
Reachability, Relevance, Resolution and the Planning as Satisfiability Approach 
Rouen I. Brafman 

Dept. of Math and Computer Science 
Ben-Gurion University 

Beer-Sheva, Israel 
brafman@cs.bgu.ac.il 

http://www.cs.bgu.ac.il/ brafman 

Abstract 
We investigate the ability of two central encoding 
methods to propagate reachability and relevance in­
formation using resolution steps. More specifically, 
we compare the ability of unit-propagation and 
higher-order resolution steps to propagate reacha­
bility and relevance information in the context of 
the linear and GRAPHPLAN encoding schemes to 
the ability of a natural class of reachability and rel­
evance algorithms that operate at the plan level. As 
a result of our observations and additional consid­
erations, we experiment with a preprocessing step 
based on limited binary resolution that shows nice 
results. 

1 Introduction 
The success of the planning as satisfiability (PAS) approach 
[Kautz and Selman, 1992; 1996] has led to various attempts 
to refine the initial methods used and to improve our under­
standing of its performance. In particular, various methods for 
generating formulas from planning instances have been com­
pared [Ernst et al, 1997], and various systematic alternatives 
to the original stochastic method have been examined (e.g., 
[Li and Anbulagan, 1997; Bayardo and Schrag, 1997]). Still, 
many issues surrounding this approach are poorly understood. 
In particular, little is known about the influence of the encod­
ing method on performance. 

Concentrating on the two encoding methods proposed by 
[Kautz and Selman, 1996], the linear and the GRAPHPLAN-
based encodings, we examine their influence on the ability 
to propagate reachability and relevance information via unit 
propagation and, more generally, K-clause resolution. We do 
so by comparing the pruning ability of these techniques to that 
of variants of existing algorithms that operate on the original 
problem formulation [Boutilieret al., 1998]. 

Our work is motivated by unit resolution's central role in 
the Davis-Putnam algorithm [Davis et a/., 1962] and many 
of its offsprings (e.g., [Freeman, 1995; Crawford and Auton, 
1993; Li and Anbulagan, 1997; Gomes et ai, 1998]), and its 
use as a preprocessing step when stochastic methods are ap­
plied. Moreover, a limited form of binary propagation is used 
in Crawford's COMPACT program for simplifying CNF for­
mulas and is utilized in the BLACKBOX planner [Kautz and 

Selman, 1998]. Reachability and relevance analysis play a 
major role in recent planning algorithms, most notably in the 
GRAPHPLAN planner [Blum and Furst, 1995]. 

Finally, motivated by some of our observations and by 
the fact that binary clauses form a significant fraction of the 
clauses within sat-encoded planning problems, we show that 
a simple and cheap preprocessing step based on limited binary 
resolution can yield nice savings in running time. 

The paper is organized as follows: in Section 2, we discuss 
the Reachable-k algorithm and its counterpart, Relevant-k. 
We compare each algorithm's ability to prune possible actions 
to that of k-clause resolution. A number of theoretical re­
sults are presented as well as an empirical comparison of the 
various methods for k = 1. In Section 3, we motivate and 
explain the use of binary-binary resolution as a preprocess­
ing step and show its effect on two recent efficient systematic 
algorithms. The overhead of this preprocessing step is rela­
tively small, and in some cases it yields nice savings. We con­
clude with a discussion of future and related work in Section 4. 
Throughout the paper we assume basic familiarity with the es­
sential ideas behind the PAS framework and the GRAPHPLAN 
algorithm. Proofs appear in a longer version of this paper, al­
though their central points are discussed here. 

2 Reachability, Relevance, Resolution 
Reachability and relevance analysis form an essential part of 
successful modern planning algorithms. The most notable 
example of reachability analysis is GRAPHPLAN'S planning 
graph [Blum and Furst, 1995], and many recent planners em­
ploy either reachability analysis (e.g., [Bonet et ai, 1997]), 
relevance analysis (e.g., [McDermoot, 1996; Nebel et al., 
1997]), or both [Kambhampati et al., 1997]. The importance 
of reachability and relevance analysis has been noted in the 
context of decision-theoretic planning as well. For example, 
[Boutilier and Dearden, 1994] employ relevance analysis to 
reduce the state-space, and [Boutilier et al, 1998] describe a 
general method for reachability analysis for MDPs. Below, 
we discuss this method in a simplified form suitable for clas­
sical planning problems described using the STRIPS repre­
sentation language [Fikes and Nilsson, 1971]. We shall also 
present a counterpart of this method for performing relevance 
analysis and relate these algorithms to k-clause resolution in 
the context of sat-encoded planning problems. 

