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Keeping track of mult iple objects over t ime 
is a problem that arises in many real-world 
domains. The problem is often complicated 
by noisy sensors and unpredictable dynamics. 
Previous work by Huang and Russell, draw­
ing on the data association l iterature, provided 
a probabilistic analysis and a threshold-based 
approximation algorithm for the case of mul t i ­
ple objects detected by two spatially separated 
sensors. This paper analyses the case in which 
large numbers of sensors are involved. We show 
that the approach taken by Huang and Rus­
sell, who used pairwise sensor-based appear­
ance probabilities as the elementary probabilis­
tic model, does not scale. When more than 
two observations are made, the objects' intr in-
sic properties must be estimated. These pro­
vide the necessary conditional independencies 
to allow a spatial decomposition of the global 
probabil ity model. We also replace Huang and 
Russell's threshold algori thm for object iden­
tif ication wi th a polynomial-t ime approxima­
tion scheme based on Markov chain Monte 
Carlo simulation. Using sensor data from a 
freeway traffic simulation, we show that this 
allows accurate estimation of long-range or i ­
gin/destination information even when the in­
dividual links in the sensor chain are highly un­
reliable. 

1 I n t r o d u c t i o n 
The problem of tracking mult iple objects over t ime 
has long been studied in the literature on data asso­
ciation [Bar-Shalorn and Fortmann, 1988; Bar-Shalom, 
1992]. The problem is defined as that of associating a set 
of current observations wi th a set of existing "tracks" or 
object trajectories, creating new tracks as needed. Radar 
tracking of mult iple aircraft is the canonical application. 
In A I , the problem of object identification is essentially 
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the same: deciding if some newly observed object is the 
same as some previously observed object. Solving this 
problem is essential for any intelligent agent that rea­
sons about individual objects. Huang and Russell [1997; 
1998] provide a fair ly general formulat ion of the prob­
lem and describe an application to traffic surveillance. 
Other possible applications range f rom removing "dupl i­
cate" entries f rom databases to re-recognizing locations 
during exploratory map-bui lding. 

The object identification problem is diff icult because 
sensors are noisy, objects look similar, and object be­
haviors are unpredictable. This leads to a large number 
of possible assigrunents specifying identities among ob­
served objects. For example, in the traffic surveillance 
application studied by Huang and Russell, the sensors 
are cameras at various locations on a freeway network 
and the objects are vehicles. Many thousands of ve­
hicles pass each camera, and the system must decide 
whether each vehicle is a new vehicle or the same as 
one previously observed at a different location. Over 
t ime, these decisions give rise to hypothetical vehicle 
trajectories. Deriving a set of trajectories is the first 
step of many traffic surveillance applications, such as 
the average link travel time between locations or origin-
destination counts along different routes through the sys­
tem. Moreover, sudden changes in these quantities can 
be indicators of highway incidents, such as accidents or 
breakdowns. 

Adopt ing the notat ion used by Huang and Russell, let-
denote an assignment placing pairs (or, more gen­

erally, sets) of observed objects into equivalence classes, 
where each class represents an existing object, and let O 
denote all observations made to date. Then the poste­
rior probabil i ty that two objects and are the same is 
given by 

(1) 

In evaluating terms such as we wi l l make use 
of the fact that the prior can be assumed uniform. 
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This is because, the probabil i ty of an assignment in 
the absence of observations l inking the objects, must be 
invariant under renaming of the objects. This it the 
exchangeability assumption of Huang and Russell. 

Other quantities can also be calculated by summing 
over For example, in freeway surveillance, speci­
fies the correspondence between vehicles observed at up-
stream and downstream sensor locations. For a given 

the average l ink travel t ime between the two 
locations can be calculated directly if the observations 
include the arrival t ime at each location. Then the pos­
terior expectation of the l ink travel t ime is 

This paper addresses the two principal difficulties that 
arise in put t ing such equations into practice. 

Section 2 deals w i th the computation of the 
terms—in particular their decomposition into tractable 
local models that can be estimated from data. We show 
that the decomposition proposed by Huang and Rus­
sell using appearance probabilities, while adequate for the 
case of two sensor locations, does not scale up to handle 
the decomposition of a global model for many sensors. 
In fact, this appears to require the estimation of intrinsic 
parameters of the observed objects, which render succes­
sive observations conditionally independent. 

