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1 Introduction

In Computer Aided Geometric Design (CAGD) tensor product polynomial surfaces [5]
are usually expressed in the following Bézier form

F (x, y) =

m∑
i=0

n∑
j=0

bi,jB
m
i (x)Bni (y), (x, y) ∈ [0, 1]× [0, 1], (1)

where Bki (t) is the Bernstein polynomial of degree k given by

Bki (t) =

(
k
i

)
(1− t)k−iti, t ∈ [0, 1] i = 0, 1, · · · , k, (2)

and the points bi,j are called control points of the surface F . The corresponding surface
is called Bézier tensor product surface (see [5]).

Since the most widely used algorithm for the evaluation of a Bézier curve is the
de Casteljau algorithm (for brevity we denote it by DC algorithm in this paper), the
algorithms to evaluate Bézier tensor product surfaces are often direct extensions of this
univariate algorithm. They most well known are: the standard bilinear algorithm using
conventional repeated bilinear interpolation (see [5]), an algorithm evaluating both the
value and the derivatives simultaneously (see [22]) and the de Casteljau tensor product
algorithm as a corner cutting algorithm running the DC algorithm successively in each
parametric direction(see [4]). These algorithms are coherent in essence.

In this paper we only focus on the third one, the de Casteljau tensor product
algorithm, for simplicity we denote it by DCTP algorithm. This algorithm has better
stability and higher accuracy than corresponding Horner algorithm in bivariate case
[4].The relative accuracy bound of the computed value F̂ (x, y) verifies the following
inequality

|F (x, y)− F̂ (x, y)|
|F (x, y)| ≤ cond(F, x, y)×O(u), (3)

where, u is the unit roundoff and cond(F, x, y) is the condition number of F (x, y) (the
expression will be given further). This algorithm is stable, however, when performed
in floating point arithmetic, the computed result by the DCTP algorithm may be still
less exact than expected owing to cancelations in ill-conditioned cases, then a high
accurate algorithm is required.

Recently, a compensated Horner algorithm to evaluate the univariate polynomial
in monomial basis has been proposed by Graillat, Langlois and Louvet in [9, 8, 16] and
used to accurately solve a simple zero of a polynomial in [6]. Graillat also proposed
the compensated algorithms for accurate floating-point product and exponentiation in
[7]. Motivated by their work, we presented the compensated de Casteljau algorithms
to evaluate the univariate polynomial and its first order derivative in Bernstein form
in [14], bivariate polynomial in Bernstein-Bézier form in [13], and the compensated
Clenshaw algorithm for the evaluation of Chebyshev series in [12]. All algorithms
above can yield a full precision accuracy for not too ill-conditioned polynomial. The
core technology is to apply error-free transformations which is exhaustively studied by
Rump, Ogita and Oishi [24, 25, 23]. In this paper we extend the method proposed in
[14] into the case of Bézier tensor product surfaces and present a compensated DCTP

algorithm. The relative accuracy of the computed value F (x, y) by our algorithm
satisfies

|F (x, y)− F (x, y)|
|F (x, y)| ≤ u+ cond(F, x, y)×O(u2). (4)
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This bound tells us that the computed values can be relative accurate up to the unit
roundoff as long as the problem has a condition number lower than 1/u.

Partly results of this paper have been presented in the Minisymposia “Accurate
algorithms and applications” of 2012 SIAM Conference on Applied Linear Algebra,
this paper is an extended version with the detailed proof.

The paper is organized as follows. In section 2 we introduce some basic notations
and results about floating-point arithmetic, error-free transformations and the DCTP

algorithm. In section 3, the compensated DCTP algorithm for the evaluation of Bézier
tensor product surfaces is provided. In section 4 an a priori error analysis is carried
out. Finally, in section 5 several numerical tests illustrate the efficiency and accuracy
of the proposed algorithm.

2 Basic Notation and Results

2.1 Floating-point Arithmetic and Error-free Transforma-
tions

In this paper we assume all the floating-point computation is performed in double
precision, with the “round to the nearest” rounding mode and no underflow occurring.
We also assume that the computation in floating point arithmetic obeys the model

a op b = fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2), (5)

where op ∈ {⊕,	,⊗,�}, ◦∈{+,−,×,÷} and |ε1|, |ε2| ≤ u. The symbol u is the unit
round-off and ′op′ represents the floating-point computation, e.g. a⊕b = fl(a+b). We
also assume that the computed result of α∈R in floating-point arithmetic is denoted
by â or fl(a) and F denotes the set of all floating-point numbers (see [11] for more
details). Following [11], we will use the following classic properties in error analysis
(we always assume that nu < 1).