876 PLANNING AND SCHEDULING 

mailto:brafman@cs.bgu.ac.il


• = propositions that are true initially. 
• ' 
• = actions all of whose preconditions are in 
• neither nor are 

noops or a, is a noop whose effect is destroyed by 
• and deletes a 

precondition or an effect of 
We define inductively as follows: 

• = literals that appear in the effects of. 
• = actions whose preconditions appear in St and no subset 

of them appears in 
• = k-tuples of literal appearing in such that some sub­

set of any set of actions from. mat has these literals as their 
effects appears in (where {L, P} as appropriate). 

• neither nor are 
noops, or aj is a noop whose effect is destroyed by aj}. 

Figure 1: Reachable-k 

2.1 Propagating Reachability Information 
Reachable-k [Boutilier et al, 1998] is an algorithm for esti­
mating the states reachable from a given initial state. As for­
mulated, it is quite general and applies to domains with non-
deterministic actions and conditional effects. In Figure 1, we 
present a simplified version of Reachable-k that deals with de­
terministic, unconditional actions represented in the STRIPS 
representation language. An important reason for our inter­
est in it is its similarity to the influential planning graph con­
struction of the GRAPHPLAN planner [Blum and Furst, 1995]. 
In fact, it generalizes the ideas behind GRAPHPLAN'S plan­
ning graph, which is equivalent to Reachable-2. We use Ai 
to denote the set of actions feasible i steps from the initial 
state, Si, to denote the corresponding set of propositions, and 

to denote constraints on these propositions, such that 
if then these propositions cannot co-
occur after i steps. CA* denotes similar constraints on ac­
tions. Here, * {L, P} , where L is used when we restrict 
our attention to linear action sequences, and P is used when 
we allow concurrent non-conflicting actions (i.e., actions that 
do not destroy each others' effects or preconditions and whose 
preconditions are not constrained not to co-occur). Of course, 
for k = 1 the sets and are empty for all 0. Fi­
nally, note that in this description, the set of possible actions 
contains all actions of the form noop{/), where / is a literal. 

When k = 2, Si and Ai, represent the propositional and 
action levels of GRAPHPLAN'S planning graph, and CSi and 

hold their respective mutual exclusion constraints. We 
have not stated a termination condition for this algorithm, but 
one can be formulated based on the content of or the in­
dex % itself. In the PAS framework, where the number of 
time-steps is fixed, one would opt for the second alternative. 
Reachable-k gives us sets of actions and propositions, 

that can occur after the performance of j actions (or j sets of 
concurrently non-conflicting actions) from the initial state. It 
is sound in the following sense: if a set of propositions or a 
set of actions is excluded by it at time j, we know that these 
cannot occur (resp. be executed) after j steps. 

Sometimes, all actions that can be executed at a particu-
lar time point in which p holds have -p as an effect. In that 
case, we can ignore the noop(p) action, as it will not be part 
of any useful plan. However, as formulated, p will appear in 
Reachable-k's next level. We denote by Reachable* -k a vari­
ant in which noop(p) does not appear in such a case. 

22 k-Clause Resolution and Reachability 
k-clause resolution (or propagation) refers to the resolution of 
pairs of clauses one of whose length is k at most. The k = 1 
variant, i.e., unit propagation, is an integral part of all major 
algorithms for generating satisfying assignments. 

We wish to compare the type of reachability information 
derived by performing k-clause resolution on sat-encoded 
planning problems, with the information obtained by running 
the Reachable-k algorithm. By reachability information we 
mean constraints on the set of actions possible at a time point 
or constraints on world states (in the form of, e.g., sets of un­
reachable propositions or k-tuples of propositions). Our fo­
cus will be on the first type of constraints. We say that one al­
gorithm generates more reachability information than another 
if it always generates a superset of the constraints on actions 
generated by the other algorithm, and there are instances in 
which this is a strict superset. We compare the two Reachable 
variants with two encoding methods discussed in [Kautz and 
Selman, 1996]:1 the linear encoding and the more interesting 
GRAPHPLAN encoding. 

