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ABSTRACT

This paper describes a tempo induction and beat track-
ing system based on the efficient strategy (initially intro-
duced in the BeatRoot system [Dixon S., “Automatic ex-
traction of tempo and beat from expressive performances.”
Journal of New Music Research, 30(1):39-58, 2001]) of
competing agents processing musical input sequentially and
considering parallel hypotheses regarding tempo and beats.
In this paper, we propose to extend this strategy to the
causal processing of continuous input data. The main rea-
sons for this are threefold: providing more robustness to
potentially noisy input data, permitting the parallel consid-
eration of a number of low-level frame-based features as
input, and opening the way to real-time uses of the system
(as e.g. for a mobile robotic platform).

The system is implemented in C++, permitting faster
than real-time processing of audio data. It is integrated
in the MARSYAS framework, and is therefore available
under GPL for users and/or researchers.

Detailed evaluation of the causal and non-causal ver-
sions of the system on common benchmark datasets show
performances reaching those of state-of-the-art beat track-
ers. We propose a series of lines for future work based on
careful analysis of the results.

1. INTRODUCTION

Computational tracking of musical beats from audio signal
is a very important feature to automated music analysis. In
the context of Music Information Retrieval applications,
such as e.g. automatic genre classification, music similar-
ity computation, autotagging, or query-by-example, recent
literature indicates that audio descriptors of higher level of
abstraction are needed [1]. It is a relatively safe bet to say
that reliable beat trackers will be helpful in this endeavour.

Recent evaluations of existing beat tracking systems (see
e.g. MIREX 1 ) show that, although progresses have unde-
niably been achieved in the last years, there is still room for

1 http://www.music-ir.org/mirex/2009/
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improvement. Many open directions to beat tracking re-
search are also detailed in a recent and very thorough eval-
uation in [6]. Particularly, there is to date, to our knowl-
edge, no real-time and open-source audio beat tracker avail-
able.

Very many papers in the literature address the problem
of tempo induction and beat tracking of audio signals. Pro-
viding a review of existing systems and algorithms is out
of the scope of this paper. Interested readers are referred
to [8] for a review of rhythm description systems.

It is however important to mention the main functional
aspects commonly found in beat tracking algorithms. A
generic description includes the following computing
blocks: (1) Audio feature extraction, (2) Induction (or “Pre-
tracking” herein), and (3) Beat Tracking per se.

It is also interesting to notice that recent systems, e.g.
[12], [7], [3], [14], tend to implement beat tracking as a
repeated induction process, in which tempo and beats are
computed on consecutive windows of signal (usually a few
seconds, where it is usually considered that the tempo is
constant), with overlap, and in which estimating tempo
evolution and beat positions is done by connecting obser-
vations between windows. We argue that a problem with
this approach is a potential computational overload, the in-
trinsic difficulty to adapt these tracking strategies to causal
and real-time scenarios, as well as lack of continuity be-
tween windows. Instead, we propose to follow the track-
ing strategy initially proposed in the system BeatRoot [4],
where competing agents process musical input data sequen-
tially and consider parallel hypotheses regarding tempo and
beats.

We propose to differ from BeatRoot’s strategy by imple-
menting a causal decision process over competing agents
(instead of taking decisions after the whole data has been
analysed). Further, we extend the algorithm to the process-
ing of continuous input data. Our aim is to provide more
robustness to potentially noisy input data, and opening the
way to (faster than) real-time uses of the system (as e.g.
for a mobile robotic platform). The system is implemented
in C++ and the source code is available as GPL. Although
this paper does not provide experiments with respect to the
usefulness of diverse low-level features as input to track-
ing beats [9] [2], it should be noted that a particularity of
the proposed architecture is precisely to be open to such
experiments. Another difference with BeatRoot lies in an
attempt to not bias results towards faster metrical levels.
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Figure 1. IBT block diagram.