Section 3 deals wi th the intractabi l i ty of the summa­
tion in Eq. (1), which includes an exponential number 
of terms. Whereas Huang and Russell describe a heuris­
tic scheme that seems to work well in practice, we ap­
ply the Markov chain Monte Carlo (MCMC) method, a 
general-purpose approximation algorithm for probabilis­
tic inference that can be shown to converge in polyno­
mial t ime for the specific inference problem involved in 
object identification. Furthermore, the algorithm can 
be adapted easily to incorporate online updating of the 
probabil i ty models required for computing The 
overall scheme is in fact an online EM algorithm with 
M C M C as an approximate E-step.1 

Section 4 describes an application of the new approach 
to data extracted from a freeway simulation. We show 
that the estimation of intrinsic parameters, as described 
in Section 2, successfully handles some multi-camera sce­
narios for which the appearance probabil i ty models of 
Huang and Russell are not applicable. We also show 
that the M C M C method allows accurate estimation of 
long-range origin/destination information even when the 
individual links in the sensor chain are highly unreliable. 

2 Scaling up to mul t ip le sensors 
As mentioned in the Section 1, calculation of assignment 
probabilities is crucial for object identification. 
The calculation wi l l be done using probability models 
that, in some way, capture the properties of the sensors 

1The use of MCMC with EM is well-known in statis­
tics [Wei and Tanner, 1990]; to our knowledge, its use for 
online learning and for object identification is novel. 

Figure 1: Schematic diagram showing three consecutive 
camera sites, A, B, and C, and three vehicle trajectories. 

and the behavior of the objects being tracked. We hope 
to find models that allow decomposition of the global 
assignment probabil i ty in much the same way that local 
causal models allow decomposition of jo int probabilities 
in Bayesian networks. 

We begin by describing the models used by Huang and 
Russell, explaining how they work only for two sensor lo­
cations. We then describe an alternative approach based 
on estimation of intrinsic properties of objects. 

2.1 Prob lems w i t h appearance 
probab i l i t ies 

We begin wi th the case of two consecutive cameras A 
and B as considered by Huang and Russell. Let the 
observations at each be and = 

and let WAB be an assignment pairing up 
objects observed at A w i th objects observed at Then 

(2) 

where a is, again, a normalizing constant. The 
term is dropped by exchangeability— 
conditioning on the init ial observations provides no in­
formation about matching wi th the subsequent objects. 
The approximate equality in the last line arises from the 
assumption of approximate independence among vehicle 
trajectories.3 

In Eq. (2), the terms are called appear-
ance probabilities since they describe "how an object can 
be expected to appear at subsequent observations given 
its current appearance" [Huang and Russell, 1997]. The 
appearance probabil ity models for freeway vehicles are 
composed of factors such as the arrival t ime at B given 
the arrival t ime at A, the measured colour at B given 
the measured colour at A, and so on. Huang and Rus­
sell show how these models can be estimated online from 

2 Since in general and conservation of objects is not 
assumed, may include unpaired objects from either or 
both sensors. 

3 Trajectory independence is a reasonable assumption only 
if the individual models are conditioned on some global con­
text variables such as the current link travel time. 
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matched vehicles in a very straightforward way, avoiding 
the need for camera calibration. 

Let us now extend this approach to three cameras, 
using the scenario of (Figure 1) as an example. An as­
signment now specifies sequences of three obser­
vations that belong to a single object, and can be de­
composed into two pairwise assignments and 
As in Eq. (2), we can apply Bayes' rule and eliminate 

then we can apply the chain rule: 

(3) 
where is replaced in the last line b y b e c a u s e 
assignments of vehicles at C carry no information about 
A and B. Now the last term on the RHS of Eq. (3) can 
be wri t ten as the product of appearance probabilities 
between A and B, as in Eq. (2). However, the first term 
cannot be simplified to give the appearance probabilities 
between B and that is, 

To see why, consider the extreme case in which cam­
eras A and C can read the license plate of each vehicle, 
but camera B is broken. Then the posterior distr ibu­
tion for assignments should have all its mass on assign­
ments WABC that correctly match up vehicles at A and 
C; whereas both the pairwise models wi l l be uninforma­
tive and hence wil l fail to propagate information from A 
to C. 

Two possible fixes are 1) use multicarnera models, 
e.g., and 2) estimate models for 

all camera pairs, e.g., The first fix 
enlarges the model dimension and scales exponentially 
with the number of cameras. The second fix requires a 
quadratic number of models; moreover, it is unclear how 
to combine the predictions of these models. In summary, 
it seems that, despite their many advantages, appearance 
probabil ity models apply only to the two-camera case. 

