
Computing Enclosures of Overdetermined

Interval Linear Systems∗

J. Horáček†

horacek@kam.mff.cuni.cz

M. Hlad́ık‡

hladik@kam.mff.cuni.cz

Department of Applied Mathematics, Faculty
of Mathematics and Physics, Charles University

in Prague, Prague, Czech Republic

Abstract

This work considers special types of interval linear systems - overdeter-
mined systems, systems consisting of more equations than variables. The
solution set of an interval linear system is a collection of all solutions of
all instances of an interval system. By the instance, we mean a point real
system that emerges when we independently choose a real number from
each interval coefficient of the interval system. Enclosing the solution set
of these systems is in some ways more difficult than for square systems.
This work presents various methods for computing enclosures of overde-
termined interval linear systems. We would like to present them in an
understandable way even for nonspecialists in the field of linear systems.
The second goal is a numerical comparison of all mentioned methods on
random interval linear systems regarding tightness of enclosures, compu-
tation times, and other special properties of methods.

Keywords: interval linear systems, enclosure methods, overdetermined systems
AMS subject classifications: 65G40, 65F99

1 Introduction

Real-life problems can be described by different means – by linear and nonlinear sys-
tems, by systems of difference and differential equations, etc. Nevertheless, the de-
scription often can be transformed to another one using only linear equalities (or

∗Submitted: February 25, 2013; Revised: August 15, 2013; Accepted: November 18, 2013).
†Jaroslav Horáček was partially supported by the Czech Science Foundation under the

contract 201/09/H057.
‡M. Hlad́ık was partially supported by the grant GACR P402-13-10660S.

142

horacek@kam.mff.cuni.cz
hladik@kam.mff.cuni.cz

Reliable Computing 19, 2013 143

inequalities). To account for rounding errors or imprecise measurement of data, we
can use tools of interval analysis. That is why interval linear systems are still a focus of
research. There are plenty of methods for enclosing the solution set of square interval
linear systems – systems in the form Ax = b, where A is a square matrix (e.g., [4],
[6, 7, 16]). That is because square matrices can posses some advantageous properties.
They can be diagonally dominant, positive definite, M -matrices, and many more, and
we know that many algorithms behave well for those cases. However, sometimes we
encounter overdetermined systems, consisting of more equations than variables, and
our favorite methods for square systems usually cannot be applied to them.

Fortunately, there are some methods for solving those systems – Gaussian elimi-
nation, classical iterative methods, Rohn’s method, least squares methods, or linear
programming. The main goal of this work is to present an overview of existing meth-
ods for computing enclosures of solution sets of overdetermined interval linear systems.
To the best of our knowledge, that has not been done for overdetermined systems. We
explain how these methods work in a brief but understandable way even for researchers
from various fields not so familiar with interval linear systems. We also mention some
pitfalls and specialties connected with these methods. Some of them behave in a useful
way – they are able to compute a very narrow enclosure or an interval hull, or they
can reveal unsolvability of an interval overdetermined system. On the other hand,
many of them cannot decide whether a solution of an interval system is unbounded or
whether the system is unsolvable. Moreover, sometimes if a system has certain prop-
erties, existing methods are not able to return any meaningful result. It is interesting
to observe how some efficient methods fail when the radii of intervals change and, on
the other hand, to see how some simple, one could say “stupid”, methods rule. After
introducing the methods, we provide results of numerical comparison of these methods
concerning the speed, enclosure tightness, and some other properties. As always, not
every method is useful for every problem. When describing the methods, we point out
the cases when they are useful.

2 Basic notation and definitions

We start with basic notation. Here, we provide only a small part, which we will use
subsequently. For a deeper introduction to interval analysis, see [4]. We denote interval
structures in boldface (A, b). Point real structures are denoted in regular type (A, b).
A coefficient of a matrix in i-th row and j-th column is denoted Aij or Aij . Here we
work only with closed real intervals [c, d], where c ≤ d. The set IR stands for the set
of all real closed intervals. An interval x can be defined in two ways. The first one
is by upper and lower bounds x = [x, x] = {x ∈ R | x ≤ x ≤ x}. The second is by
midpoint and radius x = 〈xc, x∆〉 = {x ∈ R | |xc − x| ≤ x∆}.