(i) if |δi| ≤ u, ρi = ±1, then
∏n
i=1(1 + δi)

ρi = 1 + θn,

(ii) (1 + θk)(1 + θj) ≤ (1 + θk+j),

(iii) |θn| ≤ γn := nu/(1− nu) and nu(1 + γn) = γn,

(iv) (1 + γk)γj ≤ γk + γj + γkγj ≤ γk+j and γk < γk+1,

(v) u ≤ u(1 + u) ≤ γ1 ≤ γ3/3,

(vi) γiγj ≤ γi+tγj−t, if j − i > t > 0.

Then let us introduce some results concerning error-free transformations (EFT). For
a pair of floating-point numbers a, b ∈ F, when no underflow occurs, there exists a
floating-point number y satisfying a◦b = x+y, where x = fl(a◦b) and ◦∈{+,−,×}. The
transformation (a, b) −→ (x, y) is regarded as an error-free transformation. The error-
free transformation algorithms of the sum and product of two floating-point numbers
used later in this paper are the TwoSum algorithm by Knuth [15] and the TwoProd

algorithm by Dekker [3], respectively (see Appendix B). The following theorem exhibits
the properties of the TwoSum and TwoProd algorithms (see [23]).

Theorem 2.1 [23] For a, b ∈ F and x, y ∈ F, TwoSum and TwoProd verify

[x, y] = TwoSum(a, b), x = fl(a+ b), x+ y = a+ b, |y| ≤ u|x|, |y| ≤ u|a+ b|,
[x, y] = TwoProd(a, b), x = fl(a× b), x+ y = a× b, |y| ≤ u|x|, |y| ≤ u|a× b|.
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2.2 Compensated Algorithm for the Evaluation of a Bézier
Curve

Let us recall the DC algorithm for the evaluation of a Bézier curve p(t) =
∑n
i=0 biB

n
i (t)

on t ∈ [0, 1].

Algorithm 1 de Casteljau algorithm for Bézier curve evaluation
function DC(p, t)

b̂
(0)
i = bi, i = 0, · · · , n
r = 1	 t
for j = 1 : 1 : n

for i = 0 : 1 : n− j
b̂
(j)
i = b̂

(j−1)
i ⊗ r ⊕ b̂(j−1)

i+1 ⊗ t
end

end
DC(p, t) ≡ b̂(n)0

The following result states the forward error bound of the DC algorithm.

Theorem 2.2 If p(t) =
∑n
i=0 biB

n
i (t) and p̂(t) is the computed value of the de Castel-

jau algorithm then

|p(t)− p̂(t)| ≤ γ3n
n∑
i=0

|bi|Bni (t). (6)

Proof: Considering that there will exist roundoff error in the process of 1 − ai−1
j+1(x)

in Proposition 3.1 of [21], we can deduce this theorem from Corollary 3.2 of [21] by
substituting γ2n with γ3n directly.

Note that the difference of Theorem 2.2 and the classical result of [21] is that we
consider the error of the evaluation of the term (1 − t), and so we have the term γ3n
instead of γ2n.

In [14] the authors proposed the following compensated algorithm to accurately
evaluate a Bézier curve.

Algorithm 2 Compensated algorithm for Bézier curve evaluation
function [resorg, err, resfin]=CompDC(p, t)

b̂
(0)
i = bi, ε̂b

(0)

i = 0, i = 0, · · · , n
[r̂, ρ]=TwoSum(1,−t)
for j = 1 : 1 : n

for i = 0 : 1 : n− j
[s, π

(j)
i ]=TwoProd(̂b

(j−1)
i , r̂)

[v, σ
(j)
i ]=TwoProd(̂b

(j−1)
i+1 , t)

[̂b
(j)
i , β

(j)
i ]=TwoSum(s, v)

ŵ
(j)
i = π

(j)
i ⊕ σ

(j)
i ⊕ β

(j)
i ⊕ b̂

(j−1)
i ⊗ ρ

ε̂b
(j)

i = ε̂b
(j−1)

i ⊗ r̂ ⊕ (ε̂b
(j−1)

i+1 ⊗ t⊕ ŵ(j)
i )

end
end
resorg = b̂

(n)
0 and err = ε̂b

(n)

0

CompDC(p, t) ≡ resfin = b̂
(n)
0 ⊕ ε̂b

(n)

0
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This algorithm has improved stability properties. After correcting a small missprint
in Theorem 4 of [14] we have

Theorem 2.3 [14] Consider the computed result ε̂b
(n)

0 of Algorithm 2 and its corre-

sponding theoretical result εb
(n)
0 , if no underflow occurs and n ≥ 2, then

|εb(n)0 − ε̂b
(n)

0 | ≤ 2γ3n+2γ3(n−1)

n∑
i=0

|bi|Bni (t). (7)

Note that

p(t) = p̂(t) + εb
(n)
0 , (8)

and so the principle of Algorithm 2 is just to find an approximate value ε̂b
(n)

0 of εb
(n)
0

and to correct the result by the DC algorithm. Then the final error bound (see Theorem
5 in [14]) verifies

|CompDC(p, t)− p(t)| ≤ u|p(t)|+ 2γ2
3n

n∑
i=0

|bi|Bni (t). (9)

This bound illustrates that Algorithm 2 is more accurate than Algorithm 1 and it
provides a relative accurate result up to the unit roundoff as long as the condition
number

∑n
i=0 |bi|B

n
i (t)/|p(t)| is lower than u/2γ2

3n ≈ 1/18n2u.

