
International Journal of Network Security, Vol.9, No.3, PP.285–289, Nov. 2009 285

Analysis of Venkaiah et al.’s AES Design

Jorge Nakahara Jr

Department of Informatics, Universidade Catolica de Santos, UNISANTOS

R. Dr. Carvalho de Mendonça, 144, POBOX 11070-906, São Paulo, Brazil

(Email: jorge nakahara@yahoo.com.br)

(Received Oct. 25, 2006; revised and accepted June 27, 2007)

Abstract

This paper describes impossible differential (ID) attacks
on an AES variant designed by Venkaiah et al.. They
claim that their cipher has improved resistance to ID at-
tacks due to a new MixColumns matrix with a branch
number 4, which is smaller than that of the original AES.
We argue against this statement. The contributions of
this paper include ID distinguishers for Venkaiah et al.’s
cipher, and a discussion of the susceptibility of such vari-
ants to impossible differential and other modern cryptan-
alytic techniques.

Keywords: AES, block cipher cryptanalysis, impossible
differentials

1 Introduction

Rijndael is a Substitution Permutation Network (SPN)
type block cipher designed by Joan Daemen and Vincent
Rijmen for the AES Development Process, initiated by the
National Institute of Standards and Technology (NIST)
in the USA in 1997 [1, 9]. The 128-bit block version of
Rijndael, with a key of 128, 192 or 256 bits, is officially
known as the AES [10]. Typically, text blocks, keys and
subkeys are represented compactly by a 4×Nb state ma-

trix of bytes, where Nb is the number of 32-bit words in
a block. For instance, the state matrix for a 4t-byte text
block, A = (a0, a1, a2, a3, a4, . . . , a4t−1), is denoted

State =









a0 a4 . . . a4t−4

a1 a5 . . . a4t−3

a2 a6 . . . a4t−2

a3 a7 . . . a4t−1









(1)

namely, with bytes inserted columnwise. Note that byte
positions in a state matrix follows the subscripts of the
bytes in (1).

There are four layers in a full round of Rijndael, in
order: SubBytes (denoted SB), ShiftRows (SR), Mix-
Columns (MC) and AddRoundKey (AKi, where i is the
round number) [10].

This paper is organized as follows: Section 2 describes
the AES variant by Venkaiah et al.. Section 3 gives a brief

overview of the impossible-differential technique. Sec-
tion 5 concludes the paper.

2 Venkaiah et al.’s AES Design

In [14], Venkaiah et al. suggested a variant of AES with
a new S-box, a modified MixColumns matrix, and a new
irreducible polynomial for GF(28). They used x8 + x6 +
x5 +x+1 as primitive irreducible polynomial for GF(28),
in contrast to the AES irreducible (but not primitive)
polynomial x8 + x4 + x3 + x + 1. Their new S-box was
constructed based on two transformations in this order:

• powers of 3, a primitive element in F ∗257. If the power
is 256, the result is treated as 0.

• take multiplicative inverse in GF(28), with 0 mapped
to itself.

One feature of their new S-box is its algebraic expres-
sion in GF(28) = GF(2)[x] / (x8+ x6 + x5 + x + 1):
S′[x] = 01x + 2fx.x + d2x.x

