
VIVO - VISUALIZING HARMONIC PROGRESSIONS AND
VOICE-LEADING IN PWGL

Mika Kuuskankare
Sibelius Academy

CMT

Mikael Laurson
Sibelius Academy

CMT

ABSTRACT

This paper describes a novel tool called VIVO (VIsual
VOice-leading) that allows to visually define harmonic
progressions and voice-leading rules. VIVO comprises of
a compiler and a collection of specialized visualization de-
vices. VIVO takes advantage of several music related ap-
plications collected under the umbrella of PWGL (PWGL
is a free cross-platform visual programming language for
music and sound related applications). Our music nota-
tion application–Expressive Notation Package or ENP–is
used here to build the user-interface used to visually define
harmony and voice-leading rules. These visualizations are
converted to textual rules by the VIVO compiler. Finally,
our rule-based compositional system, PWGLConstraints,
is used generate the final musical output using these rules.

1 BACKGROUND

The musical problems that are interesting in terms of mu-
sical constraints programming are typically very demand-
ing. Here, harmony, melody, voice-leading, and counter-
point provide challenges not only in an aesthetic sense but
also in terms of a formal definition. Defining textually
rules that solve a certain compositional or music analyti-
cal problem is a time consuming task and requires a lot of
both musical and programming expertise.

VIVO allows to visually define rudimentary rules of
counterpoint. The approach presented here resembles the
traditional teaching situation where a teacher or a textbook
gives out examples of correct use of harmonic progres-
sions or voice-leading. Using music notation as a frame-
work for constructing the VIVO user-interface provides
several advantages: (1) it is easy to write the rules, i.e.,
the user sees the exact musical context the rule is applied
to; (2) it is possible to verify the correctness of the data by
’listening’ to the rules; (3) it is straightforward to edit,add
and remove data; and (4) the user can easily edit the rule
set and make subsets of it.

Our environment for computer assisted composition,
PWGL ([3];http://www.siba.fi/pwgl/), is used
to implement VIVO. PWGL offers a unique combination
of graphical and textual programming tools. The two of

c© 2007 Austrian Computer Society (OCG).

which are of primary importance in terms of VIVO are
PWGLConstraints [4] and ENP [2].

VIVO uses an ENP score as a user-interface compo-
nent. By entering musical material into the score makes
it possible to define given aspects of harmony and voice-
leading. The visual representation is then fed to the VIVO
compiler which in turn generates textual rules that are suit-
able for PWGLConstraints. The final output generated by
PWGLConstraints can then be shown in common music
notation using ENP.

There are also other rule-based systems that have been
used to solve musical constraint satisfaction problems,
e.g., Situation, Arno, OMClouds, Strasheela (see [1] for
more information) and the choral harmonizer system by
Kemal Ebcioglu. Furthermore, integrating visual tools in
constraints programming has been studied, for example,
in [5]. However, using music notation to define rules of
counterpoint, in the way the VIVO does, is unique and
cannot be found elsewhere.

This paper gives a brief overview of some of the cur-
rently available VIVO tools.

2 THE VIVO TOOLS

2.1 Common Harmonic Progressions

Figure 1 gives an example of a simplified harmonic pro-
gression defined with the help of VIVO. There are two
cases, marked as1 and 2 in the example. The idea here
is to give examples–written in music notation–of accept-
able harmonic progressions. The setting or the inversion
of the chords is not important.

Figure 1. A simplified harmonic progression database.

The relationships between two adjacent chords in
VIVO are relative it is possible that harmonic sequences,
other than the ones explicitly indicated in the database,
can be formed. For example, using the database given in
Figure 1, it is possible to form among others the follow-
ing sequence:I-V/V, V/V-V, V-V/II. This scheme actually
allows VIVO to modulate from one harmonic region to
another.



2.2 Common Voice-Leading Cases

2.2.1 Suspended Chords

There are certain graphical devices that can be used to de-
fine aspects of the voice-leading in more detail. Figure 2
shows how preparing and resolving a suspended harmony
(e.g., I4−3) is defined using VIVO. The horizontal lines
connecting two adjacent notes are used to constrain the
movement of a given member of the harmony. In Figure
2, 1 defines how the suspended harmony is prepared and

2 defines how it is resolved.

Figure 2. A VIVO database defining a suspended har-
mony and its resolution.

This database would produce an uninterrupted chain of
chords cycling the patternprepared-suspended-resolved.
Figure 3 gives an example of a score, generated by VIVO,
using the above database.

Figure 3. A four-voiced chorale fragment containing a
chain of suspensions.

2.2.2 Neapolitan chord

As can be seen in Figure 3, the suspension database given
above does not assume any particular inversion of the
chords (or setting for that matter). However, in some
cases–as in case of the Neapolitan Sixth Chord (N6)–the
inversion of the chord is of primary importance.Figure 4
gives a new visualization device (shown as a thick dashed
line in the left hand staff) that is used to indicate the root
note of a given chord.

Figure 4. The Neapolitan chord and its idiosyncratic
voice-leading and enharmonic content defined in VIVO.

3 DISCUSSION

VIVO is still more or less in the conceptual level. More
work is needed to create a good set of visualization de-

vices that are descriptive yet straightforward.
There are many open questions dealing with such

fundamental voice-leading cases as parallel-, hidden-,
similar-, oblique- or contrary-motion; voice-crossing or
-overlapping; open- and close-positions; or cadences. It
should also be investigated how to visualize key depen-
dent issues such as the leading tone or harmonic regions,
etc.

One of the most interesting applications in terms of
MIR would be to let VIVO learn harmonic progressions
from the repertoire, e.g., to analyze existing scores to pro-
duce the VIVO database.

Some of the issues enumerated above would probably
be already possible to realize. Using and existing score
to create a VIVO database from, for example, a Bach
Chorale wouldn’t require much extra work. Furthermore,
open- and close-positions could very well be entered with
the help of VIVO except that the VIVO rule compiler
should be instructed to compile these as so called heuristic
rules.

It is perhaps equally evident that not all of the features
mentioned above are suitable to be represented visually.
It is, however, possible to augment VIVO to cover a great
deal of them.

4 ACKNOWLEDGMENTS

The work of Mikael Laurson and Mika Kuuskankare have
been supported by the Academy of Finland (SA 105557
and SA 114116).

5 REFERENCES

[1] Anders, T., C. Anagnostopoulou, and M. Alcorn,
“Strasheela: Design and Usage of a Music Compo-
sition Environment Based on the Oz Programming
Model”, Multiparadigm Programming in Mozart/OZ:
Second International Conference, MOZ 2004(Roy,
P. V., ed.), vol. LNCS 3389, Springer-Verlag, 2005.

[2] Kuuskankare, M. and M. Laurson, “Expressive No-
tation Package”,Computer Music Journal, vol. 30,
no. 4, pp. 67–79, 2006.

[3] Laurson, M. and M. Kuuskankare, “PWGL: A Novel
Visual Language based on Common Lisp, CLOS and
OpenGL”, Proceedings of International Computer
Music Conference, (Gothenburg, Sweden), pp. 142–
145, 2002.

[4] Laurson, M. and M. Kuuskankare, “Extensible Con-
straint Syntax Through Score Accessors”,Jourńees
d’Informatique Musicale, (Paris, France), 2005.

[5] Schulte, C., “Oz Explorer: A visual constraint pro-
gramming tool.”,Proceedings of the Fourteenth Inter-
national Conference on Logic Programming, The MIT
Press, 1997.