3 CompDCTP Algorithm and its Error Analysis

In this section we propose a compensated de Casteljau tensor product algorithm for
the evaluation of a Bézier tensor product surface. Besides, the forward error analysis
of the algorithm is performed.

3.1 Compensated De Casteljau Tensor Product Algorithm

Since a Bézier tensor product surface can be obtained by moving the control points of
a curve along other Bézier curves, the DCTP algorithm is based on the DC algorithm for
the Bézier curve evaluation. For the evaluation of the surface (1), the DCTP algorithm
can be written explicitly in the following pseudo-Matlab code:

Algorithm 3 de Casteljau tensor product algorithm for Bézier surface evaluation
function DCTP(F, x, y)

f
(0)
i,j = bi,j for 0 ≤ i ≤ m and 0 ≤ j ≤ n

for i = 0 : 1 : m
f̂
(1)
i,0 = DC(f

(0)
i,: , y)

end
f̂
(2)
0,0 = DC(f̂

(1)
:,0 , x)

DCTP(F, x, y) ≡ f̂ (2)
0,0

Here f
(0)
i,: is an 1× (n+ 1) vector and f

(1)
:,0 is an (m+ 1)× 1 vector.
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Theorem 3.1 Let F (x, y) be a Bézier tensor product surface given by (1) and let us

suppose that 2(m + n)u < 1, where u is the unit roundoff. Then the value F̂ (x, y) =
fl(F (x, y)) computed in floating-point arithmetic through Algorithm 3 satisfies

|F (x, y)− F̂ (x, y)| ≤ γ3(m+n)

m∑
i=0

n∑
j=0

|bi,j |Bmi (x)Bnj (y). (10)

Proof: Using the forward error bound of Theorem 5 of [4], we just apply it to the
particular case of a Bézier tensor product surface. If we take into account the roundoff
error generated in the evaluation of 1− y then the term γ2(m+n) in the original error
bound of [4] should be changed to γ3(m+n).

The term
∑m
i=0

∑n
j=0 |bi,j |B

m
i (x)Bnj (y) is an absolute condition number of the

evaluation of F (x, y) (see (16) in [4]).
Motivated by subsection 2.2 we propose to use CompDC algorithm instead DC algo-

rithm in Algorithm 3 and therefore, to improve DCTP algorithm in order to obtain the
Compensated DCTP algorithm. According to (8), we have

f
(1)
i,0 = f̂

(1)
i,0 + e1i,0, 0 ≤ i ≤ m, (11)

where e1i,0 is the theoretical error generated by the process f̂
(1)
i,0 = DC(f

(0)
i,: , y) and

f
(1)
i,0 =

n∑
j=0

bi,jB
n
j (y), (12)

is the exact result for each i. In the same way, we also have

f̃
(2)
0,0 = f̂

(2)
0,0 + e2, (13)

where e2 is the theoretical error generated by the process f̂
(2)
0,0 = DC(f̂

(1)
:,0 , x) and

f̃
(2)
0,0 =

m∑
i=0

f̂
(1)
i,0 B

m
i (x), (14)

is the exact result. From (11)-(14), we can deduce

m∑
i=0

n∑
j=0

bi,jB
m
i (x)Bni (y) = f̂

(2)
0,0 + e2 +

m∑
i=0

e1i,0B
m
i (x), (15)

that is

F (x, y) = F̂ (x, y) + e, (16)

where e = e2 + e3 and

e3 =

m∑
i=0

e1i,0B
m
i (x). (17)