Linear Plan Encoding 
The linear plan encoding [Kautz and Selman, 1992] is a sim­
ple and natural method for translating a planning problem into 
a formula that is satisfiable iff there is a valid plan of length n 
(for some given n). The clauses in the linear plan encoding 
fall into the following classes: 

1. an action implies its preconditions prior to its execution; 
2. an action implies its effects following its execution; 
3. an action does not affect any other proposition (frame ax­

ioms); 
4. there is at least one action at each time point; 
5. there is at most one action at each time point. 

Here, noop actions are not considered. In addition, the for­
mula contains unary clauses describing the initial and goal 
states. In analyzing reachability effects, we ignore informa­
tion about the goal state (discussed later in the section on rel­
evance). 

Consider the mechanism by which resolution can yield 
reachability information: Given the propositions that hold at 
the initial state, we can derive the negation of actions whose 
preconditions do not hold using unit propagation on axioms 
of class 1. Propagating these unit clauses with the appropriate 

1The third (state-based) encoding method cannot be generated 
automatically. 

BRAFMAN 977 



Table 1: Pruning Effects of Unary Methods. is the num­
ber of possible actions. Following entries hold number of ac­
tions pruned using: Reachable-1, Relevant-1, both combined, 
unit propagation on linear encoding using initial state, and us­
ing the final state. Unit propagation in the GRAPHPLAN en­
coding using the final state yielded no pruning. Execution 
times for the Reach/Relevant algorithms are < 0.01 seconds 
except for bw.c (0.03 sec.), and bw.d (0.07 sec.). 

instance of axiom class 4, we will obtain a disjunction of all 
actions that can be executed at the first time point. So far, this 
is identical to what Reachable* -k provides. To propagate this 
information forward, we can resolve these action disjunctions 
with axioms of class 2 and 3. This, however, requires binary 
resolution. Hence, except for the unlikely case in which a sin­
gle action is possible, there is no more that we can derive using 
unit propagation alone. Reachable* - 1 , on the other hand, can 
provide us with a list of all possible effects of these actions 
and possibly prune out future actions whose preconditions do 
not appear in this list. We conclude: 
Lemma 1 In the context of the linear encoding, Reachable* -
1 yields more reachability information than unit propagation. 
Example: Consider a blocks' world domain with a single ac­
tion schema MOVE(object,source,destination). Its precondi­
tions are: ON(object,source), CLEAR(object), 
clear(destination) and its effects are: ON(objeet,destination), 
CLEAR(source), -ON(object,source), -CLEAR(destination) 
(except when the destination is the table which is always 
clear). If we have k stacks of blocks initially, actions 
can be performed at the initial state (i.e., moving a block 
from the top of a stack to the top of another stack or the ta­
ble). This will be discovered by both algorithms. In partic­
ular, unit propagation will yield a disjunction of all these ac­
tions. We know that all blocks that are 2 or more blocks be-
low the top cannot participate in the second MOVE action. 
Reachable-1 will find this out due to the fact that they are not 
CLEAR. Suppose that A is one such block. All initially fea­
sible actions participate in a frame axiom of the form Move-

which, in clausal form is 
Resolving against 
(A, 1). If we could 

deduce -'clear(A, 1), we could rule out all actions that have it 
as a precondition. But if we are restricted to unit propagation, 
this requires deducing Move-x for some initially feasible ac­
tion, and we cannot make such a deduction. Precise numbers 
for a number of instances appear in Table 1. 

If we propagated information forward using axioms of 
class 2 and 3 and binary resolution (i.e., as discussed before 
Lemma 1), we now have a set of disjunctions of the possible 

effects (including frame effects) of the initially allowable ac­
tions. The number of such disjuncts is , where e is the 
maximal number of effects of an action and m is the number of 
actions that can be executed initially. In some cases, these dis­
junctions could contain a single literal, e.g., when all initially 
allowable actions leave some proposition unchanged. When 
one of these disjunctions contains only literals that are nega­
tions of some action's precondition, we can deduce the nega­
tion of this action by resolving with axioms of class 1. 

In the example considered above we would generate a dis­
junction of the form 
containing all time 0 actions whose negations have not been 
deduced. As discussed above, for all such actions, we can ob­
tain a clause of the form . Resolv­
ing these binary clauses against the clause above, we obtain 
a unary clause , that can be used in conjunction 
with class 1 axioms to deduce the negations of actions whose 
preconditions include clear {A > 1). 

