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Abstract

Three basic questions are presented and answered in re-
searching on node-failure topology in wireless sensor net-
work. First, what is the definition of node-failure tol-
erance? Second, how to evaluate this tolerance ability?
Third, which type of topologies is more efficient in toler-
ating node-failure?
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wireless sensor networks

1 Introduction

Wireless sensor networks usually were deployed in remote
and hostile surroundings, and people cannot attend the
sensor nodes. When some nodes are failure, such as bat-
teries exhausted, hardware faulted and intrusion from at-
tackers, these unattended nodes cannot be changed or
repaired. The failure nodes may lead to network parti-
tion which decreases the cover ratio, reduces the avail-
ability of the network and even produces network failure.
So network topology should tolerate node-failure to avoid
network partition. We think the following three questions
should be answered when researching node-failure toler-
ance of wireless sensor networks.

1) What is the definition of node-failure tolerance for
topology in WSN?

2) How to evaluate the tolerance abilities of topologies?

3) Which topologies are more efficient than the others
in tolerating failure nodes?

2 Review

The existing research [2, 3, 4, 5] on tolerance topologies
for WSN is concentrated on finding multiply connected
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Figure 1: Effect of node-failure on availability of WSN

network with minimum energy by using power control.
But we argue that it is not the truth.

Considering graph G with grid structure in Figure 1,
we regard a point of intersection as a sensor node, and
denote the number of the sensors as n, i.e. ‖V ‖ = n.

Firstly, the node-connectivity of graph Figure 1(a) is 2,
but it can tolerate 3 or more failure nodes when n are big
enough. After 2 black nodes are deleted from Figure 1(a),
the gray node becomes isolate, and the connected graph
is divided into two partitions. According to the existing
work [2, 3, 4, 5], graph (a) can only tolerate 1 failure
nodes. But 3 unavailable nodes in Figure 1(a) have less
effect on the large-scale sensor networks. Thus the num-
ber of failure nodes that topologies can tolerate is not
equivalent to the node-connectivity of the graph.

Secondly, the graphs in Figure 1(a) and Figure 1(b)
are 2-connected, but the availability of the entire network
is significantly different after 2 black nodes are deleted.
When 2 black nodes are deleted, only three nodes are not
available in Figure 1(a), but more than 50% nodes are
unavailable in Figure 1(b). That is to say, although node
connectivity of these two graphs is 2, one can tolerate 2
failure nodes, but the other cannot.

Now we conclude that fault-tolerance topology is not
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the same concept as multiply connected graph, and using
multiply connectivity to evaluate tolerance ability is not
appropriate.

3 Tolerating Node-Failure

We think that the effect on the availability of the network
taken by the failure nodes should be considered defin-
ing node-failure tolerance for topologies of wireless sensor
network. We describe the tolerance ability of G as the
number of nodes which are deleted without the effect on
availability of the network.

Definition 1. Graph G = (V, E) is connected, where
‖V ‖ = n. After k(n) nodes are deleted, the resid-
ual graph has r connected component, which are G1 =
(V1, E1), G2 = (V2, E2), ]Gr = (Vr , Er), 1 ≤ r ≤ k(n) + 1.
Then the node number of maximum connected component
is Ak(n) = max(|V1|, |V2|, ]|Vr |), and the cover rate of
available nodes is denoted as Ck(n). If it satisfies

lim
n→∞

Ck(n) = lim
n→∞

Ak(n)

n
= 1. (1)

Then we call graph G can tolerate k(n) failure nodes.

4 Tolerance of Fault and Intrusion

We use an extension network model with Bernoulli nodes
uniform distributing in a unit area to describe topolo-
gies for WSN. In this model, an additional assump-
tion is introduced to graph G(V, E) that all nodes are
elected as heads independently with probability p for some
constant0 < p ≤ 1[6]. Flat and hierarchical topologies of
wireless sensor network can be illustrated by graph over
Bernoulli nodes. In flat topologies, p = 1, all nodes are
heads. In hierarchical topologies, 0 < p < 1, there are
n × p(n) heads in the network.

In fact, node failure of WSN falls into two classes, one is
fault caused by error, and the other is intrusion brought
by attack. Because Error happens at random, but at-
tack is hostile and selective[1], so fault happens in all
nodes with the same probability, but intrusion happens
only in the head nodes for their important roles in the
hierarchy topology of wireless sensor network. Let the
Bernoulli probability of the network model be p(n), then
fault happens in all the nodes, but intrusion only attack
these n × p(n) heads.

If the failure node number is k(n), we write the num-
ber of failure heads as k1(n) and the number of failure
ordinary nodes as k2(n).

k(n) = k1(n) + k2(n). (2)

p1(n) is denoted as the failure-head ratio of all the failure
nodes:

p1n =
k1(n)

k(n)
. (3)
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Figure 2: Hierarchy topology

If node-failure is fault, then p1(n) = p(n). If node-
failure is intrusion, then p1(n) = 1. From Definition 1, we
can define fault tolerance and intrusion tolerance as the
maximum number of tolerating failure nodes, which is the
standards to evaluate tolerance abilities of topologies.

Definition 2. G = (V, E) is the network module with
Bernoulli nodes, where ‖V ‖ = n and the active probability
isp(n). If k(n) nodes are arbitrarily selected, in which
k(n) × p1(n) nodes are heads, where p1(n)is defined by
Equations (2) and (3). If graph G can tolerate these k(n)
failure nodes, we call G can tolerate k(n) fault nodes when
p1(n) = p(n), and we call G can tolerate k(n) intrusion
nodes when p1(n) = 1.