Obviously, the corrected result F (x, y) = F̂ (x, y)⊕ ê is expected to be more accu-

rate than the floating-point result F̂ (x, y) of Algorithm 3, where ê is an approximation
of e. Fortunately, CompDC algorithm can give us the approximate value of ê2 and ê1i,0,
and therefore it is easy to get ê. The previous discussion leads to the following com-
pensated de Casteljau tensor product algorithm.
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Algorithm 4 Compensated de Casteljau tensor product algorithm for Bézier surface
evaluation

function [resorg, err, resfin]=CompDCTP(F, x, y)

f
(0)
i,j = bi,j for 0 ≤ i ≤ m and 0 ≤ j ≤ n

for i = 0 : 1 : m
[f̂

(1)
i,0 , ê1i,0] = CompDC(f

(0)
i,: , y)

end
[f̂

(2)
0,0 , ê2] = CompDC(f̂

(1)
:,0 , x)

err ≡ ê = ê2⊕ DC(ê1:,0, x)

resorg ≡ F̂ (x, y) = f̂
(2)
0,0

CompDCTP(F, u, v) ≡ resfin = F (x, y) = resorg ⊕ err

3.2 Error Bound of Bézier Tensor Product Surface Eval-
uation

Theorem 3.2 Let F (x, y) be a Bézier tensor product surface in the form (1) and 0 ≤
x, y ≤ 1. If 6mu ≤ 1 and 6nu ≤ 1, then the forward error bound of the compensated
de Casteljau tensor product algorithm (Algorithm 4) is such that

|CompDCTP(F, u, v)− F (x, y)| ≤ u|F (x, y)|+ 5(γ2
3m+1 + γ2

3n+1)F̃ (x, y), (18)

where

F̃ (x, y) =

m∑
i=0

n∑
j=0

|bi,j |Bmi (x)Bnj (y). (19)

Proof: From Algorithm 4 we have

F (x, y) = F̂ (x, y)⊕ ê = (F̂ (x, y) + ê)(1 + δ),

then by (16)
F (x, y) = F (x, y)(1 + δ) + (ê− e)(1 + δ).

Hence,
|F (x, y)− F (x, y)| ≤ u|F (x, y)|+ (1 + u)|ê− e|. (20)

Now, the problem is to find a bound of the term |ê − e|. Since ê = ê2 ⊕ ê3 =
(ê2 + ê3)(1 + δ), |δ| < u, and e = e2 + e3 = (e2 + e3)(1 + δ)− δ(e2 + e3), we have

|ê− e| ≤ u|e2 + e3|+ (1 + u)(|e2− ê2|+ |e3− ê3|). (21)

First, let us give a bound of the term e2 + e3 in (21). From (16) and Theorem 3.1,
we obtain

|e2 + e3| ≤ γ3(m+n)

m∑
i=0

n∑
j=0

|bi,j |Bmi (x)Bnj (y). (22)

Now, we will present the bound of the term |e2− ê2| in (21). Seeing that e2 and ê2
are just the theoretical error and the computed one while evaluating the Bézier curve
with the control points f̂

(1)
i,0 , from Theorem 2.3 we have

|e2− ê2| ≤ 2γ3m+2γ3(m−1)

m∑
i=0

|f̂ (1)
i,0 |B

m
i (x). (23)



62 Jiang et al, Evaluation of Bézier Tensor Product Surfaces

By (20) of Theorem 5 in [4], and taking into account the proof of Theorem 3.1, we can
deduce

|f̂ (1)
i,0 | ≤

n∑
j=0

|f (0)
i,j |(1 + γ3n)Bnj (y). (24)

Hence, from (23), (24) and f
(0)
i,j = bi,j , we have

|e2− ê2| ≤ 2γ3m+2γ3(m−1)(1 + γ3n)

m∑
i=0

n∑
j=0

|bi,j |Bnj (y)Bmi (x). (25)

Finally, the bound of |e3 − ê3| in (21) will be provided. We denote the following
equations just like (17),

e3mid =

m∑
i=0

ê1i,0B
m
i (x), (26)

ê3 = DC(ê1:,0, x). (27)

Hence, we have
|e3− ê3| ≤ |e3− e3mid|+ |e3mid − ê3|. (28)

By (17) and (26) we deduce

|e3− e3mid| =
m∑
i=0

|e1i,0 − ê1i,0|Bmi (x). (29)

From DCTP algorithm (Algorithm 4), we found that e1i,0 and ê1i,0 are the theoretical
errors and computed ones by CompDC Algorithm (Algorithm 2) when evaluating the

Bézier curve
∑n
j=0 f

(0)
i,j B

n
i (y), respectively. From Theorem 2.3 and f

(0)
i,j = bi,j we have

|e1i,0 − ê1i,0| ≤ 2γ3n+2γ3(n−1)

n∑
j=0

|bi,j |Bni (y). (30)

By (29) and (30), we get

|e3− e3mid| ≤ 2γ3n+2γ3(n−1)

m∑
i=0

n∑
j=0

|bi,j |Bni (y)Bmi (x). (31)

Meanwhile, since e3mid represents a Bézier curve polynomial of degree m with
ê1i,0 as coefficients and ê3 is the corresponding computed result by DC algorithm, from
Theorem 2.2 we obtain

|e3mid − ê3| ≤ γ3m
m∑
i=0

|ê1i,0|Bmi (x). (32)