In section 2, we describe one-by-one the functional
blocks of IBT, 2 a tempo induction and beat tracking al-
gorithm in the line of BeatRoot [4]. The algorithm follows
a modular workflow composed by: (1) an audio feature
extraction module, “parsing” the audio data into a continu-
ous 3 feature sequence assumed to convey the predominant
information relevant to rhythmic analysis; followed by (2)
a pre-tracking module, which outputs initial hypotheses re-
garding possible beat periods and phases; followed by (3)
a beat tracking module, which propagates hypotheses, pro-
ceeds to their online creation, killing and ranking, and out-
puts beats on-the-fly (see Figure 1). Section 3 reports on
a thorough evaluation of the system. Section 4 proposes
some practical hints for those intending to use the system,
and/or make changes to its code. Section 5 discusses the
system performances and proposes lines for future work.

2. SYSTEM DESCRIPTION

2.1 Audio Feature Extraction

According to recent comparative studies evaluating alter-
native onset detection functions [5] and the accuracy of
several low-level features applied to beat tracking purposes
[9], we selected the spectral flux as the audio feature over
which all further processing will be done.

Our implementation follows that proposed in [5]. Par-
ticular parameters are: Hamming window, window size of
1024 samples (23.2ms at a sampling rate ofFs = 44100Hz),
and 50% overlap.

In order to smooth the onset detection function and re-
duce false detections, a low-pass Butterworth filter is ap-
plied on the extracted spectral flux values. As a way to
avoid phase distortion the spectral flux values in the induc-
tion window are filtered in both the forward and reverse
directions, resulting in a precisely zero-phase distortion.

2.2 Pre-tracking

The system is initialized on an induction window, set to a
length of 5s. The following sections (until Section 2.3) re-
port on computations done on the induction window only.

2 Standing for INESC Porto Beat Tracker.
3 i.e. sampled, with typical sampling rate in the tenth of msec

During the processing of that bit of data, the system does
not output beats. At the end of that pre-processing step, hy-
potheses regarding periods, phases and scores (Pi, φi, Si)
of a number of beat agents are passed along to the beat
tracking module.

The length of the induction window is a high-level pa-
rameter that the user can define.

2.2.1 Period Hypotheses Induction

The first step in the pre-tracking stage is to compute a con-
tinuous periodicity function, based on the spectral flux au-
tocorrelation, along time-lags τ :

A(τ) =
m∑
n=0

SF (n)SF (n+ τ), (1)

where SF (n) is the (smoothed) spectral flux for frame n,
and m is the induction window size (in frames).

The periodicity function is then parsed by an adaptive
peak-picking algorithm to retrieveN global maxima, whose
time-lags constitute the initial set of period hypotheses Pi :{

Pi = arg maxi(A(τ)), i = 1, ..., N

A(τ) > δ ∗ rms(A(τ))
M

, (2)

where δ is a fixed threshold parameter, empirically set to
0.75, and M is the chosen tempo range, defined to [50, 250]
BPM (i.e. periods of 240 ms to 1.2 s), at a 6ms granularity.

2.2.2 Phase Hypotheses Selection

For each one of the period hypothesis Pi, a number of
phase hypotheses φji (where j is the index of the alternative
hypotheses for the i-th period hypothesis) are considered
among detected onsets (detection is done on the induction
window only, and computed as proposed in [5]).

For each period hypothesis, we generate an isochronous
sequence of beats (a “beat train template”) of constant pe-
riod for each possible phase φi, with the same length as the
induction window.

Using a simplified tracking procedure (see Section 2.3),
considering a constant tempo and phase, we then select the
beat train template that best matches the detected onsets
and retrieve its corresponding phase [10].

At this point, we have computed a set of period and
phase hypotheses, (Pi, φi). The next step is to compute a
score for each hypothesis and to rank them.

2.2.3 Agents Setup

A raw score Srawi is given to each (Pi, φi) hypothesis, cor-
responding to the sum of time deviations between elements
of the chosen beat train template and local maximum in the
spectral flux (see eq. (10)).