The relation ≤ is defined component-wise for matrices. For two m× n matrices A
and B,

A ≤ B if Aij ≤ Bij for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

With intervals, we can build more complex structures – interval matrices (of which
vectors are special case). An m× n interval matrix A is defined as

A = [A,A] = {A ∈ Rm×n | A ≤ A ≤ A}.

Similarly as with single intervals, an interval matrix can be also defined using midpoint
and radius A = 〈Ac, A∆〉. The matrix Ac is called the midpoint matrix, and A∆ is

144 Horáček & Hlad́ık, Computing Enclosures of OILS

called the radius matrix. The midpoint matrix coefficients consists of corresponding
midpoints of intervals of A; the radius matrix consists of corresponding radii of A.

In the section devoted to comparison of various methods, we will use width of an
interval y = [y, y] defined as

width (y) = y − y.
For every vector x ∈ Rn, we define its sign vector sgnx ∈ {±1}n as

(sgnx)i =

{
1, if xi ≥ 0,
−1, if xi < 0.

For a vector x ∈ Rn, we denote

Dx = diag(x1, . . . , xn) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 .

We continue with a definition of an overdetermined interval linear system.

Definition 2.1 (Overdetermined interval linear system) Given an interval matrix
A ∈ IRm×n with m > n and an interval vector b ∈ IRm, we call

Ax = b

an overdetermined interval linear system (OILS).

Simply, an overdetermined interval linear system is a general interval linear system
that consist of more equations than variables. If m = n, the system is called square.

When we talk about interval linear systems, we must define what we mean by the
solution of an interval linear system (ILS).

Definition 2.2 (Solution set of ILS) The solution set Σ of an interval linear system
Ax = b is

Σ = {x | Ax = b for some A ∈ A, b ∈ b }.

In other words, it is a collection of all solutions to all instances of an interval linear
system. By an instance, we mean a point real system that we get when independently
choosing a real number from each interval coefficient of the interval system. This
approach is different from the least squares approach, i.e.,

Σlsq = {x | ATAx = AT b for some A ∈ A, b ∈ b }.

For more information about this approach and the relationship of Σ and Σlsq, see
[5]. If any instance of the interval system has no solutions, we call the whole interval
system unsolvable. To provide a better conception of the solution set, we show such a
solution set at Figure 1 (plotted using the INTLAB routine plotlinsol).

[−5, 10]x + 10 y + [15, 20] z = [50, 100],

10x + −5 y + [5, 15] z = [−50, 50],

10x + [10, 25] y + [−10,−5] z = [50, 100].

Reliable Computing 19, 2013 145

Figure 1: Graphical view of the solution set of the interval linear system above

The solution set is generally a polyhedral set, not necessarily convex. Nevertheless,
it is convex in each orthant of the space. As we can see, this set is quite difficult to
describe, and there are many ways it can be estimated. One can find an n-dimensional
box (aligned with axes), as tight as possible, that contains the solution set. We call
this box the interval hull. Unfortunately, it can be proved that computing the interval
hull is NP-hard [13]. That is why we look for a box a little bit wider, still as narrow
as possible, that contains the interval hull. We call this box an interval enclosure.
There is a large variety of methods we can use to compute an interval enclosure.
If we have two such enclosures returned by two different methods, we need some
way to compare them. For n-dimensional enclosing boxes x = (x1,x2, . . . ,xn)T and
y = (y1,y2, . . . ,yn)T , we define their ratio as

ratio(x,y) =
1

n

n∑
i=1

width (xi)

width (yi)
.

The above concepts form a basic terminology of the subject, and we are able to
move further to proper descriptions of the methods.