2 + 23x.x
3 + ddx.x

4 + edx.x
5 +

a8x.x
6 + 98x.x

7 + 49x.x
8 + 03x.x

9 + a4x.x
10 + 39x.x

11 +
78x.x

12 + 8ex.x
13 + 94x.x

14 + f2x.x
15 + 19x.x

16 + 66x.x
17 +

bcx.x
18 + 46x.x

19 + 6fx.x
20 + 74x.x

21 + dbx.x
22 + 70x.x

23 +
75x.x

24 + 43x.x
25 + e3x.x

26 + ebx.x
27 + ebx.x

28 + adx.x
29 +

79x.x
30 + 22x.x

31 + fbx.x
32 + edx.x

33 + 28x.x
34 + 62x.x

35 +
f4x.x

36 + 24x.x
37 + 36x.x

38 + 4bx.x
39 + 31x.x

40 + aex.x
41 +

bfx.x
42 + 3fx.x

43 + 57x.x
44 + 22x.x

45 + 9fx.x
46 + a4x.x

47 +
b7x.x

48 + 96x.x
49 + 56x.x

50 + 25x.x
51 + 56x.x

52 + 8ex.x
53 +

c7x.x
54 + 9cx.x

55 + 26x.x
56 + 57x.x

57 + 05x.x
58 + 82x.x

59 +
eax.x

60 + bbx.x
61 + 2bx.x

62 + f6x.x
63 + 13x.x

64 + 96x.x
65 +

c8x.x
66 + 5ax.x

67 + bax.x
68 + dax.x

69 + 27x.x
70 + 60x.x

71 +
c8x.x

72 + 74x.x
73 + b8x.x

74 + d5x.x
75 + f2x.x

76 + c2x.x
77 +

71x.x
78 + a1x.x

79 + c3x.x
80 + 85x.x

81 + b7x.x
82 + 6dx.x

83 +
18x.x

84 + c7x.x
85 + 72x.x

86 + eax.x
87 + 07x.x

88 + acx.x
89 +

18x.x
90 + 13x.x

91 + 85x.x
92 + b7x.x

93 + a4x.x
94 + c2x.x

95 +
23x.x

96 +eex.x
97+e2x.x

98 +59x.x
99+46x.x

100 +34x.x
101+

a1x.x
102 + 38x.x

103 + 3cx.x
104 + 0bx.x

105 + 7dx.x
106 +

b4x.x
107 + 41x.x

108 + 05x.x
109 + e7x.x

110 + eex.x
111 +

5dx.x
112 + 80x.x

113 + b5x.x
114 + 15x.x

115 + d4x.x
116 +

65x.x
117 + 85x.x

118 + 8fx.x
119 + ecx.x

120 + 50x.x
121 +

ccx.x
122 + 2ax.x

123 + 8fx.x
124 + 0cx.x

125 + 85x.x
126 +

9ex.x
127 + 3fx.x

128 + 02x.x
129 + e9x.x

130 + 6ax.x
131 +

International Journal of Network Security, Vol.9, No.3, PP.285–289, Nov. 2009 286

