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ABSTRACT

This paper studies the problem of building clusters of

music tracks in a collection of popular music in the pres-

ence of constraints. The constraints come naturally in the

context of music applications. For example, constraints

can be generated from the background knowledge (e.g.,

two artists share similar styles) and the user access pat-

terns (e.g., two pieces of music share similar access pat-

terns across multiple users). We present an approach

based on the generalized constraint clustering algorithm

by incorporating the constraints for grouping music by

“similar” artists. The approach is evaluated on a data

set consisting of 53 albums covering 41 popular artists.

The “correctness” of the clusters generated is tested using

artist similarity provided by All Music Guide.

1 INTRODUCTION

For those who listen to music through the Internet, how to

navigate in the ocean of on-line music is an important is-

sue. Nowadays, everything about music is on the web —

audio, lyrics, artist discographies, artist biographies, re-

views, and discussions. This raises an issue of whether the

on-line music data can be efficiently accessed so that the

user can benefit from the existence of such large volumes

of data. A solution to the issue can be given by developing

efficient music assistance programs, which integrate tech-

niques for analyzing, summarizing, indexing, classifying,

and grouping music data.

This paper addresses the issue of clustering pop mu-

sic into groups with respect to the artists. Clustering is

the standard, effective tool for efficient organization, sum-

marization, navigation and retrieval of a large amount of

data. Information navigation by browsing through data

clusters is more suitable for users who have vague infor-

mation need and/or just wish to discover general contents

of the data set.

The use of instance-level constraints as the back-

ground information to improve data clustering has been

widely studied in machine learning in the past few years.

Instance-level constraints are generally pairwise and they

are of two types: the positive constraint is one that spec-

ifies that two instances must belong to the same clus-
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ter, and the negative constraint is one that specifies that

two instances must belong to different clusters. These

instance-level constraints have been used in learning dis-

tance/dissimilarity measures [3,4,7,10,18], modifying ob-

jective criteria for cluster evaluation [1], and improving

optimization procedures [2, 16, 17].

The constraints come naturally in the context of mu-

sic applications. For example, constraints can be gen-

erated from the background knowledge (e.g., two artists

share similar styles) and the user access patterns (e.g., two

pieces of music share similar access patterns across multi-

ple users). In this paper, we investigate the problem of

content-based music clustering with such instance-level

constraints. In particular, we adapt a generalized con-

straint clustering algorithm based on K-means and discuss

approaches to automatically generate constraints. The rest

of the paper is organized as follows: Section 2 introduces

the algorithm for constraint-based clustering, Section 3

discusses various approaches to generate constraints in

music applications, Section 4 describes the content-based

feature extraction, Section 5 show our experimental re-

sults, and Section 6 provides conclusions and presents

open questions.

2 CONSTRAINT-BASED CLUSTERING

This section provides some background on the K-means

algorithm and then discusses the constraint-based cluster-

ing algorithm following the exposition in [7].

2.1 K-means Clustering

The problem of clustering data arises in many disciplines

and has a wide range of applications. Intuitively, cluster-

ing is the problem of partitioning a finite set of points in

a multi-dimensional space into classes (called clusters) so

that (i) the points belonging to the same class are “similar”

and (ii) the points belonging to different classes aren’t [9].

K-means is a popular clustering algorithm where the

input data set is partitioned into K groups, where the num-

ber K is specified by the user. The quality of partition into

K clusters can be viewed as the quantization error as fol-

lows:

E =
1

2

K
∑

j=1

∑

s∈Cj

(c̄j − s)2. (1)



Here C1, . . . , CK are the K clusters and and c̄1, . . . , c̄K

their centroids. The goal of K-means is to minimize this

quantization error, which is accomplished iteratively by

alternating between the allocation step and the evalua-

tion step. In the former each data point is allocated to

the cluster whose centroid is the closest to it so as to

minimize the quantization error with respect to the cur-

rent centroids, while in the latter, the centroid of each

cluster is updated based on the new allocation. The so-

lution of δE
δc̄j

= 0, 1 ≤ j ≤ K provides the rule that

sets the centroid c̄j to be the mean of the data points in

Cj for all j, 1 ≤ j ≤ K. Repetition of these alternating

steps monotonically decreases the average distance of data

points from their corresponding centroid. The algorithm

converges when there is no change in the data allocation.