Using the effect disjunctions we deduce mutual exclusion 
constraints on actions, but these are already built into the en­
coding. In principle, one can resolve these effect disjunctions 
with each other, but any useful new resolvants already appear 
among them (simply based on the fact that an action cannot 
have a proposition and its negation as effects). Consequently, 
we have: 
Lemma 2 In the linear encoding, binary resolution is suffi­
cient to conclude all possible reachability constraints. 

Reachable* -k propagates information forward in a similar 
manner but does not consider interactions between more than 
k actions or propositions. Since such interactions can occur, 
we have: 
Consequence 1 Reachable* -k yields less information than 
binary resolution. 

The GRAPHPLAN Encoding 
The GRAPHPLAN encoding differs from the linear encoding 
by its ability to consider multiple concurrent (non-interfering) 
actions, allowing one to obtain shorter plans which, in turn, 
can reduce the search space size. It constructs the following 
sets of clauses: 

1. An action implies its preconditions; 
2. An effect implies one of the actions that has this effect; 
3. There is at least one action at each time-point; 
4. Two conflicting actions cannot occur together. 

Besides the obvious ability to consider multiple parallel (non-
interfering) actions, the important difference between the 
GRAPHPLAN and Linear encoding is in axiom class 2 (re­
ferred to in [Ernst et al., 1997] as explanatory frame axioms.) 
Clauses in this class will contain positive occurrences of ac­
tion literals and negative occurrences of state literals. 

As in the linear case, using unit propagation we can in­
fer which actions cannot be applied at the initial state. Us­
ing axioms of class 2, we can propagate this information for­
ward, deducing the negation of all effects that cannot be pro-
ducal by the initially allowable actions. This information en­
ables us to exclude actions whose preconditions cannot be 
produced. This forward propagation is essentially identical to 

S78 PLANNING AND SCHEDULING 



Reachable-1. If we ignore the explicit constraints appearing 
in axiom class 4, we can conclude: 
Lemma 3 In the context of the GRAPHPLAN encoding, unit 
propagation and Reachable-1 yield the same reachability in-
formation. 
Notice that axioms from class 4 do not participate in unit prop­
agation because they contain pairs of negated actions. Resolv­
ing against them requires a positive action literal which can­
not be deduced using the given axioms (except for the unlikely 
case in which a single action is possible initially). In general, 
we can deduce only negated action literals, which can be re­
solved against axioms of class 2 to yield, at best, deduced ef­
fects, or against axioms of class 3 to yield a disjunction of pos­
sible actions. This is precisely what Reachable-1 yields. 

When k > 1, the mechanism remains the same, but now 
axioms of class 4 can play a part if we apply binary propaga­
tion. First, we will have binary constraints on co-occurring 
actions. These will propagate forward, possibly resulting in 
constraints on state propositions. These constraints need not 
necessarily be binary. Their propagation will require, in the 
general case, more than binary resolution. More generally, we 
observe that: 
Lemma 4 In the context of the GRAPHPLAN encoding, for 
k > 1, k-clause resolution yields more information than 
Reachable-k. 
As a special case, when k = 2 it has been observed [Kautz 
and Selman, 1998] that GRAPHPLAN'S propagation of mu-
texes (which is equivalent to Reachable-2) is equivalent to a 
restricted form of binary resolution. 

In general, one difference between these methods lies in 
the ability of k-clause resolution to yield disjunctions of more 
than k state propositions or actions, although these constraints 
cannot be propagated forward unless k is larger than the max­
imal size of clauses of class 2. As an example of how bi­
nary resolution can yield more reachability information than 
GRAPHPLAN'S planning graph consider a situation where p 
can be produced only by actions q can be produced 
only by and r can be produced only by but 
each pair of is mutually exclusive. If are 
the only possible actions, then we can derive the ternary con­
straint 

23 k.-Clause Resolution and Relevance 
We formulate an algorithm similar to Reachable-k, which we 
call Relevant-k, with a sim­
ilar soundness property. Relevant-k prunes the search space 
by generating a set of propositions that could appear in states 
that precede the goal state by k steps in any execution of a 
valid plan. Actions whose preconditions are not among these 
propositions can be ruled out. This leads to a reduced search 
space. Relevant-k is described in Figure For k = 1 we ig­
nore the sets and Various existing algorithms use 
ideas similar to Relevant-1 (e.g., [McDermoot, 1996; Nebel 
et al 1997]). 