3 Gaussian Elimination (GE)

The first thing that can come to our mind is Gaussian elimination. The interval GE
for overdetermined systems was proposed by Hansen in [1]. The idea is very similar
to that for point real systems. We present a slightly modified version. We eliminate
rows using interval operations, with the only difference that we eliminate the system
(A|b) to the shape

(A | b) ∼ . . . ∼
(

C d e
0 f g

)
,

where C is an (n − 1) × (n − 1) interval matrix in row echelon form (REF) with
[1, 1] intervals in the pivot positions, d and e are (n− 1)× 1 interval vectors, 0 is an

146 Horáček & Hlad́ık, Computing Enclosures of OILS

(m − n + 1) × (m − n + 1) matrix composed of the intervals [0, 0], and f and g are
(m− n+ 1)× 1 interval vectors.

One thing often is not clear to people familiar with interval arithmetic when Gaus-
sian elimination is first explained to them: Why in the pivot positions there are [1, 1]
intervals, and why there are [0, 0] intervals in the 0 matrix. The reason is quite sim-
ple, but not obvious – when performing eliminating operations on pivots and elements
beneath, we can think of it as performing them in all instances of an interval system
separately (after elimination pivots in instances are equal to 1, elements under the piv-
ots are equal to 0). When we assemble the eliminated point real systems back into an
interval matrix, we know that we have [1, 1], [0, 0] intervals on these positions. There
is no need to overestimate them using conservative interval operations. For the other
coefficients, we have to use interval arithmetic to compute their interval enclosures.

Now, we realize that vectors f , g form m− n+ 1 interval equations in the shape

f ixn = gi for i = 1, . . . , (m− n+ 1).

The solution of these equations is the intersection of all the intervals gi/f i, and we
get an enclosure of the variable xn. If the intersection is empty, then the system has
no solution. Nonetheless, if the intersection is unbounded, it can either mean that the
solution set of the system is unbounded, or that there is a huge overestimation due to
large number of interval operations occurred. The enclosures for the other variables
can be obtained using backward substitution computed with interval arithmetic.

This algorithm works only for very small m × n systems (n ∼ 4). For larger
systems, we get a huge overestimation. In Table 1, we can see the rapid growth of
radii of variable enclosures as they are computed by backward substitution, caused by
using interval operations with wider and wider intervals each step. In the last column,
there are radii of another, also verified, enclosure computed by verifylss in INTLAB.

Table 1: The growing overestimation of variable enclosures (random system 15× 13)
with random radii < 10−3 caused by Gaussian elimination and backward substitution

variable radius (GE) radius (verifylss)

x1 257.47 0.012
x2 165.19 0.014
x3 116.93 0.012
x4 100.56 0.010
x5 46.58 0.017
x6 44.94 0.001
x7 33.38 0.007
x8 6.52 0.010
x9 14.97 0.017
x10 7.63 0.009
x11 3.71 0.009
x12 2.54 0.007
x13 4.68 0.011

The larger the system, the bigger is the overestimation. Therefore, it is necessary
to use preconditioning. We use the preconditioner introduced by Hansen in [1].

C =

[
Ac

1 0
Ac

2 I

]−1

,

Reliable Computing 19, 2013 147

where Ac
1 consists of first n rows of Ac (an approximation of a midpoint matrix of

A) and Ac
2 consists of the remaining m − n rows of Ac. The operation (.)−1 is an

approximate inverse operation. Next, we solve a new system

CAx = Cb.

Of course, the preconditioning can cause an overestimation of the resulting enclo-
sure, but it is often significantly smaller when compared to performing GE without
preconditioning. The preconditioning might enlarge the solution set of the system, and
that is why unsolvable systems might become solvable after applying it. Therefore, if
we want to check unsolvability, we cannot use preconditioning. If we use elimination
to reduced row echelon form (RREF) and allow multiple right-hand sides, we are able
to compute an interval matrix containing A−1. For a proper definition of the interval
inverse matrix see [12].