We have that
|ê1i,0| ≤ |e1i,0|+ |e1i,0 − ê1i,0|, (33)

where e1i,0 is the theoretical error for the evaluation of the Bézier curve polynomial∑n
j=0 f

(0)
i,j B

n
i (y) and satisfies (8). Then from Theorem 2.2, we obtain

|e1i,0| ≤ γ3n
n∑
j=0

|f (0)
i,j |B

n
j (y) = γ3n

n∑
j=0

|bi,j |Bnj (y). (34)
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By (30), (33) and (34) we can deduce

|ê1i,0| ≤ (γ3n + 2γ3n+2γ3(n−1))

n∑
j=0

|bi,j |Bnj (y), (35)

and then by (32)

|e3mid − ê3| ≤ (γ3mγ3n + 2γ3mγ3n+2γ3(n−1))

m∑
i=0

n∑
j=0

|bi,j |Bnj (y)Bmi (x). (36)

Hence, by (28), (31) and (36) we have

|e3− ê3| ≤ (2γ3n+2γ3(n−1)(1 + γ3m) + γ3mγ3n)

m∑
i=0

n∑
j=0

|bi,j |Bnj (y)Bmi (x). (37)

Now by (21), (22), (25) and (37), we obtain

|ê− e| ≤ α(m,n)

m∑
i=0

n∑
j=0

|bi,j |Bnj (y)Bmi (x), (38)

where

α(m,n) =(1 + u)(2γ3n+2γ3(n−1)(1 + γ3m) + 2γ3m+2γ3(m−1)(1 + γ3n) + γ3mγ3n)

+ uγ3(m+n)

Then, by the properties (iv) and (v) of floating-point arithmetic, we have u(1 +
u)γ3(m+n) ≤ γ1γ3(m+n)+1 ≤ γ3m+1γ3n+1 ≤ 1

2
(γ2

3m+1+γ2
3n+1). And since 6mu ≤ 1 and

6nu ≤ 1, we obtain that γ3m, γ3n ≤ 1. Then (1+u)2(2γ3n+2γ3(n−1)(1+γ3m)) ≤ 4γ2
3n+1

and (1+u)2(2γ3m+2γ3(m−1)(1+γ3n)) ≤ 4γ2
3m+1. With (1+u)2γ3mγ3n ≤ γ3m+1γ3n+1 ≤

1
2
(γ2

3m+1 + γ2
3n+1), we can finally deduce

(1 + u)α(m,n) ≤ 5(γ2
3m+1 + γ2

3n+1) (39)

Therefore, by (20), (38) and (39) we can obtain (18) and (19).

The relative condition number for the evaluation of F (x, y) at entry x, y can be
defined by

cond(F, x, y) =
F̃ (x, y)

|F (x, y)| =

∑m
i=0

∑n
j=0 |bi,j |B

m
i (x)Bni (y)

|
∑m
i=0

∑n
j=0 bi,jB

m
i (x)Bni (y)| , (40)

Then from Theorem 3.2, we can obtain

|CompDCTP(F, u, v)− F (x, y)|
|F (x, y)| ≤ u+ 5(γ2

3m+1 + γ2
3n+1)cond(F, x, y). (41)

It is observed that if 5(γ2
3m+1 +γ2

3n+1)cond(F, x, y) < u, the relative error of the result
computed by Algorithm 4 is bounded by the constant value u. Thus, formula (4) can
be easily deduced from (41) and it illustrates that the computed value is as accurate
as the result computed by the DCTP algorithm with twice working precision and then
rounded to the working precision.
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4 Numerical Experiments

All our experiments are performed in IEEE-754 double precision with unit roundoff
u ' 1.16 × 10−16, and the programs have been written in Matlab 7.0. We consider
Bézier tensor product surfaces with floating-point coefficients and the floating-point
entry (x, y) defined on [0, 1]× [0, 1] in the form (1).

Generally, since the Bernstein tensor product basis is well conditioned, the de
Casteljau tensor product algorithm presents great accuracy [4]. However, there still
exists excessively ill-conditioned problems, and in this case DCTP algorithm can not
yield enough accuracy digits. A typical example in 1D is a polynomial with multiple
roots like in [14], P (t) = (t− 0.75)3(t− 0.2)3. We consider now a 2D extension on the
unit square [0, 1]× [0, 1]

P (x, y) = (x− 0.75)3(x− 0.2)3(y − 0.75)3(y − 0.2)3 (42)

and we evaluate its approximate Bézier tensor product form.
The change of basis algorithm from a bivariate polynomial in power form into

Bézier tensor product form is taken from [2]. We use the symbolic toolbox in Matlab
7.0 to obtain the converted polynomial (see Appendix D). However, it must be no-
ticed that with IEEE-754 double precision, the coefficients of the polynomial in Bézier
tensor product form are the rational fraction, and they have to be rounded to the
nearest floating-point number. Therefore, the evaluated bivariate polynomial in Bern-
stein tensor product basis, denoted by F (x, y), is different from the bivariate original
polynomial P (x, y) in power basis (42) .