2.2 Spat ia l decompos i t i on v ia in t r ins ic 
p roper t i es 

The example of the broken camera at B raises the fol-
lowing problem: we wish to propagate information be-
tween nonadjacent sensors, yet we do not want to have to 
employ nonlocal probabil i ty models, since such models 
result in a combinatorial explosion in the number of pa­
rameters to be estimated. The solution is, essentially, to 
let the objects themselves carry the necessary informa­
t ion. As with Kalman filters and hidden Markov models, 
hidden state variables can render current observations 
conditionally independent of previous observations. This 
provides a decomposition of the global model. 

Let represent the hidden state of the objects ob­
served at location /, and let range over possible values 
of Notice that, given the hidden state, the observa­
tions at a camera are independent of all the other ob­
servations. More formally, = 

Figure 2: Graphical model for object identification in­
ference, showing two objects at two sensor locations. 

for all and Now, we can introduce hidden state into 
Eq. (3) by summing over and and simpli­
fying using conditional independence, to yield a nested 
sum exactly as in the derivation of the forward equations 
for HMMs. The only significant, difference is that the re­
lationship between successive hidden state variables is 
only meaningful if we condition on the assignment so we 
know which vehicle is which: 

(4) 

Thus, the introduction of hidden state solves the problem 
of Section 2.1. Unlike Eq. (3), Eq. (4) calls only for 
two-camera models. Moreover, these models need be 
estimated only for neighbouring camera pairs. 

As with appearance probabilit ies, we can decompose 
the expressions in Eq. (4) into models for individual ve­
hicles by making the appropriate independence assump­
tions (again, assuming the models depend on some global 
context variables). The models we obtain are the transi-
tion models such as and the sensor mod-
els such as As wi th HMMs, these models can 
be learned online using EM [Dempster et al., 1977], as 
we show below. The process is complicated by the fact 
that we must simultaneously estimate both the hidden 
state variables of the observed objects and the global 
assignment saying which object is which. 

For traffic surveillance and many other applications, 
some aspects of the hidden state do not change over t ime. 
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We call these intrinsic variables; for traffic surveillance, 
these include colour, length, w i d t h , and so on. I n t r i n ­
sic variables have no t rans i t ion model but often have 
very noisy sensor models, specific to each sensor loca­
t ion . Dynamic variables such as lane, speed, and arr ival 
t ime must be tracked as the vehicle progresses through 
the freeway network. Often they have relatively noise­
less sensor models. Thus, the hidden variables can be 
d iv ided in to the intr insic variables, and the dynamic 
variables, S imi lar ly , the observed variables O can be 
div ided in to observations of A, and d, observations of 
Figure 2 i l lustrates all the independence assumptions we 
have made. It is relat ively easy to augment this model to 
include dependencies between, for example, vehicle size 
and lane. 

3 Approx imate inference and online 
model updat ing 

As mentioned in Section 1, the expressions for the proba­
b i l i ty of ident i ty (Eq. 1) and other quanti t ies involve ex­
ponent ia l ly many terms. It can be shown that the infer-
ence problem is equivalent to comput ing the permanent 
of a ma t r i x and hence is It is possible to 
compute the most probable assignment for vehicles in 

t ime using the Hungar ian a lgor i thm [Cox and H in -
gorani , 1994]; as Huang and Russell point out , however, 
this assignment may be of l i t t l e interest i f the ind iv idual 
matches therein are highly unrel iable. They developed a 
heuristic "leave-one-out" a lgor i thm w i th runt ime 
that alleviates this problem and works well in practice. 
The a lgor i thm identifies ind iv idua l matches that exceed 
a re l iabi l i ty threshold and then treats those matches as 
if t rue. The matches are used to compute l ink travel 
t ime and to update the appearance probabi l i ty models. 
A major drawback of this approach is that the if the 
fract ion of rel iably matched vehicles on each l ink is sig­
ni f icant ly below 100%, as often happens, the number of 
vehicles that can be tracked across a mul t i - l ink freeway 
network is vanishingly smal l [Huang and Russell, 1998]. 

In this section, we describe an alternat ive approach 
to the inference problem based on Markov chain Monte 
Carlo ( M C M C ) . Roughly speaking, M C M C approxi­
mates sums of probabi l i t ies such as Eq. (1) by sampl ing 
a smal l number of h igh-probabi l i ty terms; thus, for ob­
ject ident i f icat ion, it considers a small number of likely 
assignments and l ikely values for the hidden state vari­
ables. Given any par t icu lar assignment and set of val­
ues for the hidden variables, est imat ing the transi t ion 
and sensor models is t r i v ia l because the data is com-
plete. Th is suggests an online EM scheme for learning 
the models, as shown in Figure 3. 