c4x.x
132 + 1ex.x

133 + 7ax.x
134 + 16x.x

135 + c6x.x
136 +

cfx.x
137 + 3dx.x

138 + 1cx.x
139 + 9bx.x

140 + eax.x
141 +

fcx.x
142 + 96x.x

143 + 64x.x
144 + 02x.x

145 + 85x.x
146 +

55x.x
147 + 9fx.x

148 + 20x.x
149 + 96x.x

150 + acx.x
151 +

6dx.x
152 + 96x.x

153 + a7x.x
154 + 0ex.x

155 + 4fx.x
156 +

75x.x
157 + 29x.x

158 + a8x.x
159 + b5x.x

160 + fdx.x
161 +

66x.x
162 + 6dx.x

163 + 1fx.x
164 + 51x.x

165 + fex.x
166 +

6dx.x
167 + 98x.x

168 + cbx.x
169 + f2x.x

170 + d6x.x
171 +

61x.x
172 + 4dx.x

173 + e6x.x
174 + 10x.x

175 + 4dx.x
176 +

80x.x
177 + 88x.x

178 + a1x.x
179 + d8x.x

180 + f4x.x
181 +

20x.x
182 + f1x.x

183 + 17x.x
184 + 49x.x

185 + 09x.x
186 +

f8x.x
187 + 90x.x

188 + cex.x
189 + e6x.x

190 + 2fx.x
191 +

acx.x
192 + 94x.x

193 + 19x.x
194 + b8x.x

195 + 32x.x
196 +

3ex.x
197 + b7x.x

198 + 06x.x
199 + 93x.x

200 + 60x.x
201 +

09x.x
202 + 22x.x

203 + eex.x
204 + 85x.x

205 + d1x.x
206 +

5ex.x
207 + 49x.x

208 + d6x.x
209 + 61x.x

210 + 47x.x
211 +

79x.x
212 + 1dx.x

213 + 27x.x
214 + 7ax.x

215 + 19x.x
216 +

68x.x
217 + edx.x

218 + 59x.x
219 + c4x.x

220 + e7x.x
221 +

4dx.x
222 + 7ax.x

223 + 75x.x
224 + a3x.x

225 + ddx.x
226 +

f0x.x
227 + 67x.x

228 + 0ex.x
229 + 0cx.x

230 + dax.x
231 +

53x.x
232 + cex.x

233 + 3cx.x
234 + a6x.x

235 + c0x.x
236 +

70x.x
237 + 32x.x

238 + 77x.x
239 + 56x.x

240 + 95x.x
241 +

20x.x
242 + d1x.x

243 + 8bx.x
244 + 20x.x

245 + a2x.x
246 +

d9x.x
247 + eax.x

248 + a7x.x
249 + 58x.x

250 + 49x.x
251 +

c9x.x
252 + 0dx.x

253 + 29x.x
254, which is much more in-

volved and certainly not as sparse as AES S-box expres-
sion S[x] = 63x+8fx.x

127+b5x.x
191+01x.x

223+f4x.x
239+

25x.x
247 + f9x.x

251 + 09x.x
253 + 05x.x

254. The subscript x

indicates hexadecimal notation. The motivation for this
new S-box, denoted S′, may be related to attacks exploit-
ing the sparsity of the algebraic expression of the AES
S-box [8].

The highest non-trivial differential probability and
maximum non-trivial linear probability of S′ are depicted
in Table 1, together with the profiles for the AES S-box
[9]. These figures are called simply differential and linear
profiles of S′.

From a differential cryptanalysis perspective, the AES
S-box maximum probability is smaller than Venkaiah et
al.’s AES S-box. Thus, the former’s differential profile is
better than the latter’s. Also, from a linear cryptanaly-
sis point of view, the original AES S-box linear profile is
better than Venkaiah et al.’s profile.

Before discussing the minimum number of rounds for a
differential and a linear attack, we first discuss the diffu-
sion power of Venkaiah et al.’s AES. Another modification
suggested in [14] is a new MixColumns matrix, which we
denote MC’, with branch number four:

MC′ =









02x 01x 03x 01x

01x 02x 01x 03x

03x 01x 02x 01x

01x 03x 01x 02x









(2)

An example of an input/output difference tuple with

branch number four is (δ, 0, δ, 0)
MC′

→ (δ, 0, δ, 0), where

δ 6= 0. Similarly, (0, δ, 0, δ)
MC′

→ (0, δ, 0, δ). These differ-
ences tuples show that MC’ is not an MDS matrix, since

there are 2 × 2 singular submatrices of MC’, such as

[

01x 01x

01x 01x

]

(3)

Notice that MC’ uses the same coefficients as the original
MixColumns matrix of the AES, but in a different order.
The apparent motivation for the choice of MC’ was to
speed up the decryption procedure, since MC’ is involu-
tory (it is its own inverse). But, this discrepancy between
the performance of AES encryption and decryption pro-
cedures can be diminished by other means, as pointed out
by Barreto in [2], in which the InvMixColumns matrix is
split as








0ex 0bx 0dx 09x

09x 0ex 0bx 0dx

0dx 09x 0ex 0bx

0bx 0dx 09x 0ex









.









05x 00x 04x 00x

00x 05x 00x 04x

04x 00x 05x 00x

00x 04x 00x 05x









=









02x 03x 01x 01x

01x 02x 03x 01x

01x 01x 02x 03x

03x 01x 01x 02x









(4)

The matrix in the right-hand-side of (4) is the AES ma-
trix used in encryption mode. The leftmost matrix in (4)
is used in decryption mode. According to [2] “InvMix-
Column can be efficiently implemented with the same
resources as MixColumn, plus six exclusive-ors and four
xtime calls”.

The main drawback of MC’ is that it is not an MDS
matrix like AES’s MixColumn matrix. Venkaiah et al.
stated in [14] that MC’ “... has branch number 4 and,

correspondingly, has low diffusion power. This reduction in

branch number may be viewed positively as a way to cur-

tail the effect of impossible differential cryptanalysis”. The
consequences of the smaller branch number from an ID
cryptanalysis perspective are discussed in Section 4.