We evaluate the approximate Bézier tensor product surface F (x, y) at 400 points
uniformly distributed near the point (0.75, 0.2), using DCTP, CompDCTP and DCTP algo-
rithms with quad-double arithmetic [10] (QDDCTP). The results are reported in Figure
1. It is clear that our compensated method can recover the expected smooth surface,
just like the original DCTP algorithm with quad-double arithmetic, when the results
are rounded to the working precision. Meanwhile, if we evaluate the approximated
polynomial in Bézier tensor product form at the point (0.75, 0.2) using the symbolic
computation, we will obtain the value F (0.75, 0.2) = −2.853943049292987 · 10−22,
which is nearly the same value as the result obtained by using the QD library [10].
This fact is also illustrated in Figure 1 by comparing the pictures on the left. The
surface of the transformed polynomial with floating point coefficients in Bézier tensor
product is very similar to the surface of the original polynomial in power basis after
a little translation (left insets of Figure 1). Notice that picture by DCTP algorithm is
a fold in surface, with the evaluations at the direction x varying slightly. This shape
is due to the fact that the DCTP algorithm itself first compute in the direction y, and
then the roundoff errors generated by the computation on y have a stronger impact
on the final evaluation than those in x. Therefore, from Figure 1 we observe that
the CompDCTP algorithm works perfectly and it has reduced the effect of the rounding
errors. What is maintained, of course, is the error in the expression of the polynomial
in the new basis.

Figure 2 shows the logarithms of the relative errors on the base 10 by the evaluation
algorithms DCTP and CompDCTP for 2500 points around the point (0.75, 0.2). It is obvious
that CompDCTP algorithm has much better precision than DCTP algorithm. Notice that
the relative errors of CompDCTP algorithm are equal to or smaller than u even in the
neighborhood of the point (0.75, 0.2).

Next, we focus on the relative forward error bounds for general ill-conditioned
polynomials. So, we have generated and tested polynomials in tensor product form of
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Figure 2: Logarithms of the relative errors of the DCTP (left), CompDCTP (right)
algorithms.
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degree m×n = 6×7 with condition numbers varying from 104 to 1035. This generation
algorithm is shown in Appendix A, which is similar to the algorithm GenPoly on page
52 in [20]. The results are reported on Figure 3. In this numerical tests, the exact
evaluation of the polynomial is obtained by the DCTP algorithm in quad-double format
(QDDCTP). As we can see, CompDCTP algorithm exhibits the expected behavior. When
the condition number is smaller than 1/u, the relative error by CompDCTP is equal to or
smaller than u. This relative error increases linearly for the condition number between
1/u and 1/u2. Meanwhile, we observe that in some cases (5 points) the DCTP algorithm
has high accuracy. This phenomena is due to the good stability of the algorithm.
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Figure 3: Accuracy of evaluation of polynomials in Bézier tensor product form
with respect to the condition number

Increasing the working precision is another direct possible way to improve the
accuracy apart from compensated methods, such as using the Bailey’s double-double
[19, 1] (double-double numbers are represented as an unevaluated sum of a leading
double and a trailing double). In Appendix B, we present the algorithms to compute
the product and addition of two double-double or a double times a double-double.
For comparison we propose an algorithm that evaluates the Bézier tensor product sur-
face with floating-point coefficients and entries using internally double-double number,
which is abbreviated to DDDCTP algorithm. But first we need the de Casteljau algo-
rithm in double-double format (abbreviated to DDDC) for the evaluation of the Bézier
curve p(t) =

∑n
i=0 biB

n
i (t), with the coefficients expressed in terms of bi = b1i + b2i in

double-double precision, where |b2i| ≤ u|b1i|. Especially, when b2i = 0, the precision
of bi degenerates into double. These two algorithms with double-double arithmetic
are shown in Appendix C. Here the result by the DDDCTP algorithm should be rounded
to the working precision (double precision). As we see in Figure 3, the CompDCTP

algorithm has nearly the same accuracy as the DDDCTP algorithm.
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Finally, we pay attention to the computational complexity of all the algorithms.

