compe­
tition [McDermott, 1998]; and TLplan [Bacchus and 
Kabanza, 1998], which outperformed Blackbox by 
several orders of magnitude in Bacchus and Kabanza's 
tests. 

4.1 Blocks-World Planning 
To run SHOP in the blocks world, we encoded the 
blocks-world planning algorithm of [Gupta and Nau, 
1992] as a set of axioms, operators, and methods. We 
tested SHOP, TLplan and Blackbox on the blocks-world 
problems in the Blackbox software distribution. We ran 
SHOP and TLplan on a 167-MHz Sun Ultra, and 
Blackbox on a 143-MHz Sun Ultra. Both machines had 
64 MB of RAM. The results are shown in Table 4. 

Blackbox did worst: its time requirements increased far 
more quickly with problem size than SHOP'S and 
TLplan's. This was to be expected, because SHOP and 
TLplan are guaranteed to run in low-order polynomial 
time on blocks-world problems, whereas Blackbox does 
an exponential-time search. Blackbox could not solve the 
two largest problems at all, because it ran out of memory. 

On the larger problems, TLplan took more time than 
SHOP, and found longer plans. We should run more 
tests to establish statistical significance, but the results 
clearly are algorithmically significant: TLplan found 
some non-optimal plans that the blocks-world algorithm 
that encoded into SHOP'S methods and operators [Gupta 
and Nau, 1992] had been designed to avoid. 

4.2 Logistics Problems 
To run SHOP in the logistics domain, we encoded the 
following procedure into methods, operators, and axioms. 
• First remove from the current world-state all "useless 

objects" that will not contribute to the plan. These 
include packages not mentioned in the goal, and empty 
trucks and airplanes in the same city with other trucks 
and airplanes. Then do the following steps repeatedly 
until every package is at its final destination: 
1. If there is a truck or airplane at the same location as 

some packages that need to be picked up or dropped 
off, then pick them up or drop them off. 
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2. Else if there is a package p in some city c, and p's 
destination is a city other than c, then choose any 
airplane, and let d be the city that it is in. Use the 
truck in city d to collect all packages in city d that 
need to be moved. Bring to the airport all packages 
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that need to go to the airport, and load them onto 
the airplane. Then fly the airplane to city c. 

3. Else if there is an airplane with at least one package 
on board, then fly it to the destination of one of the 
packages on board. 

4. Else if there are one or more packages that need to 
be picked up, then drive a truck to the location of 
any one of them. 

5. Else if there is a truck that is carrying one or more 
packages, then drive it to the final destination of 
one of the packages in the truck. 

We ran SHOP and TLplan on logistics problems in the 
Blackbox and TLplan distributions, on a 167-MHz Sun 
Ultra with 64 MB of RAM. Because of Blackbox's 
memory requirements, we did not run it ourselves. 
Instead, we used published data for Blackbox on a 
machine that is faster than ours and has 8 GB of RAM.1 

Tables 5 and 6 show the results. 
Again Blackbox did worst and SHOP did best. 

Blackbox was several orders of magnitude slower than 
both SHOP and TLplan, and it found significantly larger 
plans. SHOP and TLplan found plans of comparable size, 
but on most of the problems SHOP ran several times 
faster than TLplan (more than an order of magnitude 
faster on the more difficult problems). 

5 Discussion and Conclusions 
It did not surprise us that SHOP did so much better than 
Blackbox, for SHOP'S methods and axioms contained 
sophisticated domain knowledge that could not be 
represented in Blaekbox's operators. However, it did 
surprise that SHOP did so much better than TLplan. 
Here, we think, are the primary reasons why it did so: 
1. Although TLplan's modal-logic representation 

capabilities are quite sophisticated, their use (at least 
in the examples we have seen) has been limited to 
writing pruning heuristics rather than actual planning 
algorithms. SHOP's use of HTN methods makes it 
easy to write efficient planning algorithms, as we did 
for both the blocks world and the logistics domain. 

2. TLplan's planning algorithm is basically a state-
space search, whereas SHOP uses HTN-style 
problem reduction. Problem reduction can be much 
more efficient than state-space search (even by an 
exponential amount in some cases [Korf, 1987; Yang 
et al 1992]). 

Our results support the contention that total-order 
forward search, combined with HTN-style problem 
reduction, can "scale up" to complex planning problems 
better than partial-order action-based planning. Our 

1 We got the Blackbox performance data from Table 11 of 
[Bacchus and Kabanza 1998]. According to Fahiem Bacchus, 
the data came originally from the Blackbox distribution, and 
the machine was a Silicon Graphics with 8 GB of RAM, 
running at around 200 MHz. 



results also illustrate the impact that planning 
applications can have on planning theory: SHOP is a 
domain-independent formalization and implementation 
that evolved from our previous domain-specific work on 
manufacturing planning and computer bridge. 

Our ongoing and future work is as follows: 
• We are doing additional experiments and analyses in 

order to get a better understanding of the efficiency 
issues discussed above. 

• SHOP appears to be powerful enough to be of use in 
complex applications such as noncombatant evacuation 
operation planning [Mufioz-Avila et aL, 1999]. To 
make it easier to embed SHOP in such applications, we 
are creating an implementation of SHOP in Java. 

• It is straightforward to prove soundness and 
completeness using the definitions in Section 2, but it 
is more difficult to prove soundness and completeness 
in the presence of some of the extensions discussed in 
Section 3 (such as the calls to the Lisp evaluator). We 
have begun working with others who have experience 
in these issues, to put this aspect of SHOP on a more 
solid formal footing. 

• We are developing a general way to handle some 
partial-order-planning operations while preserving 
SHOP'S expressivity and left-to-right control strategy. 
We intend to describe this in a forthcoming paper. 
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