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Abstract 
This paper presents a geometric based ap­
proach for multiple mobile robot motion coor­
dination. All the robot paths being computed 
independently, we address the problem of coor­
dinating the motion of the robots along their 
own path in such a way they do not collide 
each other. The proposed algorithm is based 
on a bounding box representation of the obsta­
cles in the so-called coordination diagram. The 
algorithm is resolution-complete. Its efficiency 
is illustrated by examples involving more than 
100 robots. 

1 Introduction: Path coordination 
This paper addresses the following problem: consider 
n mobile robots sharing the same workspace and plan­
ning their paths independently; n such paths being given 
we want to devise an algorithm deciding whether coordi­
nated motions exist for the mobile robots along their own 
paths, so that each robot can reach its own goal with­
out colliding the other ones. The problem is known as 
the multiple robot path coordination problem [Latombe, 
1991b]. 

P a t h coordinat ion versus P a t h planning Multiple 
robot path coordination and path planning are two re­
lated issues in robot motion planning. In multiple robot 
path planning the robot paths are not a priori com­
puted. A solution to the multiple robot path planning 
problem is a collision-free path in the cartesian product 
of the configuration spaces of all the robots. A solu­
tion to the problem exists iff the start and goal config­
urations belong to a same connected component of the 
global collision-free configuration space. Searching such 
a space is a highly combinatorial problem [Hopcroft et 
a/., 1984]. 

To face this complexity several authors have investi­
gated decoupled schemes1. The decoupled approach has 

1 Other schemes for multiple robot path planning have 
been proposed. For instance some centralized approaches 
aim at facing the problem complexity with probabilistic al-

been introduced in [Kant and Zucker, 1986]: the method 
first plans the paths of the robots independently and 
then computes the velocity profiles so that the robots 
do not collide. The approach has been further revisited 
in [Erdmann and Lozano-Perez, 1986; Buckley, 1989; 
Warren, 1990; Alami et a/., 1995]. 

The path coordination problem as such has been ad­
dressed in [O'Donnell and Lozano-Perez, 1989] where the 
notion of coordination diagram has been first introduced. 
It dealt with two robots, a case which has been also ad­
dressed in [Bien and Lee, 1992; Chang et a/., 1994]. A 
strategy based on dynamic programming was proposed 
more recently in [La Valle and Hutchinson, 1996] to ad­
dress problems involving more than two robots. 

Objective, approach and contr ibut ion We want 
to solve problems involving more than 100 robots in re­
alistic situations. The algorithm consists in searching a 
n-dimensional coordination diagram. The main contri­
bution is to propose a bounding box representation of the 
diagram obstacles. With respect to the previous works 
above we do not use any regular grid representation. The 
algorithm is resolution complete and it is complete for 
a large class of inputs. Its efficiency inherits from the 
efficiency of simple geometric operations giving rise to a 
collision-checker dedicated to mobile robot coordination 
and summarized in Section 2. After having introduced 
a cell decomposition of the coordination diagram for the 
case of two robots (Section 3), we extend the algorithm 
to the general case (Section 4). 

2 Paths SA and geometric tools 
Pa ths SA The geometric tools we use are based on 
the following assumption: the robot paths are sequences 
of straight line segments (S) and arcs of a circle (A). Such 
sequences are denoted by 5.4 . This assumption is sup­
ported by both theoretical and practical considerations. 

gorithms (see [Svestka and Overmars, 1995] and references 
therein). Prom another point of view, cooperation-oriented 
approaches are based on local informations (potential meth­
ods): see for instance [Reif and Wang, 1995] and [Cao et ai, 
1997] for a recent overview. Techniques for path coordination 
are out of the scope of all these methods. 
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First of all, it has been proved that a collision-free admis­
sible path exists iff there exists a collision-free admissible 
path of type SA [Laumond, 1986]. Moreover, most of 
the existing complete motion planners for mobile robots 
provide solution paths of the type SA (e.g., [Laumond et 
a/., 1994; Latombe, 1991a; Svestka and Overmars, 1995; 
Mirtich and Canny, 1992]). Finally geometric algorithms 
like boolean operations or swept volume computations 
are simple and computationally efficient when dealing 
with arcs of circle and straight line segments. 

(a) (b) 

Figure 1: Two intersecting robot traces 

Traces A mobile robot path being given, a trace is the 
volume swept by the robot when moving along the path. 
Assuming that the robot is a polygon, the trace of a path 
of type SA is a generalized polygon whose boundary is 
a sequence of straight line segments and arcs of a circle. 
[Simeon et a/., 1998] have shown how to compute such 
traces efficiently (Figure 1(a)). 

Coordination configurations To coordinate the mo­
tions of two robots along their own path, it is neces­
sary to compute the intersection of their trace. Fig­
ure 1 shows two traces. The bold sub-path [a1,6i] (resp. 
[a2,b2]) gathers the configurations at which the first 
(resp. second) robot intersects the trace of the second 
(resp. first) one. The endpoints of such sub-paths are 
called coordination configurations. [Simeon et a/., 1998] 
have proposed a geometric algorithm to compute them 
when the robots are convex polygons and move along 
SA paths. In this paper we keep the same assumptions. 