For Relevant-k: to work in practice we must make the fol­
lowing closure assumption: if a proposition appears in the ef­
fect of an action (possibly negated), it must also appear in its 

2 We consider the parallel execution case only. 

precondition (possibly negated). When propositions stand for 
path properties (e.g., see the TSP domain in the GRAPHPLAN 
distribution), one cannot enforce this condition.3 

We now compare the amount of relevance information that 
can be propagated backwards using k-clause resolution and 
the goal literals as opposed to Relevant-k. Consider unit prop­
agation first. In the context of the linear encoding, we see that 
all actions that destroy some goal condition will be ruled out. 
However, actions that are irrelevant because they produce ir­
relevant effects will not be pruned. This is incomparable to 
Relevant-1. There, irrelevant actions will be pruned out, but 
a relevant action that destroys some goal proposition will not 
be ruled out without modification to the algorithm. 

In the context of the GRAPHPLAN encoding the relationship 
is clearer. From the goal propositions and axioms of class 2 we 
can deduce disjunctions of actions that must have produced 
these effects. Typically, these disjunctions will not contain 
unit clauses, and unit propagation cannot proceed farther. No­
tice that we cannot deduce the kind of information obtained 
via the linear encoding. That is, if an action destroys some 
goal proposition, we cannot conclude its negation using unit 
propagation. For example, if a has -p as an effect and p is 
part of the goal, we have • • as an instance of ax­
iom class 2. Since a appears positive in this axiom, we can­
not deduce its negation by resolving against it. Rather, deduc­
ing negated actions requires explicit effect axioms of the form 

Finally, while such information is not deduced nec­
essarily by Relevant-1, the simple relevance information de­
duced by Relevant-1 cannot be deduced here either. That is, 
we have no way of deducing -a if all of a's effects are irrel­
evant to the goal. We conclude (again, ignoring the explicit 
mutual exclusion information contained in axiom class 4): 

Lemma 5 In the context of the GRAPHPLAN encoding, unit 
propagation yields less relevance information than 

* Relevant-1 

3 With small modification, this assumption can be removed. 

BRAFMAN 979 



Some actual values appears in Table 1. In particular, in the 
examples we looked at, the GRAPHPLAN encoding could not 
{mine any action. This follows from the (quite typical) fact 
that in these domains, each of the facts that hold at the final 
state can be achieved by a number of actions, Hence, unit 
propagation can deduce only disjunctions of possible actions, 
none of which are a unit clause. Since we have no way of de­
ducing negated actions, propagation stops at this point. 

The general case is similar. In the linear encoding, having 
obtained a disjunction of allowable actions, we can generate 
a disjunction of allowable preconditions. This information is 
propagated backwards much like the forward case. Yet, as in 
the k = 1 case, all we can expect is a form of backwards 
reachability analysis from the goal state, rather than true rel­
evance analysis. In the context of the GRAPHPLAN encod­
ing, we will generate disjunctions of relevant actions, from 
which disjunctions of relevant preconditions can be deduced, 
etc. However, irrelevant actions will not be excluded explic­
itly (since more than one action is allowed at each step) and we 
will only conclude that some relevant action must appear. Nor 
can we exclude actions that destroy a goal proposition. On 
the other hand, using k-clause resolution we can deduce con­
straints of order greater than k, unlike Relevant-k. Therefore, 
no clear winner emerges. We hypothesize that Relevant-k: 
would perform better, but this remains to be tested. 

Finally, we note that (1) the GRAPHPLAN planner does 
not incorporate relevance analysis, but Mea-GRAPHPLAN, 
a more recent variant, does [Kambhampati et al., 1997]. 
(2) [Ernst et ai, 1997] discuss an enhanced version of the 
GRAPHPLAN encoding which contains effects axioms as well 
(i.e., axioms of the form action —> effect). In terms of the 
ability to propagate reachability and relevance analysis we 
see here only an added ability to rule out actions that destroy 
needed propositions (as in the linear encoding.) 