4 Iterative Methods

There are many interval modifications of methods for square non-interval systems –
Jacobi, Gauss-Seidel, Krawczyk, but we usually cannot use them when dealing with
overdetermined systems. Moreover, without preconditioning, these methods often
work really badly. Nevertheless, if we want to use our known iterative methods, we
can use the preconditioning mentioned in the section 3. We can see that after this
preconditioning, the matrix of the new system is usually of the shape(

I∼

0∼

)
,

where I∼ is an n × n interval matrix (with very narrow intervals) containing the
point identity matrix, and 0∼ is an (m − n) × n interval matrix (with very narrow
intervals) containing the zero matrix. Then we can use our favorite iterative method
for the upper square subsystem of the preconditioned system. Let us choose the Jacobi
method, for example. We start with an initial enclosure x(0) and iteratively “sharpen”
this enclosure using the following formula (at each step, we simply express the variable
xi from the i-th equation, for more information, see [4])

x∗i =
1

Aii

bi −
∑
j 6=i

Aijx
(k)
j

 for i = (1, . . . , n), in (k + 1)-th step. (1)

After every iteration, we intersect with the old enclosure to obtain

x
(k+1)
i = x

(k)
i ∩ x∗i for i = (1, . . . , n).

The Gauss-Seidel method differs in only one detail; we do not wait to intersect. Instead,
we intersect after every computation of x∗i and immediately use the new value for
further computing. This generally leads to fewer iteration steps.

The problem is that when using these methods, intervals containing zero are not
allowed on a diagonal (since there is the division with Aii). That case happens if the
radii of the original matrix are “large” (even 10−2).

This method looks rather simple. We loose some information due to precoditioning
and chopping the last m− n rows of the original system, but we can realize that the

148 Horáček & Hlad́ık, Computing Enclosures of OILS

Jacobi method can be parallelized effectively. If there is an effective way to determine
x(0), this method can be used for very fast sharpening of x(0), for example in Constraint
Programming as a sharpening step between of runs of another sharpening method.

5 Rohn’s Method

We would like to review the method introduced by J. Rohn. Due to lack of space, we
will describe it only briefly. For more information and theoretical insight, one can take
a look in [10]. The basis of the method is the following theorem.

Theorem (Rohn) 1 Let Ax = b be an IOLS with a solution set Σ (A is an m× n
matrix). Let R be an arbitrary real n × m matrix, let x0 and d > 0 be arbitrary
n-dimensional real vectors such that

Gd+ g < d,

where

G = |I −RAc|+ |R|A∆,

and

g = |R(Acx0 − bc)|+ |R|(A∆|x0|+ b∆).

Then

Σ ⊆ [x0 − d, x0 + d].

The question is how to find the vector d, the matrix R, and the vector x0. To
compute d, we can, for example, rewrite the inequality as

d = Gd+ g + f,

for some small vector f > 0. Then start with d = 0 and iteratively refine d. This
algorithm will stop after a finite number of steps if the spectral radius of G is less than
1. Otherwise, we do not know what happens. During practical testing with random
systems with radii of intervals close to 0.1, the vector d > 0 was rarely found.

We still have to determine x0 and R. For the start, we can take

x0 ≈ Rbc,

R ≈ (AT
c Ac)

−1AT
c ,

but not necessarily. The theorem provides a clever instrument for iterative improve-
ment of an enclosure. We do not have to use only Ac to compute R; we can take any
(e.g., random) A ∈ A, compute an enclosure, and then intersect it with the old one.
We can repeat this process as many times as we want and obtain an iterative improve-
ment of the enclosure. For smaller systems, the iterative improvement works pretty
well. Table 2 shows the ratios of enclosure widths returned by iterative versions for
10, 100, and 1000 iterations and by the non-iterative Rohn method. In the following
text, we will call the first method the basic method and use the notion basic enclosure.
When we use the iterative improvement ,we will talk about the iterative method and
the iterative enclosure.

Reliable Computing 19, 2013 149

Table 2: Rohn’s method – ratios of iterative enclosures (10, 100, and 1000 iterations)
and basic enclosure

system 10 it. 100 it. 1000 it.

5× 3 0.73 0.57 0.50
15× 10 0.89 0.82 0.76
25× 21 0.94 0.90 0.87
35× 23 0.95 0.92 0.90
50× 35 0.97 0.94 0.93
70× 55 0.98 0.96 0.95
100× 87 0.98 0.97 0.97

6 Least Squares Method

This approach can be found in [5] or [14]. It can be proved that

the hull of Σ ⊆ the hull of Σlsq.