An immediate consequence of the smaller branch num-
ber in Venkaiah et al.’s design concerns the resistance to
differential [6] and linear [13] cryptanalysis. In (5), we de-
pict an 4-round differential of Venkaiah et al.’s AES, con-
structed to minimize the number of active S-boxes, using
MC’ and (3). The symbol δ denotes a nonzero exclusive-or
byte difference, and 0 a zero byte difference. The round
transformations, AddRoundKey (AKi), SubBytes (SB),
ShiftRows (SR) and MixColumns (MC) are composed in
left-to-right order, for instance, SR ◦ SB ◦ AK0(X) =
SR(SB(AK0(X))). Notice that there are 20 active S-
boxes in (5). Table 2 compares the number of active S-
boxes of the best differential characteristics and linear re-
lations across four rounds of Venkaiah et al.’s design and
for the AES.

Taking into account Tables 1 and 2, Venkaiah et al.’s
design not only have a smaller number of active S-boxes
(due to weaker diffusion of MC’), but also the differ-
ential profile of S′ is worse (higher) than that of the
AES S-box. Concerning differential cryptanalysis (DC),
the estimated number of active S-boxes for four rounds
is 20, and the probability of the differential becomes
(2−4.41)20 = 2−88.2, while for the AES, the correspond-
ing probability is (2(− 6)25) = 2−150. Analogously, for
LC, Venkaiah et al.’s design restricted to four rounds has
bias of the linear relation equal to (2−2.83)20 = 2−56.6,
while for the AES, it is (2(− 3)25) = 2−75. Thus, con-
sidering conventional DC and LC, the original AES [9] is

International Journal of Network Security, Vol.9, No.3, PP.285–289, Nov. 2009 287

Table 1: Differential and linear profiles of S and S′

Cipher Best nontrivial Best nontrivial
DC profile of S LC profile of S′

AES 2−6 2−3

Venkaiah et al. 12/256 ≈ 2−4.41 36/256 ≈ 2−2.83

Table 2: Comparison of differential and linear profiles

Cipher Branch # act. S-boxes # act. S-boxes
Number DC (4 rounds) LC (4 rounds)

AES 5 25 25
Venkaiah et al.’s 4 20 20

active S-box DC: minimum number of active S-boxes in a differential characteristic across 4 rounds.
active S-box LC: minimum number of active S-boxes in a linear relation across 4 rounds.

more robust than Venkaiah et al.’s design.









δ 0 0 0
0 0 0 0
0 0 δ 0
0 0 0 0









SR◦SB◦AK0
→









δ 0 0 0
0 0 0 0
δ 0 0 0
0 0 0 0









SB◦AK1◦MC
′

→









δ 0 0 0
0 0 0 0
δ 0 0 0
0 0 0 0









SR
→









δ 0 0 0
0 0 0 0
0 0 δ 0
0 0 0 0









SB◦AK2◦MC
′

→









δ 0 δ 0
δ 0 δ 0
δ 0 δ 0
δ 0 δ 0









SR
→









δ 0 δ 0
0 δ 0 δ

δ 0 δ 0
0 δ 0 δ









SB◦AK3◦MC
′

→









δ 0 δ 0
0 δ 0 δ

δ 0 δ 0
0 δ 0 δ









AK4◦SR
→









δ 0 δ 0
δ 0 δ 0
δ 0 δ 0
δ 0 δ 0









(5)

3 Impossible Differential Attacks

Unlike differential and linear techniques, which look for
events such as text patterns or statistical correlations of
high probability, the impossible differential (ID) method
looks for events that never happen. The impossible differ-
ential (ID) technique operates in a chosen-plaintext set-
ting. This attack was formerly proposed in [11] against
the DEAL block cipher, and further applied to Skipjack
[3], IDEA and Khufu [4], the AES [5] and several other
ciphers.