3.1 Introduction to M C M C inference 
M C M C inference is a general-purpose method for ap­
p rox imat ing the expected value of the func­
t ion when its argument x is drawn from a probabi l i ty 
d is t r ibu t ion Typ ica l ly , a posterior 
d is t r ibu t ion over x given evidence 

Figure 3: The overall inference scheme: onl ine EM using 
M C M C for the E-step and updat ing the models d i rect ly 
f rom the states sampled by M C M C . 

Ideally, can be approx imated s imply by sam­
pling f rom if each sample can be drawn in con­
stant t ime, then f rom ChernofT bounds we wi l l have a 
polynomial - t ime approx imat ion method. For general 
we know this cannot exist; sampl ing f rom an arb i t rary 
d is t r ibut ion in constant, t ime is not always possible. 

M C M C inference [Metropol is et al . , 1953; Gi lks et 
al., 1996] provides a general method to generate sam­
ples f rom by defining a Markov chain whose states are 
the objects and whose stationary distribution is 
Samples are produced by s imula t ing the Markov chain 
and selecting states f rom among those visi ted. 

In the Metropolis-Hastings me thod , transit ions in the 
Markov chain are constructed in two steps; 

• Given the current state a candidate next, state 
is sampled f rom the proposal distribution 
which may be (more or less) arb i t rary. 

• The transi t ion to is not automat ic , but, occurs 
w i th an acceptance probability defined by 

Notice that to use this rule we need only be able 
to compute ratios which conveniently 
avoids the need to normal ize 

Provided is defined in such a way tha t the chain is er-
godie, this t ransi t ion mechanism defines a Markov chain 
whose stat ionary d is t r ibu t ion is and hence the av­
erage value of over the sampled states wi l l converge to 
the desired value 

The complexi ty of the or ig inal inference problem is 
reflected in the mixing rate of the Markov chain, which 
determines the speed at, which the sample average con­
verges. Jerrum and Sinclair [1997] have shown that a 
Markov chain defined on assignments, as described be-
low, yields a fully randomized approximation scheme for 
est imat ing expectations over the probabi l i ty d is t r ibut ion 
on assignments. Th is means tha t , if we want to approxi­
mate some such funct ion to w i th in rat io in a world 
w i th n objects, the chain w i l l run in t ime polynomia l in 
n and to approximate w i th probabi l i ty 
The probabi l i ty may be boosted to by run­
ning the chain t imes and tak ing the median 
value. Of course, this assumes tha t proposals and accep­
tance probabi l i t ies can be computed in t ime constant, in 
n, which we show below. Therefore, M C M C provides an 
efficient approx imat ion scheme for object ident i f icat ion. 
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For each newly detected vehicle 
Augment Markov chain state to include the vehicle 
Repeat un t i l models converge 

E: Run M C M C , sampl ing f rom and 
M: Update models f rom sampled values 



3,2 App l i ca t ion to traf f ic surveil lance 

As we have seen in Section 1, traffic surveillance, as 
defined here, involves taking the expected value of a 
quanti ty over all assignments given the obser­
vations The calculation of this expected value, 

can be approximated by sampling from 
an ergodic Markov chain wi th state space and station­
ary distr ibut ion The quantities to be estimated, 
which include LTTs and origin destination counts, are 
very simple to derive for any given assignment An 
assignment specifies trajectories through the sensor net­
work wi th known times at each sensor location, enabling 
us to read off the desired quantity directly. 

The transitions in the Markov chain may be set up 
in many ways, as long as ergodicity is ensured. In our 
approach, each transition is simply a swap between two 
assignment pairs across one pair of sensors. For example, 
in Figure 4 observed object at sensor is originally 
matched wi th observed object at sensor while 
object at is matched with at A transition 
leads to being matched with and with The 

Figure 4: Figure demonstrating a single transition from 
one assignment with four trajectories to another. 

observation pairs to be switched are suggested in a very 
simple mariner. The algorithm cycles through all pairs 
of adjacent sensors, and all matched pairs currently at 
each sensor. For each such pair, a plausible second pair 
to swap with is then chosen uniformly at random. Such 
a chain is provably ergodic. 