Hence, we can use the least squares approach to compute a rigorous enclosure of the
solution set to an OILS. We use the least squares formula ATAx = AT b for point real
systems. The interval analogue

ATAx = AT b,

does not work because of the two interval matrix multiplications. Even if we use some
preconditioner C and write

(CA)T (CA)x = (CA)T b,

that does not work either. However, we can use an equivalent expression of the least
squares formula for point real systems. If we express it for interval systems, we get(

I A
AT 0

)(
y
x

)
=

(
b
0

)
.

Now, we have a square system, and we can apply some suitable method for square
systems. We compute the vector solution (y,x)T ∈ IRm+n and take x as the enclosure
of the solution. It can be seen that the returned interval vector contains the solution
of the interval least squares problem. Therefore, this method returns a solution even
if the system is unsolvable. Another drawback is that if the original system is of size
m×n, we have to solve a new system of size (m+n)×(m+n). On the other hand, this
method computes very sharp interval enclosures. It is used in the routine verifylss

of INTLAB 6 [15]. For more detailed description of this routine, see [2]. When solving
the system in this way, we can notice the dependencies in the new system. Each
interval coefficient from the original system is used twice in the new system; when
we choose one number from the first interval, we should choose the same value in the
second one to avoid overestimation. We may be able to use methods dealing with
dependencies between coefficients in interval linear systems (e.g.,. [3, 8, 16]).

150 Horáček & Hlad́ık, Computing Enclosures of OILS

7 Linear Programming (LP)

It is possible to compute the interval hull of the ILS solution set using linear pro-
gramming, using the famous theorem by Oettli-Prager, which can be found with proof
in [9].

Theorem 7.1 (Oettli-Prager) Consider an interval linear system Ax = b. A vector
x ∈ Rn is a solution to this system (x ∈ Σ) if and only if

|Acx− bc| ≤ A∆|x|+ b∆.

Unfortunately, we are still not able to use LP because of the absolute values. Now
we demonstrate how to rewrite this problem using linear inequalities only. We can get
rid of the first one by decomposing it into two cases

Acx− bc ≤ A∆|x|+ b∆, (2)

−(Acx− bc) ≤ A∆|x|+ b∆. (3)

The second absolute value can be rewritten with the use of knowledge of the orthant
we currently “are” inside. We have

|x| = Dzx, where z = sgnx,

giving a rise to the condition
0 ≤ Dzx. (4)

For every orthant, the conditions (2), (3), and (4) form a system of linear inequal-
ities. Therefore, we can use linear programming. Unfortunately, we have to solve
(2n × 2n) linear programming problems (we compute the upper and lower bounds in
each coordinate). That is obviously too much computing. However, we can compute
the enclosure of the solution set of the system with some other method (least squares,
Rohn) and then apply linear programming to only those orthants where this enclosure
lies. This approach is often much faster. Table 3 illustrates a large speedup when
solving the system with different methods before applying LP. The sign ’–’ means that
we omitted the testing because of enormous computing time when compared to LP
with presolving.

Table 3: Comparison of times of LP in all orthants and LP with presolving with a
different method (here verifylss)

system time LP time LP presolved

5× 3 6 sec 1 sec
9× 5 43 sec 1.68 sec
13× 7 5 min 3.59 sec
15× 9 28 min 4.1 sec
25× 21 - 13 sec
35× 23 - 19 sec
45× 31 - 43 sec
55× 35 - 1 min
73× 55 - 9 min

Reliable Computing 19, 2013 151

8 Comparison of Methods

The second goal of this paper is a numerical comparison of methods for enclosing
solutions of overdetermined systems. All subsequent tests were computed using the
following hardware and software:

• Processor – AMD Phenom(tm) II X6 1090T

• Memory – 15579 MB

• Matlab R2010b

• INTLAB 6 (see [15])

• Versoft 10 (see [11]) for linear programming

It is difficult to imagine rectangular matrices in some special shape. Therefore, we
test the methods on systems composed of random matrices and vectors. In this work
we use four parameters:

• maximum radius,

• midpoint range,

• stopping parameter, and

• maximum number of iterations.

