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ABSTRACT

In this paper, we introduce a method to address automatic
instrument recognition in polyphonic music. It is based
on the decomposition of the music signal with instrument-
specific harmonic atoms, yielding an approximate object
representation of the signal. A post-processing is then ap-
plied to exhibit ensemble saliences that give clues about
the number of instruments and their labels. The whole al-
gorithm is then applied on artificial mixes of solo perfor-
mances. The identification of the number of instrument
reaches 73 % on 10-s segments and the fully blind prob-
lem of identification of the ensemble label without prior
knowledge on the number of instruments is 17 %.

1 INTRODUCTION

Orchestration is a critical information for the automatic in-
dexing of music. It gives an important clue about the mu-
sic genres, and is often necessary for the query of sound
samples for electronic music composing.

Automatic Instrument Recognition has raised some in-
terest over the latest years (see [1] for an overview). Early
studies have addressed the recognition of isolated music
notes, then of solos phrases. For these two contexts, ma-
chines now reach the performance of expert musicians.
However, mono-instrument music is only a small part of
the overall recorded music, that involves natural or artifi-
cial mixes of instruments.

To deal with multi-instrument music, several strategies
have been adopted. Template-based approaches have first
been proposed [2, 3]. Other approaches adapt “bag-of-
frames” approaches to polyphony [4]. Other techniques
consist in estimating jointly the instrument sources acti-
vated in a probabilistic framework [5], at a heavy compu-
tational cost. A recent work [6] presents a representation
showing the instrument presence probabilities in the time-
pitch plane without note detection. Ensemble classes can
also be modeled using standard feature-based representa-
tions in addition with a hierarchical taxonomy [7], when
the number of instrument combinations is tractable.

c© 2007 Austrian Computer Society (OCG).

In this paper a recent development in the decomposi-
tion of music signals is studied for the recognition of mu-
sic instrument in ensemble music. It relies on principles
coming from the sparse approximations domain. To get a
useful sparse representation of a signal, two aspects have
to be investigated: the building of a signal model (dictio-
nary design), and, given a dictionary, the choice of an al-
gorithm and its optimization towards a faster or better ap-
proximation. Techniques from the sparse approximation
domain have already been used for automatic music tran-
scription in an unsupervised way [8]: the building of the
dictionary was done in an data-driven way, prohibiting the
signal analysis in view of prior knowledge of the sources.
The introduction of prior knowledge about the sources in
dictionaries has been presented in [9]: this knowledge is
put in the amplitudes of the note partials. In section 2,
the decomposition algorithm is briefly described, then a
post-processing is introduced to take a decision on the or-
chestration. The experiments of ensemble recognition are
detailed in section 3.

2 ALGORITHM

2.1 Decomposition algorithm

The signal model and decomposition algorithm have been
introduced in [9]. For space constraints, only the main
features of the algorithm are highlighted here.

2.1.1 Signal Model

The signal is decomposed as a linear combination of short
pieces of signal h, called harmonic atoms:

x(t) =
N∑

n=1

αn hsn,un,f0n ,An,Φn(t). (1)

The set of all the atoms available to decompose the sig-
nal is called a dictionary.

The parameters of these atoms are the scale sn, the time
localization un, the fundamental frequency f0n , the partial
amplitudes An = {am,n}m=1:M and the partial phases
Φn = {φm,n}m=1:M . An atom h is itself defined as a



linear combination of partial atoms:

hs,u,f0,A,Φ(t) =
M∑

m=1

am ejφmgs,u,m.f0(t) (2)

where the amplitudes of the M partials are constrained to∑M
m=1 a2

m = 1 and the signal g corresponding to each
partial is given by a Gabor atom:

gs,u,f = w

(
t− u

s

)
e2jπft (3)

with w a time and frequency localized window.
In our study, each A vector is linked to an instrument

and i a pitch p (integer Midi Code), and is learned from
databases of isolated instrument notes or solo performan-
ces, as shown in section 2.1.3.

2.1.2 Decomposition algorithm

The Matching Pursuit algorithm [10] is then performed to
decompose the signal with this dictionary. In a nutshell,
it consists in selecting the atom the most correlated with
the signal, to subtract it from the signal, and to iterate on
the residual. After several iterations, a decomposition of
type (1) is obtained. The set of the selected atoms with
their respective weights is called a Book. With the param-
eters mentioned in Section 3, the runtime takes about 10
times real-time on a 3 GHz monoprocessor, with a Matlab
implementation.