2.2 Constraint-based Clustering

Following [4] we define the concept of constraint-based

clustering for music similarity. We deal with positive con-

straints, which are given as a list of pairs that are expected

to belong to the same cluster, and negative constraints,

which are given as a list of pairs that are expected to be-

long to different clusters. We modify the the objective

function so that penalty is added for each constraint that is

not satisfied. For a positive constraint (si, sj) (that is, si

and sj must be in the same cluster), the penalty (in the case

where they go to different clusters) is the squared distance

between their cluster centroids. For a negative constraint

(si, sj) (that is, si and sj must be in different clusters),

the penalty (in the case where they go to the same clus-

ters) is the squared distance between the centroids that are

the closest and the second closest to either si or sj . In

both cases, we use the centroids to determine the penalty

so as to treat equally constraint violations within a cluster,

and we use squared distance since the quantization error

is based on squared distance. Also, our choice of the two

centroids in the penalty for an unsatisfied negative con-

straint is based on the idea that the constraint would be

satisfied if one vector were assigned to the cluster of the

closest centroid and the other were to the cluster of the

other centroid. Note that the closest centroid closest is the

centroid of the cluster to which si and sj belong.

The exact formula for the objective function is given

bellow:

CE =
1

2
(E + PM + PC) (2)

=
1

2





K
∑

j=1

∑

s∈Cj

(c̄j − s)2 + PM + PC



 ,

PM =
∑

(si,sj)∈M

pm
ij (1 − ∆(y(si), y(sj))), (3)

PC =
∑

(si,sj)∈C

pc
ij∆(y(si), y(sj)), (4)

pm
ij = (c̄y(xi) − c̄y(xj))

2, (5)

pc
ij = (c̄y(xi) − c̄∗ij)

2. (6)

Here M and C respectively represent the set of positive

constraints and the set of negative constraints, pm
ij and pc

ij

are respectively penalty parameters for the positive and for

negative constraints, and the value of y(si) is the index of

the cluster to which the data point si belongs. Also, ∆
is the Kronecker delta function defined by: ∆(x, y) =
1 if x = y and 0 otherwise. That is, the penalty pm

ij is

added only if (si, sj) ∈ M but si and sj do not belong

to different clusters and the penalty pc
ij is added only if

(si, sj) ∈ C but si and sj belong to the same cluster.

Furthermore, c̄∗ij is the centroid that is the next closest to

either si and sj .

Like K-means, the constraint-based clustering algo-

rithm is iterative, alternating between the allocation step

and the centroid update step. In the allocation step, the

goal is to minimize the generalized constrained vector

quantization error in Eq. 3. This is achieved by assign-

ing instances so as to minimize the proposed error term.

For pairs of instances in the constraint set, the quantiza-

tion error CE is calculated for each possible combination

of cluster assignments, and the instances are assigned to

the clusters so that CE is minimized. In the update step,

the centroids are cluster centroids. As in K-means, the

first order partial derivatives of CE with respect to each

centroid is evaluated and the solution that makes all these

derivatives equal to zero are obtained. Figure 1 presents

the procedure of the constraint-based clustering algorithm

(see [4] for more detail).

ALGORITHM Constraint-based Clustering

Input: Data set S, positive constraint set M ,

negative constraint set C, number of clusters K
Output: Cluster assignment Y

1: Initialization:

a. Create the m neighborhoods from M and C
b. if m ≥ K, initialize using weighted farthest-first

traversal starting from the largest neighborhood

else initialize with centroids of neighborhood sets

and remaining clusters at random

2: Iteration:

while stopping criterion is not met

2.1: Step I: Assign each data point to either cluster or

noise set such that it minimizes CE
2.2: Step II: Update the centroids for each cluster

3: Return Y

Figure 1. The Algorithm Description.