3 Binary Resolution Preprocessing 
Specialized subroutines that exploit binary clauses in SAT 
problems have been considered in the past [Larrabee, 1992]. 
We believe that judicious use of binary resolution is a promis­
ing direction in the context of the PAS framework for a num­
ber of reasons: (1) GRAPHPLAN'S mutexes are equivalent to 
binary clauses, and their propagation is equivalent to a limited 
form of binary resolution [Kautz and Selman, 1998]. (2) Bi­
nary resolution yields all the reachability information in the 
linear encoding (Lemma 2). (3) Binary clauses form a large 
fraction of the clauses within encoded formulas: In the linear 
encoding, all axioms of class 1,2,5 yield binary clauses, and in 
the GRAPHPLAN encoding, this is true of axioms of class 1,4. 
(4) 2-SAT problems can be solved in polynomial time. 

Unlike unit propagation, binary propagation increases the 
size of the formula (although it yields clauses that are no larger 
than the clauses resolved). This increase can slow down the 
solution process considerably and the increased memory con­
sumption can lead to thrashing. Consequently, one must ei­
ther restrict the extent of binary propagation or devise fast, ef­
ficient methods for performing them. 

We experimented with a simple preprocessing step which 
resolves pairs of binary clauses until no new clauses are de­
rived. This method can be used by systematic and stochastic 

Table 2: Effect of Binary Clause Preprocessing on REL-
SAT, Avg. over 100 runs on an AMD-K6 200MHz proces­
sor running Linux. Running times for bin/bin include bin/bin 
resolution times (see res. column). For the number of unit 
clauses generated see unit column. Results for bw-dir.d are 
on a SUN UltraEnterprise 4000 running Solaris 2.5.1. 

methods as a simplification step, and it can be implemented ef­
ficiently. It is not always useful, as sometimes no or few unit 
clauses are deduced. Yet, the overhead it incurs is relatively 
low, especially when we consider the more complex exam­
ples, and it seems to be a useful enhancement. In Table 2, we 
see a comparison of the running time of Bayardo and Schrag's 
REL-S AT algorithm with and without the preprocessing step. 
We also show the time required for binary-binary resolution 
and the number of unit clauses derived.4 

We also experimented with the performance of the SATZ 
algorithm [Li and Anbulagan, 1997] on the above instances 
with and without bin/bin resolution. In Table 3 we give the 
running times for SATZ as applied to the original and the sim­
plified formula for those instances in which they differ. In ad­
dition, we conducted a number of experiments in which we 
attempted to resolve binary clauses with clauses of arbitrary 
size. We found the overhead of this method too large. 

4 Conclusion 
We have shown a connection between the scheme used to en­
code planning instances and the ability to propagate reach­
ability and relevance information from the initial and final 
steps to other time points. We compared this ability to that 
of the Reachable-k and Relevant-k algorithms, the first be­
ing a generalization of GRAPHPLAN'S planning graph, and the 
second being a natural extension into relevance analysis. We 
also pointed out the fact that binary clauses form a major part 
among all clauses in sat-encoded planning problems, and we 
attempted to exploit this phenomena. Our initial experiments 
show nice improvements in instances where unit clauses can 
be derived from binary resolution, and a small overhead other­
wise. We are currently experimenting with various extensions 

4 See ftp://ftp.research.att.eom/dist/ai/logistics.tar.Z and 
satplan.data.tar.Z for the instances used. 

980 PLANNING AND SCHEDULING 

ftp://ftp.research.att.eom/dist/ai/logistics.tar.Z


Table 3: Effect of Binary Clause Preprocessing on the 
SATZ Algorithm. Experiments conducted on an AMD-K6 
200MHz processor running Linux. Times for SATZ with BBR 
do not include binary resolution preprocessing step. Only in­
stances in which binary resolution yielded some unit clauses 
were examined. 

of the Davis-Putnam procedure that perform limited amounts 
of binary resolution during the search process. 

This work is among the first attempts to theoretically an­
alyze different encoding schemes. We have concentrated 
on one particular aspect of such encodings, i.e., their ability 
to propagate concrete state information backwards and for­
wards. Naturally, this attempt is a-priori limited in its scope, 
as this ability is only one factor influencing the performance of 
various algorithms, and its influence is probably more signif­
icant in systematic methods based on the David-Putnam pro­
cedure than in methods based on stochastic local search. 