2.1.3 Learning

The atoms are first learned on a set of 3 different databases
of isolated notes [11, 12, 13], annotated in pitch p and in-
strument i. For a given time frame of size s, the technique
consists in selecting the harmonic comb that best matches
the signal, and then in picking the amplitudes of the par-
tials on this comb. For each instrument and note, the am-
plitude vectors sets are then quantized using a K-means
algorithm.

To build dictionaries that are closer to realistic play-
ing conditions, solo performances are then analyzed. In
this case, the notes are not localized nor annotated. The
Matching Pursuit algorithm with the aforementioned dic-
tionary is thus used because of its capability to automat-
ically adapt to the music notes. The dictionary that we
use for this task is built only with the atoms of the corre-
sponding known instrument, whose construction has been
described in the previous paragraph. However, the al-
gorithm is modified before the subtraction step: the har-
monic comb whose fundamental frequency corresponds to
the selected atom is selected to perform the partial ampli-
tudes picking. Moreover, to prevent the selection of har-
monic atoms in the residual, the atom is not subtracted:
the signal is set to 0 at the extracted atom localization. A
quantization step is then performed, as for isolated notes
dictionaries.

2.2 Pitch-and-instrument salience

An atom extraction can be seen as a “pitch-and-instrument”
salience extractor, since it correlates both a spectral en-
velope and a harmonic comb with the signal. Given an
extracted atom at fundamental frequency f0, scale s and
localization u, we define the f0-and-instrument salience
for instrument i as 1 :

Si = max
A∈Ci,p

{|〈x, hs,u,f0,A,Φn〉|} (4)

If an instrument i enveloppe cannot play the pitch p, i.e.
Ci,p = ∅, its salience is set to 0. Although not required for
the decomposition, all instrument saliences for every se-
lected atom are kept for the scoring step: they are needed
for the ensemble saliences evaluations.

2.3 From Instrument Salience to Ensemble Salience

The scoring algorithm processes the output of the decom-
positions to have an indication of which instruments are
playing. Here, a frame-based scoring is developed: for a
given time frame, the score of a given ensemble class de-
pends on which atoms have been extracted and on their
f0-and-instrument salience.
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Figure 1. Bassoon (Bo) and Oboe (Ob) duo (synthetic
mix): (a) Book representation in the Time-Pitch plane:
atoms are represented by rectangles, whose width is the
atom scale and height is their amplitudes, (b) Ensemble
Saliences for a subset of ensemble labels (high saliences
are darker).

Given the decomposition of a music signal, there can
be several atoms per time frame since the music is in gen-
eral polyphonic. The first step to perform is to select
which atoms are present for each time frame, the timeline
being sampled at the greatest common divider between the
∆u corresponding to each scale. Then, the contribution of
each atom a on a given time sample is equal to the value

1 Note that the inner product is not depending on the values of Φ if f0

is high enough since the partials atoms can be considered as orthogonal:
|〈x, hs,u,f0,A,Φn 〉|2 =

PM
m=1 |〈x, gs,u,m.f0 〉|2



at instant u of the weighting window starting at ua mul-
tiplied by the atom weight. Hence, given a time frame u
and an ensemble label e, its ensemble salience is the fol-
lowing 2 :

Se(u) =
maxCe∈Ce

∑
a∈Ce

Sia(u)w(u−ua

sa
)

Nβ
e

(5)

where Ce is the set of all the instrument salience combina-
tions whose time support overlap with u. For example, if
two atoms are present at time u, the salience of ensemble
Co&Fl (Cello and Flute) is the maximum between the sum
of the Fl salience for the first atom and the Co salience for
the second one, and sum of the Co salience for the first
atom and the Fl salience for the second one, divided by
2β . An example of book output and corresponding en-
semble saliences is displayed on Figure 1.

The β parameter is a sparsity parameter: it balances
the weight between the sum of all atom saliences and the
number of instrument taken to explain the resulting sig-
nal. It can be optimized with respect to the number of
instrument detection.