• DC: 1.5n2 + 1.5n+ 1

• DCTP: (1.5n2 + 1.5n+ 1)(m+ 1) + 1.5m2 + 1.5m+ 1

• CompDC: 24n2 + 24n+ 7

• CompDCTP: (24n2 + 24n+ 7)(m+ 1) + 24m2 + 24m+ 7 + 1

• DDDC: 33n2 + 33n+ 6

• DDDCTP: (33n2 + 33n+ 6)(m+ 1) + 33m2 + 33m+ 6

As we know, TwoSum, TwoProd and FastTwoSum algorithms require 6, 17 and 3
flops respectively. In Appendix B, since th ≥ tl, we modify Prod dd d and Prod dd dd

in [7, 18] by using FastTwoSum as a substitute for TwoSum to decrease computation
complexity. The improved Prod dd d is similar to that in [20]. Taking into account
the previous comparison of the accuracy, we can affirm that CompDCTP algorithm is as
accurate as DDDCTP algorithm but only requires on the average about 72.7% of flop
count of that one.

We have tested the running time of the above six algorithms in a C code with the
four environments listed as follows:

I) Intel Celeron 2.66Ghz, 512MB, Microsoft Visual C++ 6.0.

II) Intel Pentium 4 3.06Ghz, 512MB, Microsoft Visual C++ 9.0.

III) Intel Pentium Dual CPU each 1.8Ghz, Microsoft Visual C++ 6.0.

IV) Intel Pentium Dual CPU each 1.8Ghz, Microsoft Visual C++ 9.0.

We optimize the C codes of the algorithms CompDC, DDDC, CompDCTP, DDDCTP by tak-
ing the procedure Split(2 × x) (which is used in TwoProd) out of recurrence. This
optimization technique is taken from [20]. The numerical tests are performed with
bivariate Bézier tensor product surfaces whose degree m × n vary from 25 × 25 to
200× 200. The entries and coefficients of the polynomials tested are random floating-
point numbers uniformly distributed in the interval (−1, 1). The average measured
computing time ratios of CompDC over DDDC and CompDCTP over DDDCTP are reported in
Table 1. We observe that the running time ratio is better than the flop count one.
Thanks to the analysis in terms of instruction level parallelism (ILP) (see details in [17]
and [20]), this phenomenon is surprising, but reasonable. As a consequence, CompDCTP
runs much faster than DDDCTP but with the same accuracy, and similar results are
obtained on the comparison of CompDC and DDDC.

Table 1: Running time ratios of compensated algorithms versus the algorithms
with double-double arithmetic

I) II) III) IV)

CompDC/DDDC 40% ∼ 48% 39% ∼ 43% 57% ∼ 66% 54% ∼ 59%

CompDCTP/DDDCTP 29% ∼ 33% 47% ∼ 51% 36% ∼ 38% 64% ∼ 68%
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5 Conclusion

In this paper we have provided an accurate algorithm for computing Bézier tensor
product surfaces with floating-point coefficients. This algorithm is based on error-
free transformations and it gives a relative accurate algorithm. The forward error
analysis of the new algorithm is performed. Finally, we compare this algorithm with
the classical de Casteljau tensor product algorithm using internally a double-double
library. The results show that our algorithm is much more accurate than the classical
algorithm in double precision but faster and as accurate as the classical algorithm
using high-precision (double-double library).

A The Generation Algorithm of Ill-conditioned
Polynomials

Algorithm 5 Generate an ill-conditioned polynomial F (x, y) =
∑m
i=0

∑n
j=0 bi,jB

m
i (x)Bni (y)

in the form of a Bézier tensor product surface
[p, vact, cact] = GenPolyDCTP(m,n, x, y, v, cexp)
% v——-the expected evaluation of the polynomial;
% cexp—the expected condition number;
% x, y—the coordinates;
% vact—-the actual evaluation of the polynomial;
% cact—–the actual condition number;
bi,j = 0, for i = 0 : m, j = 0 : n;
num = (m+ 1) ∗ (n+ 1);
d2 = ceil(num/2);
vb = log2(cexp ∗ abs(v));
I = J = zeros(1, num);
perm = randperm(num);
Change perm to coordinates (I, J), where (I(i), J(i)) is a random coefficient

of the surface in accord with perm(i) in some sort order;
bI(1),J(1) = (2 ∗ rand− 1)/BmI(1)(x)BnJ(1))(y);

bI(2),J(2) = (2 ∗ rand− 1) ∗ 2vb/BmI(2)(x)BnJ(2))(y);
for i = 3 : d2
bI(i),J(i) = (2 ∗ rand− 1) ∗ 2vb∗rand/BmI(i)(x)BnJ(i))(y);

end
log2v = log2(abs(v));
m = [(2 ∗ rand(1, num− d2)− 1). ∗ 2linspace(vb,log2v,num−d2)];
for i = d2 + 1 : num− 1
bI(i),J(i) = (m(i− d2)− QDDCTP(F, x, y))/BmI(i)(x)BnJ(i))(y);

end
bI(num),J(num) = (v − QDDCTP(F, x, y))/BmI(num)(x)BnJ(num))(y);
vact = QDDCTP(F, x, y);
cact = QDDCTP(abs(F ), x, y)/abs(vact);
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B Error Free Transformations and Double-Double
Library