Other authors have considered some of the ideas presented 
here, too. Kautz and Selman (1996) point to the ability to 
backward propagate information thanks to the encoding of 
effects in the GRAPHPLAN encoding. Kautz and Selman 
(1998) mention a relation between GRAPHPLAN'S mutex con­
straints and binary propagation. Recent work on this planner 
employs Crawfords's COMPACT algorithm which uses a re­
stricted form of binary propagation to reduce the size of the 
formula. Finally, [Ernst et al., 1997] discuss optimizations 
performed on sat-encoded planning problems, among them 
the use of type inference and a form of dataflow analysis that 
seems related to Reachable-1. 

Acknowledgments 
I wish to thank Craig Boutilier and Chris Geib for valuable 
discussions on reachability analysis and the anonymous re­
viewers for their useful comments. This work was partially 
funded by the Paul Ivanier Center for Robotics Research and 
Production Management. 

References 
[Bayardo and Schrag, 1997] R. J. Bayardo and R. C. Schrag. 

Using csp look-back techniques to solve real-world sat in­
stances. In Prvc. AAAI-97, pages 203-208,1997. 

[Blum and Furst, 1995] A. Blum and M. L. Furst. Fast plan­
ning through planning graph analysis. In Prvc. Fourteenth 
International Joint Conference on AI, 1995. 

[Bonet e, al., 1997] B. Bonet, G. Loerincs, and H. Geffner. A 
robust and fast action selection mechanism for planning. In 
Prvc. AAAI-97, pages 714-719,1997. 

[Boutilier and Dearden, 1994] C Boutilier and R. Dearden. 
Using abstractions for decision theoretic planning with 
time constraints. In Prvc. of AAM'94, 1994. 

[Boutilier et al, 1998] C. Boutilier, R. I. Brafman, 
and C. Geib. Structured reachability analysis for markov 
decision processes. In Proc. UAI'98,1998. 

[Crawford and Auton, 1993] J. Crawford and L. D. Autoh. 
Experimental results on the cross-over point in satisfiabil­
ity problems. In Prvc. AAA1'93, 1993. 

[Davis etal., 1962] M, Davis, G. Logemann, and D. Love-
land. A machine program for theorem proving. Communi­
cation of the ACM, 5(7):394-397, July 1962. 

[Ernst et al, 1997] M. D. Ernst, T. D. Millstein,, and D. S. 
Weld. Automatic SAT-compilation of planning problems. 
In Prvc. 1JCA1'97,1997. 

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. Strips: 
A new approach to the application of theorem proving to 
problem solving. Art. Int., 2(3-4): 189-208,1971. 

[Freeman, 1995] J. W. Freeman. Improvements to Prepo­
sitional Satisfiability Search Algorithms. PhD thesis, U. 
Pennsylvania CIS Dept., 1995. 

[Gomes et al.,1998] C. P. Gomes, B. Selman, and H. Kautz. 
Boosting combinatorial search through randomization. In 
Proc. of 15th Nat. Conf. A/, pages 431-437,1998. 

[Kambhampati et al., 1997] S. Kambhampati, E. Parker, and 
E. Lambrecht. Understanding and exending graphplan. In 
Prvc. 4th European Conf. on Planning, 1997. 

[Kautz and Selman, 1992] H. Kautz and B. Selman. Plan­
ning as satisfiability. In Proc. of the 10th European Conf 
on Al, pages 359-363,1992. 

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing 
the envelope: Planning, propositional logic, and stochas­
tic search. In Prvc. of the 13th National Conference on AI 
(AAAIy96), pages 1194-1201,1996. 

[Kautz and Selman, 1998] H. Kautz and B. Selman. Black-
box: A new approach to the application of theorem prov­
ing to problem solving. In Working notes of the Workshop 
on Planning as Combinatorial Search, 1998. 

[Larrabee, 1992] T. Larrabee. Test pattern generation using 
boolean satisfiability. IEEE Transactions on Computer-
Aided Design, pages 4-15, January 1992. 

[Li and Anbulagan, 1997] Chu Min 
Li and Anbulagan. Heuristics based on unit propagation 
for satisfiability problems. In Prvc. IJCAI-97,1997. 

[McDermoot, 1996] D. McDermoot. A heuristic estimator 
for means-ends analysis in planning. In Prvc. 3rd Int. Conf 
on AI Planning Systems, pages 142-149,1996. 

[Nebel et al, 1997] B. Nebel, 
Y. Dimopoulos, and J. Koehler. Ignoring irrelevant facts 
and operators in plan generation. In Prvc. 4th Euro. Conf 
on Planning, 1997. 

BRAFMAN 981 