Scores are then updated via the consideration of possi-
ble metrical relationships between each pair of period hy-
potheses nij . As proposed in [4], we define a score Sreli

that favors candidates whose periods are in integer rela-
tionships:

Sreli = 10 ∗ Srawi +

N∑
j=0
j 6=i

r(nij) ∗ Srawj (3)
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r(n) =


6− n, 1 ≤ n ≤ 4

1, 5 ≤ n ≤ 8

0, otherwise

(4)

Finally, we define the final scores, Si, as follows:

Si = Sreli ∗max(Sraw) (5)

The estimated hypotheses (Pi, φi, Si) can now be used
to initialize a set of N beat agents, which will start their
beat tracking activity, as described in the following sec-
tions.

2.3 Beat Tracking

Following the pre-tracking stage described in the previous
sections, the process of on-line beat tracking will consist
on the supervision of the incoming spectral flux values,
constantly handling any tempo/timing variations, while
keeping a good balance between reactiveness (speed of re-
sponse to system changes) and inertia (stability of the sys-
tem). As illustrated in Figure 1, this process is handled by
a multi-agent system mediated by a central referee.

2.3.1 Agents Operation

Initialized using the pre-tracking (Pi, φi, Si) hypotheses,
an initial set of N beat agents will start to propagate, in a
causal manner, predictions based on incoming data, by rep-
resenting alternative hypotheses regarding beat positions
and tempo. Each prediction is evaluated with respect to its
deviation (i.e. error) to the local maximum in the observed
data, within a two-level tolerance window. This is a stage
where the system differs significantly from BeatRoot: al-
though the tolerance windows are akin to [4], processing
continuous data is necessarily different here than onsets;
and the generation of new agents also differs as we include
more than one new hypothesis, accounting more specifi-
cally for tempo and/or timing deviations.

This two-level tolerance window consists in an inner
tolerance region, Tin ∈ [T lin, T

r
in], T lin = T rin = 46.4

ms, for handling short period and phase deviations, and
an asymetric outer tolerance region, Tout ∈ [T lout, T

l
in[ ∪

]T rin, T
r
out], with a left margin T lout = 0.2 ∗ Pi and a right

margin T rout = 0.4 ∗ Pi, see Figure 2. This allows to con-
template eventual sudden changes in tempo expression (the
asymmetry reflects the higher tendency for tempo reduc-
tions than increases).

Consequently, two alternative scenarios arise. A first
scenario corresponds to a local maximum found inside the
inner tolerance window. In such case, the agent’s period
and phase are compensated by a fraction of that error:{

Pi = Pi + 0.25 ∗ error
φi = φi + Pi + 0.25 ∗ error

,∃ m ∈ Tin. (6)

A second scenario considers bigger deviations, with lo-
cal maxima in the outer tolerance window. On this con-
dition the agent under analysis keeps its period and phase
but, in order to cope for potential sudden variations of tempo
and/or timing, it generates three children {C1, C2, C3} to

follow three alternative hypotheses, considering alternative
possible deviations of its own current hypothesis: timing
(phase), tempo (period), or timing and tempo:

C1 :

{
P 1
C = Pi

φ1C = φi + Pi + error
,∃ m ∈ Tout, (7)

C2 :

{
P 2
C = Pi + error

φ2C = φi + Pi + error
,∃ m ∈ Tout, (8)

C3 :

{
P 3
C = Pi + 0.5 ∗ error
φ3C = φi + Pi + 0.5 ∗ error

,∃ m ∈ Tout. (9)

To keep the competitiveness, these new agents inherit a
portion (80% in the current implementation) of their father
current score.