ID distinguishers currently reported in the literature
use the miss-in-the-middle technique described in [3].
This technique requires two differentials (∇ and ∆) both
holding with probability one. We denote by ∇ the “top-
down” truncated differential, because the difference pat-
terns propagate in the encryption direction. And ∆ is the
“bottom-up” truncated differential because the difference
patterns propagate in the decryption direction. The ID

distinguisher consists of the concatenation of both differ-
entials. But, the differentials are constructed such that
the output difference pattern of ∇ is incompatible with
the output difference pattern of ∆, in the sense that the
output difference of ∇ cannot cause the input difference
of ∆. This contradiction explains the term “miss-in-the-
middle”.

In byte-oriented ciphers such as Rijndael (AES), it is
typical to use truncated differentials [12] to construct ∆
and ∇, because truncated difference patterns hold with
certainty, and are independent of the S-box. In trun-
cated differentials, one only distinguishes between zero
and nonzero differences, namely, the exact value of the
nonzero difference is irrelevant. For bytewise difference
patterns (as in Rijndael), a nonzero byte difference will
be denoted δ. In contrast, a zero byte difference will be
denoted simply 0. Recall that although δ is used through-
out the distinguisher, it does not mean that all these bytes
contain the same difference value. The difference operator
used in Rijndael is exclusive-or.

In the following sections we assume that the user key
size is the same as the block size, 128 bits.

4 ID Distinguisher for Venkaiah et

al.’s AES

In this section we demonstrate that a decrease in the
branch number (or diffusion power) in Venkaiah et al.’s
AES does not curtail the effect of impossible differential
attacks.

In (6) we have an example of 4-round ID distinguisher
for Venkaiah et al.’s AES. This distinguisher is exactly the
same one used in [5] by Biham and Keller against AES.
The top-down truncated differential covers AK0 until MC’
of the third round. The bottom-up truncated differential
covers AK4 up until MC’ of the third round. These two

International Journal of Network Security, Vol.9, No.3, PP.285–289, Nov. 2009 288

differentials are incompatible. Note the pattern of four
nonzero byte differences in the leftmost column of the
state matrix before the MC’ layer of the third round, and
the pattern of four zero byte differences in the same col-
umn after the MC’ layer. This difference pattern before
and after MC’ in the leftmost column is contradictory
(even with the branch number 4). The symbol → means
that the difference pattern on the left-hand side causes the
difference pattern on the right-hand side. Contradiction
is denoted by 6→.







δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







MC
′
◦SR◦SB◦AK0
→







δ 0 0 0
δ 0 0 0
δ 0 0 0
δ 0 0 0







SR◦SB◦AK1
→







δ 0 0 0
0 0 0 δ
0 0 δ 0
0 δ 0 0







SR◦SB◦AK2◦MC
′

→







δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ δ δ







MC
′

6→







0 δ δ δ
0 δ δ δ

0 δ δ δ
0 δ δ δ







AK3◦SB
−1

◦SR
−1

◦AK4
←







0 δ δ δ
δ δ δ 0
δ δ 0 δ
δ 0 δ δ






(6)

The distinguisher (6) belongs to a set of related dis-
tinguishers, all of which share the same input difference
pattern, the same number of rounds, and the same num-
ber of zero output byte differences, but the precise output
difference pattern changes. For example, (6) contains zero
byte differences in the ciphertext positions (0, 7, 10, 13)
of the state matrix, but other ciphertext difference pat-
terns also cause contradiction. These patterns contain
zero byte differences only in positions (1, 4, 11, 14), (2, 5,
8, 15) and (3, 6, 9, 12). Thus, all of these zero (ciphertext)
byte positions are ’forbidden’.

4.1 ID Attack

A key-recovery ID attack on 5-round Venkaiah et al.’s
AES operates the same way as the one used against 5-
round AES in [5]. The distinguisher (6) is positioned in
the last four rounds. The attack works as follows:

(i) Create a pool of 232 plaintexts Pi = (p0, p1, . . . , p15),
such that (p0, p5, p10, p15) range over all 32-bit val-
ues, while the remaining bytes assume arbitrary con-
stant values. Encrypt this pool across 5 rounds
and obtain a corresponding ciphertext pool Ci =
(c0, c1, . . . , c15). Each such pool leads to about
232(232 − 1)/2 ≈ 263 pairs Ci ⊕ Cj , with i 6= j;

(ii) For each pair of ciphertexts (Ci, Cj) such that only
the bytes at position (0,7,10,13) are zero, guess 32
bits of AK0 in position (0,5,10,15) and decrypt the
first round of (Pi, Pj) up to the leftmost column of
the first MC’ layer. If only one byte difference is
nonzero in this column (see (6)), then the guessed
32-bit subkey is wrong;

(iii) Output the (only) 32-bit subkey value that is not

eliminated by the filtering in (ii).