2.4 Voting

Decisions taken on single time frames does not provide
useful information as such. However, one can be inter-
ested on decisions taken on the whole music signal, or a
segment of it. To get a global decision from local ones,
voting techniques must be employed. The technique used
in this study is derived from a probabilistic framework.
Other techniques, like majority-vote, have been tried but
they yield to weaker results. First, the ensemble saliences
are mapped to ensemble Pseudo Log-Likelihoods (PLL),
then a segment PLL for each ensemble label is computed
by adding the PLL of each time frames. The mapping
of a ensemble salience Se(u) to PLL Le(u) is achieved
with the following formula: Le(u) = (Se(u))γ , where γ
weighs the influence of salience amplitudes over the over-
all score in the segment. Like β in previous Section, the γ
coefficient has to be optimized on a development set. The
decision over the all segment is obtained by summing all
the PLL. It corresponds to an hypothesis of statistical in-
dependence between each time frame. This hypothesis is
clearly erroneous in music signals (the orchestration does
not change at every short time frame), but is commonly
taken for fusion of local likelihood.

3 EXPERIMENTS

3.1 Parameters

The parameters used for the decomposition are s = 46ms,
∆ = 23ms. f0 is sampled logarithmically with a step of

2 Using the L2 norm
qP

a∈Ce
(Sia(u)w(u−ua

sa
))2 instead of the

L1 norm
P

a∈Ce
Sia(u)w(u−ua

sa
) would be more consistent with the

optimality criterion of the decomposition, however it leads to weaker
results in the studied applications
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Figure 2. Accuracy of Number of Instrument Detection
as a function of β for decision on single times frames, 2
seconds segments and 10 seconds segments.

1/10 tone. The decompositions are performed until the
Signal-To-Residual ratio reaches 20 dB.

The development set and the test set are composed of
artificial mixes of solo phrases extracted from commer-
cial CDs, from sources different from the one used for
atom learning. The mixes are done by summing the mono-
instrument signals of instruments bassoon (Bo), cello (Co),
clarinet (Cl), flute (Fl), oboe (Ob), viola (Va) and violin
(Vl) after an energy normalization. For each set, 100 10s
samples have been made, 25 for each ensemble cardinal.

3.2 Optimization of parameters

The parameters β and γ have to be tuned to maximize
the accuracy of the estimation of the number of instru-
ments, which is required to estimated the good instrument
label. Optimizing these parameters for instrument label
accuracy would overfit the algorithm for the solo recog-
nition, that is the easiest problem. In our experiments on
the development set, the best γ parameter has shown to be
independant on the decision window: the value γ = 0.8
gives the best results.

3.3 Ensemble recognition

For these values, the instrument recognition rates for deci-
sions on 10 s segments are depicted on Figure 3. It shows
that the problem of finding an instrument among the mix
is correctly addressed when the number of instrument is
known (from 70 % to 100 %, depending on the ensemble
type), and a less accurately when it is not known (from 54
% to 84 %). However, as the required number of instru-
ments increases, the method fails at correctly identifying
them alltogether. Dealing with ensembles of more than
three instruments needs more refined techniques both at
decomposition step and post-processing or more prior in-
formation, since the problem is significantly more difficult
(results for random draw is at less than 1 %).
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Figure 3. Ensemble recognition results for each subset
(solos, duos, trios, quartets). For each ensemble, the three
groups of bars depict respectively the results of a random
draw, the results of our algorithm with no knowledge on
the number of instruments playing, and the results know-
ing the number of instruments playing.

4 CONCLUSION

In this paper, we have developed a novel approach to the
highly complex problem of identifying the instruments
playing in ensemble music. The approach consists in get-
ting a knowledge-assisted mid-level representation of the
signal, then in performing a post-processing using ensem-
ble saliences based on individual instrument saliences de-
rived from the representation. The results are encouraging
for the estimation of the number of instrument, but weak
for the ensemble classification, which is a much more dif-
ficult problem without prior information on ensemble la-
bels occurences.

Future work will be dedicated to the improvement of
the decomposition step by first refining atom parameters,
in order to better fit the underlying signal structures, and
then by grouping atoms into molecules to catch temporal
dependencies. The joint estimation of atom combinations
will also be investigated using more elaborated sparse de-
composition algorithms. Finally, the post-processing will
be improved by using melodic line tracking techniques, to
disambiguate highly polyphonic mixes.
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