3 Coordination for two robots 
Coordination diagram Coordinating the motion of 
two robots along two given paths is a classical prob­
lem. Its solution consists in exploring the so-called co-
ordination diagram [O'Donnell and Lozano-Perez, 1989]. 
Let us consider the two paths m Fig­
ure 2(a). Both coordinates and are assumed to 

(c) (d) 

Figure 2: Two SA paths (a), the coordination diagram 
(b), the partition of the diagram induced by the path 
decomposition (c), the bounding box representation of 
the obstacles and a solution path (d). 

vary from 0 to 1. Figure 2(b) shows the corresponding 
coordination diagram : the black domains rep­
resent the set of configuration pairs such that 
the robots collide when they are respectively at config­
urations a n d . Black domains are obsta­
cles to avoid. A coordinated motion exists iff there is a 
collision-free path in the diagram linking the point (0,0) 
(the robots are both at the beginning of their own path) 
to the point (1,1) (the robots are both at the end of their 
path). 

A bounding box representation Our contribution 
is to propose an algorithm to explore the diagram with­
out computing the exact shape of the obstacles2. We 
use a bounding box representation based on the follow­
ing property: the (minimal) box bounding an obstacle 
in a coordination diagram is a rectangle whose endpoint 
coordinates are the coordination configurations 3. Let 
us consider the case in Figure 1. The coordinates of 
four points defining the rectangle in the coordination 
diagram are respectively and 

2The obstacles in Figure 2(b) have been computed with 
a brute force discretization approach used only for display 
purpose. 

3 In our context the coordinate of a configuration on a path 
is its curvilinear abscissa s on 
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The computation of the boxes is then done by 
computing the coordination configurations (see above). 

Path decomposition Let us now consider two 
SA paths and . Instead of applying the bounding 
box representation directly in the coordination diagram 
of and we first apply a path decomposition. Each 
path is decomposed into its elementary pieces consisting 
of either straight line segments, or arcs of a circle. Let 

and the pieces sequences of and re­
spectively. The coordination diagram for and then 
appear as the union of the coordination diagrams of the 
various pairs . For instance, the two paths in 
Figure 2(a) both consist of 4 arcs of a circle. Therefore 
the coordination diagram appears as the union of 16 el­
ementary coordination diagrams (Figure 2(c)). Then, 
for each elementary coordination diagram, we compute 
a bounding box representation of the obstacles. Fig­
ure 2(d) shows the bounding box representation of the 
diagram in Figure 2(b). 

Search Such a representation induces a cell decompo­
sition of the coordination diagram into rectangles. Any 
classical search algorithm may be used to compute a 
collision-free path from the origin (0,0) to the goal (1,1). 
Figure 2(d) shows a solution path. For this example, 
note that the widthest robot R2 (corresponding to the 
vertical coordinate in the diagram) should necessarily 
move forward, backward and then forward along the first 
two pieces of its path. 

Figure 3: This case cannot appear when at least one 
robot moves along a straight line segment. 

Completeness The algorithm is complete iffit is com­
plete when applied to the elementary diagrams corre­
sponding respectively to three cases: S||S, S||A, A||A. 

For the first two cases the algorithm is complete. The 
only way for the bounding box approach to loose a so­
lution is that there exist two vertical and horizontal 
lines intersecting two obstacles (Figure 3). This is how­
ever not possible since at least one robot moves along 
a straight line segment: indeed, the robot moving along 
the straight line cannot intersect twice the other (convex) 

robot remaining at a fixed position. Then the bounding 
box approximation does not affect the completeness of 
the algorithm for these first two cases. 

Figure 4: special case: bounding boxes would fill 
the space. 

Completeness is not necessarily guaranteed in the 
third case : we may find counterexamples where the 
bounding box approximation of the obstacles may split 
the free space into two connected components. Figure 4 
shows an example where the bounding box transforms 
the full space into an obstacle. However such cases can 
be solved by the following resolution complete procedure: 
both arcs of a circle are recursively split into smaller 
arcs and each pair of the new elementary pieces is pro­
cessed with the bounding box approach. Moreover such 
cases are easily identified in the path decomposition step 
above. This means that, according to the inputs, the al­
gorithm may or not activate the recursive subdivision. 
The activation condition is a function dedicated to the 
case and checking the existence of a collision-free 
vertical or horizontal line in the diagram. The activa­
tion cases are seldom seen. For instance they do not 
appear in the examples displayed in Figures 5, 7 and 8. 

4 Coordination for n robots 
Generalized coordination diagram Let us now 
consider n robot paths The cartesian product of all 
the e lemen ta rycoo rd ina t i on diagrams is 
a n-dimensional cube called generalized coordination di­
agram. A point in the n-cube belongs to an obstacle iff 
at least two robots collide. Therefore, the obstacles in 
the generalized coordination diagram have a cylindrical 
shape4. As a consequence the topology of the general­
ized coordination diagram is fully characterized by the 
topology of the elementary 2-dimensional diagrams. Fig­
ure 5(b) shows the 10 elementary diagrams for the path 
coordination problem of Figure 5(a). 