The attack procedure and its complexities are the same
as the one on the original AES: 231 time, 229.5 chosen
plaintexts (CP), 232 memory.

Another attack using (6) can recover subkey bits from
both AK0 and AK6 of 6 rounds of Venkaiah et al.’s AES,
similar to [7]. This attack works as follows:

(a) Create a pool of 232 plaintexts Pi = (p0, p1, . . . , p15)
such that (p0, p5, p10, p15) assume all possible 32-bit
values, and the remaining bytes assume arbitrary
constant values. Each such pool leads to about
232(232 − 1)/2 ≈ 263 pairs Ci ⊕ Cj , with i 6= j;

(b) Consider 259.5 pools, which mean 291.5 chosen plain-
texts (CP) and 2122.5 plaintext pairs. Find ciphertext
pairs that contain zero difference in the bottommost
two rows of the state matrix (a 2−64 filtration condi-
tion). The expected number of pairs that satisfy this
restriction is 2122.5−64 = 258.5.

(c) Guess 64 bits of AK6 = (k6,0, k6,1, . . . , k6,15) corre-
sponding to the topmost two rows of the state ma-
trix, i.e. (k6,0, k6,1, k6,4, k6,5, k6,8, k6,9, k6,12, k6,13).

(d) For each ciphertext pair (Ci, Cj) that satisfies step
(b), decrypt the last round and compute MC’−1(Ci⊕

Cj) and check if there are zero byte differences in
one of the forbidden positions (0,7,10,13), (1,4,11,14),
(2,5,8,15), (3,6,9,12). The joint probability of these
difference patterns is 4 · 2−32 ≈ 2−30, and the ex-
pected number of remaining pairs is 258.5 · 2−30 =
228.5.

(e) For a plaintext pair (Pi, Pj) corresponding to a ci-
phertext pair from step (d), guess 32 subkey bits
(k0,0, k0,5, k0,10, k0,15) of AK0 = (k0,0, k0,1, . . .,
k0,15) and encrypt the first round until after the
first MC’ layer. Keep those pairs for which there
is only one nonzero byte difference in the leftmost
column after MC’. The probability of this event is
4 · (28 − 1)/232 ≈ 2−22 for three zero byte differences
in a single column of MC’.

(f) Every subkey that leads to such difference is wrong.
After analyzing 228.5 pairs, there remains about
232(1−2−22)2

28.5

≈ 232 ·e−26.5

< 1 wrong key values.

(g) Steps (c) and (d) require 2 · 258.5 · 264 = 2123.5 1-
round computations, and step (e) requires about 2119

1-round computations [7]. The total time complex-
ity is (2123.5 + 2119)/6 ≈ 2121 6-round computations,
291.5 CP and 232 memory. To recover the remaining
bits of AK6, we repeat the same attack, but look for
the subkey bits on the lower two rows of the state
matrix. Only the time complexity doubles.

International Journal of Network Security, Vol.9, No.3, PP.285–289, Nov. 2009 289

Table 3: Complexity of ID attacks on Venkaiah et al.’s
AES

Rounds Time Data Memory

5 231 229.5 CP 232

6 2122 291.5 CP 232

5 Conclusion

This paper argued about differential and linear cryptanal-
ysis of Venkaiah et al.’s AES design, and concluded that
it is not better than the original AES (Table 2).

In [14], it is claimed that “The reduction in branch
number leading to low diffusion power may in fact be
viewed as a factor that curtails the effect of impossible
differential cryptanalysis.” We argue against their claim,
and described impossible differential (ID) distinguishers
and attacks on reduced-round versions of Venkaiah et al.’s
AES. We used the same approach as [4] and [7] to con-
struct the ID distinguishers and attack 4 and 5 rounds of
Venkaiah et al.’s design.