3 CONSTRAINTS GENERATION

The constraints come naturally in the context of music ap-

plications. The following gives a summary on different

approaches to generating constraints:



• Background Knowledge: Constraints can be gener-

ated from the background knowledge. If we already

know that two songs are of the same styles, or for-

mally, if we know two songs have the same cluster

labels, then they must be in the same cluster (e.g.,

a positive constraint). Similarly, if it is known that

two songs are of different styles, then they should

be in different clusters (e.g., a negative constraint).

• User-access Patterns: It is well known that the per-

ception of music is subjective to individual users.

Different users can have totally different opinion

for the same pieces of music. If two pieces of

music share similar access patterns across multiple

users, they should be similar in human perception,

and consequently should be put in the same cluster.

Thus user-access patterns can be used to generate

constraints for music clustering.

• Subjective Similarity Measures: In the context of

music information retrieval, when the initial re-

trieval results are unsatisfied, relevance feedback

methods will be applied to improve the quality of

retrieval results through iteration of user relevance

feedback. User feedback can be regarded as a way

of providing subjective similarity measures to the

music and this can also be used to generate con-

straints.

• Complementary and Diverse Music Information

Sources: Music data are naturally multi-modal, in

the sense that they are represented by multiple sets

of features. For example, the personnel-related fea-

tures (the producer, the supporting musicians, and

the record label), the acoustic features (which sum-

marize the voice and the background audio), and

the text features (.e.g., the song lyrics, the reviews).

These features are complementary and diverse, and

can be used to generate constraints for clustering.

For example, if two piece of music have the same

personnel-related features, then they can be consid-

ered to be similar based on content.

In the experiments in this paper, the constraints are

generated by background knowledge, i.e., from the known

class labels. Exploring the effects of various constraint

generation methods is one of our future goals.

4 CONTENT-BASED FEATURE EXTRACTION

There has been a considerable amount of work in ex-

tracting descriptive features from music signals for music

genre classification and artist identification [8,11,13–15].

In our study, we use timbral features along with wavelet

coefficient histograms. The feature set consists of the fol-

lowing three parts and totals 35 features.

4.1 Mel-Frequency Cepstral Coefficients (MFCC)

MFCC is a feature set that is popular in speech process-

ing and is designed to capture short-term spectral-based

features. To obtain the feature, the logarithm of the ampli-

tude spectrum is computed for each frame based on short-

term Fourier transform, where the frequencies are divided

into thirteen bins using the Mel-frequency scaling. (The

“cepstrum” is the name coined for this logarithm.) After

taking the logarithm of the amplitude spectrum, the fre-

quency bins are grouped and smoothed according to Mel-

frequency scaling, which is design to agree with percep-

tion. MFCC features are generated by decorrelating the

Mel-spectral vectors using discrete cosine transform. In

this study, we use the first five bins, and compute the mean

and variance of each over the frames.

4.2 Short-Term Fourier Transform Features (FFT)

This is a set of features related to timbral textures and is

not captured using MFCC. It consists of the following five

types. More detailed descriptions can be found in [15].

Spectral Centroid is the centroid of the magnitude spec-

trum of short-term Fourier transform and is a measure of

spectral brightness. Spectral Rolloff is the frequency be-

low which 85% of the magnitude distribution is concen-

trated. It measures the spectral shape. Spectral Flux is the

squared difference between the normalized magnitudes of

successive spectral distributions. It measures the amount

of local spectral change. Zero Crossings is the number

of time domain zero crossings of the signal. It measures

noisiness of the signal. Low Energy is the percentage of

frames that have energy less than the average energy over

the whole signal. It measures amplitude distribution of the

signal.

4.3 Daubechies Wavelet Coefficient Histograms

(DWCH)

Daubechies wavelet filters are ones that are popular in im-

age retrieval (see [5]). To extract DWCH features, the

db8 filter with seven levels of decomposition is applied

to thirty seconds of sound signals. After the decomposi-

tion, the histogram of the wavelet coefficients is computed

at each subband. Then the first three moments of a his-

togram, i.e., the average, the variance, and the skewness,

are used [6,13] to approximate the probability distribution

at each subband. In addition, the subband energy, defined

as the mean of the absolute value of the coefficients, is

also computed at each subband. A few trials reveal that of

the seven subbands of db8 (1: 11025–22050 Hz, 2: 5513–

11025Hz, 3: 2756–5513Hz, 4: 1378–2756Hz, 5: 689–

1378Hz, 6: 334–689Hz, 7: 0–334Hz), subbands 1, 2, and

4 show little variation. We thus choose to use only the

remaining four subbands, 3, 5, 6, and 7, for our experi-

ments. In fact, the subbands match the models of sound

octave-division for perceptual scales [12].