A solution to the coordination problem is a collision-
free path between (0,... 0) to ( 1 , . . . 1). 

4This property has been already noticed in [La Valle and 
Hutchinson, 1996] 
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Figure 5: The 10 elementary diagrams (b) of the gener­
alized coordination diagram of 5 paths (a). 

Figure 6: The cell decomposition of a diagram refines 
the cell decomposition of other diagrams. 

Generalized coordination diagram modeling and 
searching We have seen that the bounding box rep­
resentation of the coordination diagram for two robots 
induces a decomposition of the diagram into rectangles. 
Let us consider three paths " The cell de­
composition of coordination diagram induces a 
partition of the axis . Then the cell decomposition of 
the diagram is refined according to this partition. 
More generally, the cell decomposition of a ) dia­
gram induces a refinement of the cell decompositions of 
the 2(n -1 ) diagrams and (see Figure 6). 
We denote by (i, j)-cell a cell of the diagram af­
ter refinement. The 2-dimensional -cells of all the 

diagrams induce a cell decomposition of the n-
cube. The cells of then-cube are denoted by n-cells. The 
main advantage of the following search is that it does not 
require an explicit representation of the n-cube. 

Let us consider a (collision-free) n-cell reached at a 
current step of the search. The strategy consists in mov­
ing only one robot at once at each step. To do that 
the algorithm generates the 2n cells adjacent to the n-
cell through a (n - l)-dimensional hyper-plane. Let us 
consider a n-cell cell, adjacent to the current collision-
free n-cell and corresponding to an elementary motion 
of robot i. Due to the cylindrical shape of the obstacles, 
testing if cell is collision-free is easily performed: each of 
the (n -1) projections of cell onto the elementary 
diagrams should be a collision-free (i, .)-cell. 

The search is performed by an A* algorithm whose 
heuristic function is the shortest Euclidean path to the 
goal point ( 1 , . . . 1) of the n-cube. Our algorithm com­

putes coordination paths which are Manhattan paths: 
only one robot moves at once. If needed, we may over­
come this fact by "smoothing" the computed path with 
the help of optimization techniques as in [Svestka and 
Overmars, 1995]. 

(a) 

Figure 7: A case with 32 robots: the robots traces (a) 
and the 496 elementary diagrams. The partition into the 
8 robot subgroups is illustrated by the 8 bold triangles. 

Completeness Due to the cylindrical shape of the ob­
stacles in the generalized coordination diagram, the al­
gorithm above inherits from the completeness property 
of the coordination procedure for two robots presented 
in Section 3. 

Interaction graph The final extension we propose is 
supported by a practical assumption. When a high num-
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ber of robots plan their paths independently the path 
coordination problems are in general localized in differ­
ent domains of the environment and only concern robot 
subsets. To reduce the combinatorial complexity of the 
global problem in practice we first identify which robot 
traces intersect another trace. We then build an interne-
tion graph whose nodes are the robots; two robot-nodes 
are adjacent iff both corresponding traces intersect. A 
simple decomposition of the graph into connected com­
ponents identifies automatically the various subgroups 
of robots requiring motion coordination. Then the algo­
rithm above is applied to each subgroup. 

Results Figure 7(a) shows an example of 32 mobile 
robots paths (including the traces). The 8 connected 
components of the interaction graph have been com­
puted automatically. The global coordination diagram 
appears in Figure 7(b) showing clearly the structure in­
duced by the 8 connected components. A detailed view 
of the coordination diagram involving a subgroup of 5 
robots appears; it includes a display of the computed 
solution path for this group. 

All the steps of the algorithm have been implemented 
in C++ and run on Sparc Ultra-1. The following table 
presents the computation times of each step of the algo­
rithm for the examples in the figure 7 and the figure 8 
that involves 150 robots5. A more complete analysis ap­
pears in [Leroy, 1998]. 

5 Conclusion 
The proposed approach permits to solve problems for 
more than 100 robots in a reasonable time. The key 
points of the method are the efficiency of computation 
of the coordination configurations and the bounding box 
representation of the obstacles in the elementary coordi­
nation diagrams. 

Nevertheless we should notice that the performance 
depends on the decomposition of the interaction graph 
into connected components. The worst case appears 
when the interaction graph has only one component 
(e.g., when the trace of some robot intersects all the 
other traces). In fact, the complexity of the approach is 
dominated by the highest dimension of the considered n-
cubes. In practice the algorithm may explore efficiently 
n-cubes of dimension up to ten (i.e., involving 10 robots). 

5The motion planner computing an admissible collision-
free path for each robot is based on the algorithm presented 
in [Laumond et a/., 1994]. It is not possible to display the 
"effective" motions on pictures; animations related to this 
work may be seen at 

We just argue that this limitation is not critical in prac­
tice. Moreover we do not know any alternative approach 
allowing to solve the case of Figure 8. 
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