Definition 3. G = (V, E) can toleratek(n) fault nodes.
When A(n) nodes are deleted from G, where m(n) =
Ω(k(n)), the ratio of available nodes Cm(n) satisfies:

lim
n→∞

Ck(n) = lim
n→∞

Ak(n)

n
6= 1. (4)

Then we callG is θ(k(n)) fault tolerance, also call fault
tolerance of G is θ(k(n)), write as FTOL = θ(k(n)).

Definition 4. G = (V, E) can tolerate k(n) intrusion
nodes. When m(n) nodes are deleted fromG, where
m(n) = Ω(k(n)), the ratio of available nodes Cm(n) satis-
fies Equation (4). Then we call G is θ(k(n)) intrusion tol-
erance, also call intrusion tolerance of Gis θ(k(n)), writ-
ten as ITOL = θ(k(n)).

In Definition 3 and 4, the symbol Ω and θ are described
by the following equation: f(n) = θ(g(n)) ⇔.

Exist constant c1, c2 and n0, such that c1 × g(n) ≤
f(n) ≤ c2 × g(n), wheren > n0.

5 Tolerance of Hierarchy Topol-

ogy

There are n nodes in the network model with Bernoulli
probability p(n), which means each node has probabil-
ity p(n) to be cluster, then there are n × p(n) cluster,
and each cluster has a head and average 1

p(n)−1 ordinary

nodes, as shown in Figure 2(a). If an ordinary node is
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Figure 3: Node-failure and network partition

failure, then only a node is unavailable. If a head is fail-
ure, then the head and its 1

p(n)−1 ordinary nodes are un-

available. If some heads are failure, they may make some
other heads partitioned, then the failure heads and their
ordinary nodes, the partitioned heads and their ordinary
nodes are unavailable, As shown in Figure 2(b), black fail-
ure nodes make a head gray, then all the ordinary neigh-
bors of these black or gray heads are unavailable.

Let Ff (n) be the unavailable nodes brought by k1(n)
heads. To attack the network, attackers try their best to
make Ff (n) reach the biggest value. In Figure 3(a), k1(n)
black failure nodes form a connected curve and divide the
network to two parts. Then the number of unavailable
gray nodes reaches the biggest value. We treat Ff (n) as
the maximum area of shading region in Figure 3(b), and
we compute the maximum of Ff (n) with restriction of
Equation (5).

Ff (n) =

∫ x0

x=0

f(x)dx

k1(n) =

∮

ds. (5)

Then the maximum of Ff (n):

Ff (n) =
k2
1(n)

π
. (6)

From Equations (2) and (6), Ak(n) residual nodes is
available.

Ak(n) = n − (bFf (n) × (
1

p(n)
− 1)c + k2(n)). (7)

If Equation (1) is true, the topology can tolerate k(n)
failure nodes. From Equations (7) and (1):

k(n) =







c2 × n1−ε1 , p1(n) = 0
y, p1(n) ∈ (0, 1)

c1 × n
1

2
−ε1 · p

1

2 (n), p1(n) = 1.

(8)

Where

y = min
(

c1 ·
p

1

2 (n)

p1(n) · n
1

2
−ε2

, c2 ·
1

1 − p1(n)
· n1−ε1

)

and p1(n) is defined by Equation (3), c, ε1 and ε2 are
constants, ε1 and ε2 ∈ (0, 1

2 ]. Now Theorem is proved.

Theorem 1. G = (V, E) is a network model with
Bernoulli nodes, in which each node has probability p(n)
to be cluster head, and each failure node is a head with
probability p1(n). Then the network topology can tolerate
θ(k(n)) failure nodes, where θ(k(n)) is defined by Equa-
tion (8).

Corollary 1. In hierarchical structure of WSN topology,
let the probability of head be c, then fault tolerance de-
creases with c, but intrusion tolerance increases with c.

Proof. From Equation (8), in this structure:

FTOL = θ(c−
1

2 · n
1

2
−ε). (9)

ITOL = θ
(

(c · n)
1

2
−ε

)

. (10)

Where ε is a very small constant, and ε2 ∈ (0, 1
2 ]. From

Equations (9) and (10):

dFTOL(c)

dc
= θ

(

−
1

2
c−

3

2 · n
1

2
−ε

)

< 0

dITOL(c)

dc
= theta

(

c · n−
1

2
+ε

)

> 0.

6 Related Work

The popular researching on tolerance of WSN topology
is looking for k-connected graph with minimum energy
consumed that is far away from our work. The earlier
paper [1] studies tolerance of wired network, in which the
residual wired links after some nodes are deleted are used
to evaluate the tolerance ability of the topologies. And it
conclude that the topology whose wired links are central-
ized in minority nodes, has better fault tolerance, but less
intrusion tolerance. This conclusion is consistent with our
corollary.

7 Conclusion

We point out that the node-failure tolerance of WSN
topologies is not the same as the connectivity of graphs,
and present the definition of tolerating k failure nodes.
Then the tolerance of fault and intrusion tolerance are
presented in network model with Bernoulli nodes to eval-
uate the tolerance ability. Finally, fault and intrusion
tolerance of hierarchical topology are studied, and the
rules of fault and intrusion tolerance with head ratio of
hierarchical topology are achieved.
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