Most of these parameters are used to generate random interval systems with certain
properties. The key parameter is maximum radius of interval coefficients of an interval
linear system. For example, when this parameter is −4, every interval coefficient
y = 〈yc, y∆〉 in the system satisfies y∆ ≤ 10−4. Maximum radius is usually negative,
because the radii greater than 1 lead to singularities. The radii in a system are not
the same; they are chosen randomly with respect to the maximum radius parameter.

Another important parameter is the midpoint range, which specifies the range of
midpoints of intervals. There might be differences in behaviour of the methods between
the case when all the intervals in the system have relatively close midpoints and the
case when the midpoints are quite different, as in the vector (10, 1, 11234, 0.1)T . We
will test on two cases: i) with midpoints uniformly chosen from [−25, 25], and ii) with
midpoints uniformly chosen from [−1000, 1000].

Some methods need a small real positive number ε as a stopping parameter (some
methods need a small positive vector, but we can use f = (ε, ε, . . . , ε)T). We will
choose ε = 10 (maximum radius−2). After performing some practical tests, this seems to
be a reasonable choice.

Some iterative methods use the parameter maximum of iterations as a safety pre-
caution for the cases when the stopping parameter does not work. We use the value
20 for all the tested cases.

We will test systems up to size about m = 1000, that is, up to a thousand of linear
equations. We chose this upper bound on size of the tested systems after consulting
with a colleague from the Faculty of Civil Engineering. These are maybe the largest
linear systems they need to solve for many technical purposes. If a solution of larger
system is needed, then it is usually better to split the problem into parts, solve the
parts separately, and then assemble the solution. For the sake of clarity, we establish
the following identifiers of the methods:

• IGSpre - interval Gauss-Seidel iterative method with preconditioning

• IGEpre - interval Gaussian elimination with preconditioning

• Rohn - basic Rohn method

• Verifylss - method verifylss from toolbox INTLAB by Rump

• LPver - linear programming from toolbox Versoft by Rohn

152 Horáček & Hlad́ık, Computing Enclosures of OILS

8.1 Comparison of enclosures

We are going to compare the ratios of enclosures (defined in Section 2) returned by all
the mentioned methods. For each method and each system size, we compute ratios of
enclosures for 100 random systems. The numbers displayed in the subsequent tables
for each system size and method are average ratios of all 100 ratios.

We divide the testing in two phases. For larger systems, it is very time consuming
to compute many enclosures using LPver. Moreover, for small radii of intervals, the
method returns a NaN solution. That is why we tested the methods on small systems
first, and the ratios of enclosures were computed according to LPver results (interval
hull). In second phase (for larger systems), they were computed according to Verifylss
enclosures. Table 4 displays the ratios of small systems. Clearly, the lower the ratio,
the better the enclosure.

Table 4: Ratios of widths of enclosures, LPver is 1 (maximum radii ≤ 10−3)

system IGSpre IGEpre Rohn Verifylss

5× 3 2.9968 2.9969 1.2347 1.1893
15× 9 7.7057 7.7069 1.1601 1.1500
35× 23 8.3591 8.3602 1.1276 1.1249
55× 35 11.5026 11.5064 1.1336 1.1331
73× 55 17.6528 17.6624 1.0828 1.0848

We can see that IGEpre and IGSpre are doing really badly, and that their enclosure
ratios are about the same value. We attribute that to the use of the same precondi-
tioner. Rohn and Verifyllss provide good results. Verifylss is a little bit better, but
the difference is slowly disappearing with the growth of system size. That is confirmed
by Table 5. We made the radii smaller (≤ 10−5) since IGEpre often returned infinite
solution due to a large number of interval operations.

Table 5: Ratios of widths of enclosures, Verifylss is 1 (maximum radii ≤ 10−5)

system IGSpre IGEpre Rohn

100× 45 21.1668 21.1668 1.0237
100× 87 9.2420 9.2420 1.0062
180× 125 26.6744 26.6744 1.0064
180× 170 15.0262 15.0262 1.0020
290× 190 37.6976 37.6977 1.0044
290× 260 26.9361 26.9361 1.0018
380× 275 40.5159 40.5160 1.0028
380× 360 32.9500 32.9504 1.0009
500× 350 66.9764 66.9771 1.0022
500× 470 34.2512 34.2516 1.0007

8.2 Enclosure computation time comparison

We now compare the computation times of the methods IGSpre, IGEpre, Rohn, and
Verifylss. Midpoint matrices and vectors are chosen uniformly from the interval

Reliable Computing 19, 2013 153

[−1000, 1000]. Tables 6 and 7 show the average CPU times measured by Matlab
functions tic and toc for maximum radius ≤ 10−3 and ≤ 10−5, respectively. Each
method was tested for each system size on 100 random systems.