5 EXPERIMENTS

In this section, we perform experiments to evaluate

whether the clustering algorithms based on minimizing
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Figure 2. The artist similarity graph. The names in bold are “core” nodes.

disagreement can be more powerful than unimodal meth-

ods.

5.1 Data Description

Our experiments are performed on the dataset consisting

of 300 songs from 53 albums of a total of 41 artists.

To divide songs into classes, we choose to use the simi-

larity information among artists available at the All Music

Guide artist pages (http://www.allmusic.com), assuming

that this information is provided by experts. By examin-

ing the All Music Guide pages of the 41 artists, if the name

of an artist X appears on the list of artists similar to Y, it

is considered that X is similar to Y. To form classes artists

having a large number of neighbors are selected as core

nodes. Core nodes that are neighbors to each other are put

into the same class. The other artists that are neighbors to

each core nod are selected to be in the class of the core

so that each class is separated by at least one node in be-

tween. All the remaining artists are put in a separate class.

Table 1 shows the classes of the artists and Figure 2 shows

the similarity graph along with the classes. Our goal is

to classify each song out of the 300 into one of the four

classes corresponding to the artist by analyzing its audio

contents.

5.2 Evaluation Measures

As discussed above, we use the cluster structures obtained

from All Music Guide as labels to evaluate the clustering

performance. We use purity, entropy, and accuracy as our

performance measures (see [19] for discussions of these).

To describe how these measures are calculated, let

C1, . . . , CK be the input classes, N1, . . . , NK their size,

Class Members

1 { Fleetwood Mac, Yes, Utopia, Elton John,

Genesis, Steely Dan, Peter Gabriel }
2 { Carly Simon, Joni Mitchell,

Suzanne Vega, Ricky Lee Jones,

Simon & Garfunkel, James Taylor }
3 { AC/DC, Black Sabbath, ZZ Top,

Led Zeppelin, Grand Funk Railroad,

Derek & The Dominos }
4 All the remaining artists

Table 1. Artist classes.

and N = N1 + · · · + NK . Also, let D1, . . . ,DK be

the output clusters and M1, . . . ,MK their size. For each

(i, o), 1 ≤ i, o ≤ K, let Hi,o = ‖Ci ∩ Do‖.

Purity measures how large a portion of each output

cluster comes from a single input class [19]. For each

o, 1 ≤ o ≤ K, let p(o) be the index i, 1 ≤ i ≤ K,

that maximizes Hi,o, where a tie can be broken arbitrarily.

The purity of Do with respect to C1, . . . , CK is defined

to be
Hp(o),o

Mo
. The purity of D1, . . . ,DK with respect to

C1, . . . , CK is then defined to be the sum of individual pu-

rity weighted proportionally to the size of output clusters.

In other words,

Purity =

K
∑

o=1

Mo

N
·
Hp(o),o

Mo

=
1

N

K
∑

o=1

max{Hi,o | 1 ≤ o ≤ K}. (7)

Note that p(1), . . . , p(K) are determined independently

and thus p(o) may have the same value for multiple values



of o. Generally speaking, the higher the purity, the better

the clustering quality.

Entropy measures how classes distributed on various

clusters.

Entropy = −
1

log K

K
∑

i=1

Ni

N

K
∑

o=1

Hi,o

Ni

log
Hi,o

Ni

= −

K
∑

i=1

K
∑

o=1

Hi,o

N log K
log

Hi,o

Ni

, (8)

where the logarithm is base 2. Generally speaking, the

smaller the entropy value, the better the clustering quality.

Accuracy measures under the assumption that there is a

one-to-one correspondence between the input classes and

the output clusters, how accurately the data allocation is.