Ultimately, alternative possible situations may termi-
nate an agent operation, at any analysis frame: replace-
ment, redundancy, obsolescence, or loss. An agent is killed
if it is currently the worst agent in a pool of agents that has
reached a maximum number (limited to 30 agents), and if
its score is lower than a newly created agent. In order to in-
crease the algorithm efficiency, an agent is killed if it is du-
plicating the work of another agent whose score is bigger
(their periods do not differ by more than 11.6ms and their
phases no more than 23.2ms). An agent is also terminated
if the difference between its score and the best agent’s is
higher than 80% of the best score. Finally, an agent may
be also killed if it seems to be “lost,” suggested by a high
number (i.e. 8) of consecutive beats predictions outside its
inner tolerance window.

2.3.2 Agent Referee

In order to determine the best agent at each data frame,
a central Agent Referee keeps a running evaluation of all
agents at all times. This is conducted by scoring the beat
predictions of each agent with respect to its goodness-of-fit
to incoming data.

The following evaluation function, ∆s, is applied around
each beat prediction bp, which evaluates distance between
beat prediction and the local maximum m inside either the
inner or the outer window (see Figure 2):{

∆s =
(
1− |error|

T r
out

)
.( Pi

Pm
).SF (m),∃ m ∈ Tin

∆s = −
( |error|
T r
out

)
.( Pi

Pm
).SF (m),∃ m ∈ Tout,

(10)

where Pm is the maximum admitted period, in frames. The
Pi

Pm
fraction is used to normalize the score function by the

period as a way to deflate faster tempi hypotheses, which
would otherwise tend to get higher scores due to a higher
number of beat predictions. Note also the fact an agent
score can undergo positive as well as negative updates.

2.3.3 Non-Causal Version

Whereas causal processing retrieves the beats of the cur-
rent best agent, at any time-frame, in the non-causal ver-
sion only the last best agent is considered. For such, every
agents keep an history of their beat predictions, attached
to the one inherited form their relatives, and transmit it to
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Figure 2. Score function around a beat prediction, bp, with
Pi = 120BPM . Example of local maximam found in the
considered inner tolerance window Tin.

future generations. Distinctively to the former, this process
distinguishes the family of agents whose cumulative score
prevails for the whole piece.

In the non-causal version, after pre-tracking and intial
agents setup, the analysis “jumps back in time,” and beat
tracking is performed from the beginning of the signal.

3. EVALUATION

In this section we report on performance evaluation of the
proposed algorithm with respect to 2 tasks: tempo esti-
mation and beat tracking. In order to ease comparison to
current state-of-the-art systems, we use current benchmark
datasets and evaluation measures.

3.1 Datasets

IBT was evaluated using two distinct datasets. For mea-
suring global tempo estimation performance, we use the
ISMIR 2004 Tempo Induction Contest data [11]. It con-
sists on 3199 tempo-annotated instances, divided in three
categories: Ballroom, Loops, and Songs.

For the beat tracking evaluation, we use 1360 beat-label-
ed musical pieces (previous use of this dataset is reported
in [9] and [6]).

3.2 Evaluation Measures

The system estimation of tempo is evaluated via the two
metrics proposed in [11]: a1 (estimations are considered
correct only if they are equal to the annotated tempo) and
a2 (correct estimations also include related metrical levels
at 2, 3, 1

2 , and 1
3 of the ground-truth). Both metrics allow a

4% tolerance window.
Beat-tracking performances are measured via the

P-score [13], with a 20% tolerance around median Inter-
Beat-Interval (IBI) annotations (as in MIREX 2006 Audio
Beat Tracking Contest and [6]).

In order to evaluate IBT’s robustness to noise distor-
tions, we also applied a number of signal degradations:
downsampling, GSM encoding/decoding, fitering, volume
adjustment, addition of reverb and white noise (see [11] for
more details).

3.3 Global Tempo Estimation

Table 1 presents accuracies obtained for global tempo esti-
mation, with regular and distorted data. The global tempo
was measured as the median IBI of final beat predictions,
i.e. after beat tracking the whole piece. We also report
accuracies obtained before tracking, at the output of the
pre-tracking stage, where we select the period hypothesis
with highest rank.