Once a pair is chosen, it is accepted or rejected based 
on the acceptance probabil i ty as Eq. (3.1). This involves 
the computation of the ratio 

Because of the simple form of the swapping proposals, 
the values are tr iv ial to compute. We can also derive 
a general expression for which wi l l permit us to 

simplify the rat io and make its calcu­
lation more efficient. Let us demonstrate this using the 
transition in Figure 4. 

Generalizing Eq. (4) for the observation sequence 

we express as a nested sum 

(5) 

As was noted in Section 2.2, the hidden variables can 
be divided into dynamic variables which change 
over t ime, and intrinsic variables which do not. 
The observed variables are analogously divided into d 
and Here, we assume that all the dynamics can 
be observed reliably. Thus, assuming that and 
are mutually independent, becomes 

, and be­
comes Now, we can make use of the 
assumption that the intrinsic variables remain constant 
across all sensors to discard the terms. 
Similarly, since we assume that dynamic variables are 
observed wi th perfect reliabil i ty, we can replace wi th 
ds. The terms can then be dropped. So, given 
our assumptions, Eq. (6) simplifies as follows: 

(6) 

Finally, note that the only hidden variables we are sum­
ming over now are the intrinsics t. Moreover, t is the 
same across all cameras by assumption, so we can com­
bine all the summations. The terms 
are independent of and so can be moved outside the 
summation 

(7) 

We can now use trajectory independence to factor this 
equation into separate terms, one for each trajectory. Let 
the variable represent a trajectory wi th in a specified 
and let represent the hidden intrinsic variables for the 

1164 ROBOTICS AND PERCEPTION 



putat ive object tha t fol lows t ra jectory Define and 
dt analogously. 

Eq. (7) may now be factored into a product of proba-
bil i t ies for ind iv idua l trajector ies: 

i 

where 

We can now evaluate the ra t io in a sim­
plif ied fo rm. As shown in Figure 4, each Markov chain 
t ransi t ion affects only two trajectories, those that in­
clude and Clearly, the probabi l i t ies along 
the remain ing trajectories remain unchanged. Thus, 

and w i l l share many common factors. 
A l l these factors, inc lud ing the normal izat ion constant 
a, cancel out . If we let xy signify the t ra jectory which 
includes and the rat io simplif ies to 

This rat io can be computed in t ime propor t ional to the 
longest network t ra jectory, which is constant for any 
given network. Note that the bottleneck of the com­
puta t ion is the evaluat ion of the integrals over 
products of intr insic noise models. Current ly, all of these 
models are Gaussian, and so the products are Gaussian 
and integrat ion is not. d i f f icu l t . However, some care is 
required when in t roduc ing other models, to ensure that 
the. computa t ion is s t i l l efficient. Simi lar problems may 
be introduced if the assumption of noise-free dynamics 
is abandoned. W i t h o u t this assumption, we wi l l need to 
integrate over the as well as over the 
Th is can st i l l be efficient, as long a.s the models are cho­
sen wel l . 

3.3 Model updating 
The dynamic variable models at each l ink and the in t r in ­
sic variable models at each sensor are all learnt using E M . 
A model update is performed whenever a new object, is 
observed at a sensor, and the M C M C process has been 
given t ime to converge. Each EM i terat ion proceeds as 
fol lows. 

The E-step requires comput ing joint, expectations for 
the hidden variables and w i th M C M C , this is 
approx imated by sampl ing w f rom the Markov chain 
and extending each sample by calculat ing 
Aga in , the fact that all our intr insic models are Gaus­
sian yields a relat ively st ra ight forward calculation that 
requires t ime propor t iona l to t ra jectory length. For ex­
ample, consider a sequence of vehicle length measure­
ments w i t h a un i fo rm prior and a sequence of Gaussian 
noise models w i t h a common variance. In this situa­
t i on , the expected true vehicle length is jus t the mean 
of al l the observations. I f other, non-Gaussian, mod­
els are used, the computa t ion may become much more 

compl icated—in which case, sampl ing over / as well as 
over may be the best approach. 

The M step is exact. It uses the and / values of 
each sample as if they were observed variables to per form 
conventional parameter learning. 

Running EM to its convergence requires a Markov 
chain run for each EM i te ra t ion , and we run EM when­
ever a new observation is made, result ing in many 
Markov chain runs. In practice, the chain converges very 
quickly, as the models change only slowly w i t h each in ­
coming observation. We are current ly invest igat ing the 
use of online E M , where only a single i terat ion is per­
formed for each new available data po in t . Nowlan [ l 9 9 l ] 
has proved that this approach should lead to local ly max­
i m u m l ikel ihood estimates in the l i m i t , and our pre l imi ­
nary experimental results are encouraging. 