Table 3 lists the complexities of ID attacks on reduced-
round variants of Venkaiah et al.’s design. These complex-
ities are the same as for reduced-round AES. Therefore,
we do not agree with their claim that a small branch num-
ber effectively curtails the effect of ID attacks.

It is left as an open problem whether there are other
ID distinguishers that achieve a better tradeoff (more
rounds, smaller attack complexities) on Venkaiah et al.’s
AES than (6).

Acknowledgments

The research results presented in this paper were funded
by FAPESP under contract 2005/02102-9.

References

[1] AES, The Advanced Encryption Standard Develop-
ment Process, 1997. (http://csrc.nist.gov/ encryp-
tion/aes/)

[2] P. S. L. M. Barreto, On Efficient Implementation of
InvMixColumn, Manuscript. (http://paginas.terra.
com.br/informatica/
paulobarreto/)

[3] E. Biham, A. Biryukov, and A. Shamir, Cryptanal-
ysis of Skipjack Reduced to 31 Rounds using Impos-
sible Differentials, Techical Report CS0947 revised,
Technion, CS Department, 1998.

[4] E. Biham, A. Biryukov, and A. Shamir, “Miss-in-
the-middle attacks on IDEA, Khufu and Khafre,” 6th
Fast Software Encryption Workshop, LNCS 1636, pp.
124-138, L. R. Knudsen edits, Springer-Verlag, 1999.

[5] E. Biham, and N. Keller, “Cryptanalysis of reduced
variants of rijndael,” 3rd AES Conference, New York,
USA, 2000.

[6] E. Biham, and A. Shamir, “Differential cryptanalysis
of DES-like cryptosystems,” Journal of Cryptology,
vol. 4, no. 1, pp. 3-72, 1991.

[7] J. H. Cheon, M. Kim, K. Kim, J. Y. Lee, and S.
Kang, “Improved impossible differential cryptanaly-
sis of rijndael and crypton,” ICISC 2001, LNCS 2288,
pp. 39-49, K. Kim edits, Springer-Verlag, 2001.

[8] N. T. Courtois, and J. Pieprzyk, “Cryptanalysis of
block ciphers with overdefined systems of quadratic
equations,” Cryptology, Asiacrypt’02, LNCS 2501,
pp. 267-287, Y. Zheng edits, Springer-Verlag, 2002.

[9] J. Daemen, and V. Rijmen, “AES proposal: Rijn-
dael,” 1st AES Conference, California, USA, 1998.

[10] FIPS197, Advanced Encryption Standard (AES),
FIPS PUB 197 Federal Information Processing Stan-
dard Publication 197, U. S. Department of Com-
merce, Nov. 2001.

[11] L. R. Knudsen, DEAL- A 128-bit Block Cipher, Tech-
nical Report #151, University of Bergen, Depart-
ment of Informatics, Norway, Feb. 1998.

[12] L. R. Knudsen, and T. A. Berson, “Truncated dif-
ferentials of SAFER,” 3rd Fast Software Encryption
Workshop, LNCS 1039, pp. 15-26, D. Gollmann ed-
its, Springer-Verlag, 1996.

[13] M. Matsui, “Linear cryptanalysis method for DES ci-
pher,” Cryptology, Eurocrypt’93, LNCS 765, pp. 386-
397, T. Helleseth edits, Springer-Verlag, 1994.

[14] V. C. Venkaiah, K. Srinathan, and B. Bruhadeshwar,
Variations to S-box and MixColumn Transformations
of AES, Technical Report, Deemed University, Feb.
2006.

Jorge Nakahara Jr is an assistant professor in Com-
puter Science at the Universidade Católica de Santos in
Santos, São Paulo, Brazil. He received his MS degree in
Electrical Engineering and PhD from the Katholieke Uni-
versiteit Leuven, in Leuven, Belgium, 2003. His research
interests include: symmetric and asymmetric cryptogra-
phy, with emphasis on cryptanalysis.