Table 6: Average times (in seconds) of all methods for maximum radius ≤ 10−3

system IGSpre IGEpre Rohn Verifylss

5× 3 0.0113 0.0117 0.00065 0.0021
15× 13 0.0367 0.0685 0.00086 0.0023
35× 23 0.0636 0.2840 0.0012 0.0036
50× 35 0.0983 0.5806 0.0019 0.0052
100× 87 0.3063 2.4631 0.0115 0.0169
200× 170 0.6632 9.8570 0.0523 0.0761
380× 275 1.3253 34.5861 0.1765 0.3257
500× 470 2.9486 69.6341 0.6235 0.9154

Table 7: Average times in seconds of all methods for maximum radius ≤ 10−5

system IGSpre IGEpre Rohn Verifylss

5× 3 0.0113 0.0118 0.00066 0.0021
15× 13 0.0356 0.0687 0.00086 0.0023
35× 23 0.0608 0.2836 0.0012 0.0036
50× 35 0.0911 0.5809 0.0019 0.0053
100× 87 0.2416 2.5224 0.0117 0.0171
200× 170 0.5718 10.6842 0.0561 0.0760
380× 275 1.2515 37.0210 0.1924 0.3427
500× 470 2.5774 75.5171 0.6616 0.9761

We can see that the methods do not show any remarkable sensibility to the changes
of radii of the intervals if we keep the stopping criterion equal to (maximum radius
−2). Also, there was no extraordinary change when lowering the midpoint range to
something much smaller (e.g., [−25, 25]). The complete time winner is Rohn, and the
second is Verifylss. The method IGEpre is doing badly. We shall look more carefully
at the comparison between Rohn and Verifylss. The method Rohn is almost always
faster. According to Table 5, we can object that it pays off to take a little bit more
time and compute more exact enclosure using Verifylss. But let us look closer at Table
8. It displays the ratios of computation times of Rohn and Verifylss for systems of
a broader spectrum of sizes. We did the tests for many random systems; here we
selected some interesting ones. It is possible to see that, for m × n-systems, where
m is much bigger than n, Rohn is much more faster. For example, on a system of
size 278× 35, we can call the iterative Rohn with 13 iterations within the same time
Verifylss needs to do the computation, and we can possibly sharpen the enclosure.
The question whether this procedure pays off is answered by Table 2. For relatively
small systems, it definitely pays off. For larger systems, we might get not so significant
improvements, and it is safer to use Verifylss.

154 Horáček & Hlad́ık, Computing Enclosures of OILS

Table 8: Ratios of Verifylss and Rohn computation times

system
t(Verifylss)

t(Rohn)

80× 41 2.8
189× 166 1.5
278× 35 13.8
377× 319 1.6
525× 285 2.7
712× 271 4.5
807× 68 46.5
894× 8 423.7

894× 797 1.5
906× 128 19.1
978× 235 9.4
1000× 663 2.0

9 Conclusion

We introduced several methods for solving overdetermined interval linear systems —
Gaussian elimination, iterative methods, Rohn’s method, the least squares method,
and linear programming. We mentioned some advantageous and unfavourable prop-
erties of these methods. At the end of the work, we showed the comparison of all the
mentioned methods. As usual, it is hard to tell which method is actually the best.
Linear programming is suitable when we want to compute the interval hull of an inter-
val system and have enough time. When our system consists of narrow intervals (their
radii is smaller than 10−3) or when our system is thin (its matrix is of size m × n,
where m >> n), it is advantageous to use Rohn’s method. Otherwise, it is favourable
to use the least squares method for fast computing of a sharp interval enclosure. Iter-
ative methods can be used when we already know some enclosure and want to try to
sharpen it (e.g., as a part of some constraint solver) and then passing it as an input
to another method e.g., LP. Gaussian elimination seems to work poorly, but when we
consider the solvability of the system, it might give us valuable information about the
nonexistence of the solution.