Condition
Ballroom Loops Songs Overall
a1 a2 a1 a2 a1 a2 a1 a2

IBT(c) 48 83 41 73 30 73 40 76
IBT(c) dist. 44 76 40 72 31 66 38 71
IBT(nc) 49 90 37 76 36 82 41 83
IBT(nc) dist. 48 82 37 74 34 74 40 77
pre-tracking 42 75 40 74 29 71 37 73

Table 1. Global tempo estimation accuracies, in %; “(c)”
and “(nc)” stand for the causal and non-causal versions
of the system, repectively; “dist.” indicates distorted data
(see 3.2).

Condition
Metrical relation to annotation (theor. max)

1:1(100) 2:1(50) 1:2(50) 3:1(33)1:3(33) all
IBT(c) 74(558) 47(282) 46(201) 40(14) 27(9) 57
IBT(nc) 81(613) 46(266) 45(238) 40(15) 24(10) 61
1beat(c) 80(544) 49(354) 40(109) 39(13) 26(7) 59
1beat(nc) 88(618) 47(321) 42(153) 38(18) 26(6) 64
2beats(c) 79(1087) 53(20) 28(2) — (0) — (0) 72
2beats(nc) 82(1080) 47(44) 37(13) — (0) — (0) 74
dist.(c) 73(547) 46(247) 45(164) 39(13) 20(9) 55
dist.(nc) 81(599) 45(255) 44(196) 37(17) 22(9) 59
dind.(c) 72(511) 48(369) 45(128) 38(22) 23(5) 55
dind.(nc) 81(582) 47(347) 44(168) 37(15) 29(4) 60
BeatRoot 81(613) 48(535) 44(7) 34(41) N/A 60
BR 2beats 80(1245) 45(10) 32(4) 33(3) N/A 77

Table 2. Beat tracking P-scores by metrical relation with
the ground-truth, under different conditions; “(c)” and
“(nc)” stand for the causal and non-causal versions of
the system, repectively; “dist.” indicates distorted data
(see 3.2); “dind.” stands for “dumb” induction (see text).
The first line of the table indicates the metrical relation
found between the algorithm output and the ground-truth
and the corresponding theoretical maximum P-Score. The
format of other lines is as follows: {P-Score (number of
excerpts tracked at each metrical level)}.

3.4 Beat Tracking

Table 2 provides results of beat tracking experiments un-
der diverse conditions. The first two lines show results of
the causal and non-causal system under regular conditions.
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The next four lines refer to beat tracking with biased ini-
tialization, either giving the annotated first beat, or giving
the first two beats. This help evaluating the performance of
beat tracking per se, independently of the performance of
tempo induction and phase estimation. It is also convenient
in order to compare with BeatRoot performances [6].

Results were grouped with respect to metrical relations
between the system outputs and the ground-truth annota-
tions. This provides useful information regarding the sys-
tem tracking performance regardless of it having choosen
the “correct” metrical level. (Note that given the eval-
uation metrics used (the P-score), the theoretical perfor-
mance maximum is different for different metrical rela-
tions between output and annotations.)

All results were generated with the same default param-
eters concerning reactiveness vs. stability of the system. In
terms of computational time, IBT took around 11% of the
dataset length to process it non-causally, and about 10% to
do it causally. (The tests were run on a Core2Duo 2.8 GHz
Windows Vista (32-bit) machine.)

4. PRACTICAL USE

IBT was developed in C++ and is freely available, un-
der GPL licensing, in MARSYAS (http://marsyas.
info/). (At the date of writing, revision 3827.) The algo-
rithm includes three main modes of operation, executable
with the following commands:

$ ./ibt input.mp3 (causal mode (default));
$ ./ibt -mic (live mode (microphone captured data));
$ ./ibt -nc input.mp3 (non-causal mode);
$ ./ibt -a input.mp3 (play audio w/ clicks on beats).