Algorithm 6 [15] Error-free transformation of the sum of two floating-point numbers
function [x, y] = TwoSum(a, b)

x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

Algorithm 7 [3] Error-free split of a floating-point numbers into two parts
function [x, y] = Split(a)

c = factor⊗ a (in double precision factor = 227 + 1)
x = c	 (c	 a)
y = a	 x

Algorithm 8 [3] Error-free transformation of the product of two floating-point num-
bers

function [x, y] = TwoProd(a, b)
x = a⊗ b
[a1, a2]= Split(a)
[b1, b2] = Split(b)
y = a2⊗ b2	 (((x	 a1⊗ b1)	 a2⊗ b1)	 a1⊗ b2)

Algorithm 9 [3] Error-free transformation of the sum of two floating-point numbers
(|a| ≥ |b|)

function [x, y] = FastTwoSum(a, b)
x = a⊕ b
y = (a	 x)⊕ b

Algorithm 10 [20] Addition of double-double number and a double number
[rh, rl] = add dd d(ah, al, b);
[th, tl] = TwoSum(ah, b);
tl = al ⊕ tl;
[rh, rl] = FastTwoSum(th, tl).

Algorithm 10 requires 10 flops.

Algorithm 11 [19] Addition of double-double number and double-double number
[rh, rl] = add dd dd(ah, al, bh, bl);
[sh, sl] = TwoSum(ah, bh);
[th, tl] = TwoSum(al, bl);
sl = sl ⊕ th;
th = sh⊕ sl;
sl = sl 	 (th	 sh);
tl = tl ⊕ sl;
[rh, rl] = FastTwoSum(th, tl).

Algorithm 11 requires 20 flops.

Algorithm 12 [20] Multiplication of double-double number by a double number
[rh, rl] = prod dd d(ah, al, b);
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[th, tl] = TwoProd(ah, b);
tl = al ⊗ b⊕ tl;
[rh, rl] = FastTwoSum(th, tl).

Algorithm 12 requires 22 flops.

Algorithm 13 [7, 18] Multiplication of two double-double numbers
[rh, rl] = prod dd dd(ah, al, bh, bl);
[th, tl] = TwoProd(ah, bh);
tl = (ah⊗ bl)⊕ (al ⊗ bh)⊕ tl
[rh, rl] = FastTwoSum(th, tl).

Algorithm 13 requires 24 flops.

C De Casteljau Tensor Product Algorithm with
Double-Double Library

Algorithm 14 De Casteljau algorithm in double-double format
[rh, rl] = DDDC(p1, p2, t);

[b̂1
(0)

i , b̂2
(0)

i ] = [b1i, b2i], i = 0, · · · , n;
[ch, cl] = TwoSum(1,−t);
for j = 1 : 1 : n

for i = 0 : 1 : n− j
[sh, sl] = prod dd dd(b̂1

(j−1)

i , b̂2
(j−1)

i , ch, cl);

[xh, xl] = prod dd d(b̂1
(j−1)

i+1 , b̂2
(j−1)

i+1 , t);

[b̂1
(j)

i , b̂2
(j)

i ] = add dd dd(sh, sl, xh, xl);
end

end
[rh, rl] = [b̂1

(n)

0 , b̂2
(n)

0 ].

Algorithm 15 De Casteljau tensor product algorithm in double-double format
function [rh, rl]=DDDCTP(F, x, y)

f
(0)
i,j = bi,j for 0 ≤ i ≤ m and 0 ≤ j ≤ n

for i = 0 : 1 : m
[p̂1i, p̂2i] = DDDC(f

(0)
i,: , p0, y) % here p0=zeros(n+1,1);

end
[rh, rl] = DDDC(p̂1, p̂2, x)

D Exact Coefficients of the Test Polynomial (Eq.
(42)) in Bézier tensor product form

{bi,j} =



729
64000000

−3159
128000000

14661
320000000

−84591
1280000000

4887
80000000

−351
8000000

27
1000000−3159

128000000
13689

256000000
−63531

640000000
366561

2560000000
−21177

160000000
1521

16000000
−117

2000000
14661

320000000
−63531

640000000
294849

1600000000
−1701219
6400000000

98283
400000000

−7059
40000000

543
5000000−84591

1280000000
366561

2560000000
−1701219
6400000000

9815689
25600000000

−567073
1600000000

40729
160000000

−3133
20000000

4887
80000000

−21177
160000000

98283
400000000

−567073
1600000000

32761
100000000

−2353
10000000

181
1250000−351

8000000
1521

16000000
−7059

40000000
40729

160000000
−2353

10000000
169

1000000
−13

125000
27

1000000
−117

2000000
543

5000000
−3133

20000000
181

1250000
−13

125000
1

15625


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