4 Experimental results 
We have performed two experiments compar ing our ap­
proach to that of Huang and Russell. Our data sets were 
created using a freeway s imulator [Forbes et al . , 1995] 
that allowed us to control road configurat ions, camera 
characteristics, and complex vehicle behaviour. Each set 
included the observations generated by approximately 
one hundred cars, and the models used in the exper­
iments had been learnt by our E M - M C M C a lgor i thm 
using data generated w i th the same parameter settings. 

4 . 1 O v e r c o m i n g f a u l t y s e n s o r s 

In this experiment, the algor i thms were applied to a 
three-camera network such as tha t in Figure 1, set up in 
a manner analogous to the license-plate example of Sec­
t ion 2.1. The only intr insic a t t r ibu te used was colour, 
and every car had a unique colour. The outer two cam­
eras, A and C, measured colour exactly. Gaussian noise 
was added to the measured colour at B. Thus, the 
data set contained enough data for a complete match ing 
between cameras A and O, but a pair wise appearance-
based model could be expected to lose accuracy due to 
its hasty independence assumptions. 

The results of the exper iment, averaged over three 
runs, can be seen in Figure 5. The y axis requires a 
l i t t le explanat ion. In the case of the Huang and Russell 
a lgor i thm, which results in discrete matches, it shows 
simply the percentage of correct A to C matches: in the 
ease of the M C M C , it shows the average percentage of 
correct matches across all the samples drawn. The ad­
vantage of M C M C is clear: hidden feature est imat ion 
helps to ma in ta in an almost constant degree of accu­
racy, whereas the pairwise approach is highly sensitive 
to sensor noise. 

4 . 2 E s t i m a t i n g o r i g i n / d e s t i n a t i o n c o u n t s 

Here, we compare the a lgor i thms in the sl ight ly more 
realistic sett ing shown in Figure 6. The aim is to esti­
mate the or ig in-dest inat ion counts between the two entry 
points and the three exi t points. Th is requires t racking 
each object across the entire network. In this task, the 
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Figure 5: The vehicle matching accuracy of two algo-
ri thms as a function of the variance in the Gaussian noise 
at the central sensor. 

greater number of sensors should be a l iabil i ty to the 
pairwise algorithm, as each pair of neighbouring sensors 
can make its own mistakes independently of the others. 
Our algorithm, on the other hand, should benefit from 
the ability to observe each object several times to esti­
mate intrinsics more reliably. 

The colour variance was manipulated as before, but 
at all nine cameras simultaneously. Figure 7 shows the 
percentage accuracy of the origin-destination counts as 
a function of the colour noise variance. As expected, the 
M C M C algorithm substantially outperforms the Huang-
Russell algorithm, holding up well even for levels of noise 
that essentially wipe out the colour altogether. On the 
other hand, Figure 8 shows that both methods are un­
able to find exact matches accurately for high levels 
of noise. The ability of the M C M C algorithm to re­
cover reasonable counts despite the failure of individual 
matches suggests that its samples contain a reasonable 
amount of information about the ensemble behaviour of 
the vehicles. 

5 Summary and future work 
We have described an improved approach to object iden­
tification based on the estimation of the intrinsic prop­
erties of objects and the use of Markov chain Monte 
Carlo to approximate the posterior probabilities effi­
ciently. We have shown that this approach works on 
computer-generated data, and that its computational re­
quirements are not prohibitive. We believe that this ap­
proach should be applicable in many data association 
applications. 

We are currently working towards applying our ap­
proach in the real world. To this end, we have extended 
the approach to handle realistic problems such as missing 
observations. In the near future, we wil l receive data on 
vehicle observations made by cameras placed above the 
1-80 freeway as part of the Berkeley Road watch project. 

Figure 6: Schematic diagram of simulated freeway net­
work with nine cameras. 

Figure 7: The origin-destination count accuracy of the 
two algorithms as a function of the colour noise variance. 

Figure 8: The origin-destination vehicle matching accu­
racy of the two algorithms as a function of the colour 
noise variance. 
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Solving the tracking and data association problems for 
individual vehicles is only the first part of the solution for 
large, complex applications such as traffic surveillance. 
The next step is to connect these low-level computations 
to high-level, aggregated models, which wi l l permit pre­
diction and control for large networks containing hun­
dreds of thousands of vehicles. 
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