Accuracy = max
π

K
∑

i=1

Ni

N
max

q

K
∑

i=1

Hi,q(i)

Ni

=
1

N
max

π

K
∑

i=1

Hi,q(i), (9)

where q ranges over all permutations of {1, . . . ,K}. Gen-

erally speaking, the larger the accuracy value, the better

the clustering quality.

Note that purity and accuracy do not necessarily agree

with each other. Consider an example in which three

classes of size 10 each are given, the first class is evenly

split between first and second clusters, and and the whole

second and third classes are allocated to the third clus-

ter. The purity for the three clusters are 1.0, 1.0, and 0.5
respectively. Since the cluster sizes are 5, 5, and 20 re-

spectively, the purity for the clustering is 1.0 · 5
30 + 1.0 ·

5
30 + 0.5 · 20

30 = 0.6667. On the other hand, by letting

class i correspond to cluster i maximizes the formula for

the accuracy to 5+10
30 = 0.5.

5.3 Analysis of the Results

30 constraints (including 10 positive constraints and 20

negative constraints) are randomly generated from the

cluster labels. We compare the results of constraint clus-

tering with the results obtained when clustering is applied

on content without any constraints. Table 2 presents the

experimental results over ten independent trials.

Measurement Purity Entropy Accuracy

Without Constraints 0.436 0.731 0.438

With Constraints 0.471 0.723 0.472

Table 2. Performance comparison. The numbers are ob-

tained by averaging over ten trials.

We observe that constraint-based clustering achieves

better performance (i.e., higher purity and accuracy val-

ues and lower entropy values) than clustering without any

constraints, and that the performance of purity, entropy,
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Figure 3. Comparisons of the clustering accuracy as a

function of constraint size.

and accuracy relative to the other is consistent in our com-

parison, i.e., higher purity values correspond to lower en-

tropy values, and to higher accuracy values. Note that dif-

ferent evaluation measures consider different aspects of

the clustering results. For example, the entropy measure

takes into account the entire distribution of the data in a

particular cluster and not just the largest class as in the

computation of the purity. The accuracy considers the re-

lationships among all pair class-clusters. We hope that

these different measures would provide enough informa-

tion to understand the results of our experiments.

Figure 3 illustrates the effects of the constraint size.

The X-axis of figure shows the number of constraints

while the Y-axis shows the clustering accuracy. Here dif-

ferent constraint sizes are tested to investigate the effect

of the size of the constraint on the overall clustering per-

formance. An approximate 1 : 2 ratio of the number of

positive constraints to the number of negative constraints

is maintained throughout the experiment. We observe that

as the constraint set size increases, the accuracy measures

steadily improves and flattens out after 40. Then, after

that, it looks as if the accuracy beings to decrease. This

may suggest that two many constraints may force our clus-

tering algorithm to over-fit.

The total number of constraints to specify relations be-

tween data elements in an N -element data set is N(N +
1)/2. In our case, N = 300 so the number is 44, 850. The

number of constraints we used is less than 0.1% of this

and thus may look very small. However, the total number

of class relations four a K-class data set is K2, which is

in our case 16. Thus, with 40 constraints we can expect

that the class relations are represented at least twice on av-

erage. The conspicuous decline in accuracy may suggest

that adding more than three constraints per class relation

can lower the performance.

6 DISCUSSIONS AND OPEN QUESTIONS

In this paper, we study the problem on clustering music

songs in the presence of constraints. In particular, we

present a constraint-based clustering framework and dis-



cusses various approaches to generate constraints. Exper-

imental results on a data set consisting of 300 songs from

41 artists of 53 albums show the effectiveness of our ap-

proach.

There are several natural avenues for future research.

The first natural direction is to investigate different ap-

proaches for constraints generation. Second, another in-

teresting direction is on music annotation. How can we

automatically and efficiently generate music style or simi-

larity information? Note we did not agree completely with

the artist similarity obtained from All Music Guide, but

nonetheless used it as the ground truth to evaluate our al-

gorithms in the experiments. Can we incorporate the opin-

ions from music experts or take into account the views

from individual users? Third, it would also be interesting

to evaluate the quality of the generated constraints. Fi-

nally, can we determine the number of constraints?
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