Computing an enclosure of the solution set of overdetermined interval linear sys-
tems can occur as a subproblem of many computational tasks (e.g., constraint satisfac-
tion problems). Often, information about the solvability of a system is often important
(e.g., in system validation, technical computing). There is still much work to do in
this area. We believe that even faster and sharper algorithms can be developed. Si-
multaneously, we are working on methods checking the solvability of overdetermined
interval linear systems. Hopefully, sufficient or necessary conditions for solvability or
unsolvability of OILS can be found. Since preconditioning is used for many meth-
ods, it would be useful to test different types of preconditioners. Some methods use
randomness, e.g., the iterative Rohn method. There is a question of whether we can
effectively derandomize these methods.

Reliable Computing 19, 2013 155

Acknowledgements

The research is supported by the Grant Agency of the Charles University (GAUK)
grant no. 712912. Many thanks to Jakub Kraus from Czech Technical University in
Prague, Faculty of Civil Engineering, for consultation about practical use of linear
systems in civil engineering.

References

[1] Eldon. R. Hansen and G. William Walster. Solving overdetermined systems of
interval linear equations. Reliable Computing, 12(3):239–243, 2006.

[2] Gareth. I. Hargreaves. Interval analysis in MATLAB. 2002.

[3] Milan Hlad́ık. Enclosures for the solution set of parametric interval linear systems.
Int. J. Appl. Math. Comput. Sci., 3(22):561–574, 2012.

[4] Ramon E. Moore, Ralph Baker Kearfott, and Michael J. Cloud. Introduction to
Interval Analysis. Society for Industrial Mathematics, 2009.

[5] Arnold Neumaier. Linear interval equations. In Interval Mathematics 1985, pages
109–120. Springer, 1986.

[6] Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge Uni-
versity Press, Cambridge, 1990.

[7] Shucheng Cheng Ning and Ralph Baker Kearfott. A comparison of some methods
for solving linear interval equations. SIAM J. Numer. Anal., 34(4):1289–1305,
1997.

[8] Evgenija D. Popova. On the solution of parametrised linear systems. In Walter
Krämer and Jürgen Wolff von Gudenberg, editors, Scientific Computing, Vali-
dated Numerics, Interval Methods, pages 127–138. Kluwer, 2001.

[9] Jǐŕı Rohn. Systems of linear interval equations. Linear Algebra and Its Applica-
tions, 126:39–78, 1989.

[10] Jǐŕı Rohn. Enclosing solutions of overdetermined systems of linear interval equa-
tions. Reliable Computing, 2(2):167–171, 1996.

[11] Jǐŕı Rohn. VERSOFT: Verification software in MATLAB / INTLAB, version 10,
2009.

[12] Jǐŕı Rohn. A handbook of results on interval linear problems. Technical Report
1163, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, 2012.

[13] Jǐŕı Rohn and Vladik Kreinovich. Computing exact componentwise bounds on
solutions of lineary systems with interval data is NP-hard. SIAM Journal on
Matrix Analysis and Applications, 16(2):415–420, 1995.

[14] Siegfried M. Rump. Solving algebraic problems with high accuracy. In Proc. of
the Symposium on a New Approach to Scientific Computation, pages 51–120, San
Diego, CA, USA, 1983. Academic Press Professional, Inc.

[15] Siegfried M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,
Dordrecht, 1999. http://www.ti3.tu-harburg.de/rump/.

[16] Siegfried M. Rump. Verification methods: Rigorous results using floating-point
arithmetic. Acta Numer., 19:287–449, 2010.

http://www.ti3.tu-harburg.de/rump/

	Introduction
	Basic notation and definitions
	Gaussian Elimination (GE)
	Iterative Methods
	Rohn's Method
	Least Squares Method
	Linear Programming (LP)
	Comparison of Methods
	Comparison of enclosures
	Enclosure computation time comparison

	Conclusion