4.1 Important parameters

The presented evaluation was run with default parameters,
empirically chosen to conciliate reactivity and stability of
the system. Values of diverse parameters can be increased
to obtain a more reactive system: the margins of tolerance
windows (LFT OUTTER MARGIN, RGT OUTTER MAR-
GIN, INNER MARGIN); portion of an agent current score
transmitted to its children, (CHILDREN SCORE FACTOR);
and children correction factors (CHILDX FACTOR).

5. DISCUSSION AND FUTURE WORK

5.1 On tempo estimation

Table 1 shows that the non-causal version of IBT performs
comparatively to the best algorithms tested in the ISMIR
2004 contest [11]. The non-causal version shows slightly
worse results, but still remains in the best third of the algo-
rithms. Overall it is fair to say that the system finds either
the correct tempo or make (somehow acceptable) errors of
metrical level in 80% of the cases.

Comparable tempo estimation results are observed on
the second dataset (Table 2). Careful evaluation of the first
and second lines shows that the tempi of a total of 1064
excerpts and 1142 excerpts (i.e. 78% and 83%) are correct

or correspond to metrical level errors, in the causal and
non-causal versions, respectively.

The last line of Table 1 also shows that tempo estima-
tion is more reliable after tracking the whole excerpt than
at the output of the induction stage. For instance, non-
causal beat tracking outperforms pre-tracking by around
10 points. Also, tempo induction seems to work worse on
the Loops dataset. This is due to the fact that many of these
excerpts are very short (many are in fact shorter than our
induction window length —5s).

It is also interesting to notice that, after tracking the
whole piece, tempo estimation results obtained with “dumb”
induction are sensibly similar —albeit an apparent decrease
of the number of correct metrical levels found— to those
obtained with a more informed induction process (82% vs.
83%, respectively, in the non-causal case, considering all
acceptable metrical levels).

Tempo estimation is quite robust to distortions of the au-
dio signal, although the accuracy loss is still about 5 points.
This is a clear advantage with respect to systems that pro-
cess discrete lists of onsets instead of continuous features,
such as BeatRoot (see [11] for a detailed comparison —
note that BeatRoot’s results are relative to a previous ver-
sion of the software and that recent changes in the onset
detection function are likely to have improved them).

These findings seem to indicate that, although tempo
induction in IBT reaches good levels, comparable to the
state-of-the-art, further increase in accuracy will certainly
be obtained if future work is dedicated to improving the
induction process. Previous findings indicate that worth-
while lines of work include research on the amount of data
needed for induction, reliability of the estimation, improved
robustness to noise, and the possibility to trigger induction
on different parts of the data, depending on a monitoring
of the tracking process self-evaluation.

We can see on Table 1 that accuracy with a2 is much
better than with a1 (36-37 points overall difference). Ta-
ble 2 also shows that, as BeatRoot, IBT tracks a significant
number of excerpts at the “wrong” metrical level. How-
ever, at the difference with BeatRoot, these excerpts are
more uniformally distributed among lower and higher lev-
els. This is the direct effect of the period normalization
factor found in the scoring function, eq. (8). These find-
ings indicate that more work should be done on the issue of
finding the “correct” metrical level, which may be contem-
plated by the scoring function itself. In that respect, results
from [12] on a1 indicate that a promising direction lies in
beat tracking at several metrical levels simultaneously.

5.2 On beat tracking

Table 2 permits us to focus on the tracking performance
of the system, independently of its performance in finding
the correct tempo. The first two lines of the first column
shows us that when IBT finds the correct tempo, it tracks
beats correctly in 74% of the cases, the non-causal version
does it slightly better: 81%. This is the same performance
as BeatRoot. Tracking performances when IBT follows
beats on a different metrical level than the annotations are
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also similar to BeatRoot.
Careful listening and visualization to tracking errors pro-

duced by the causal vs. the non-causal system shows, as
should be expected, that the former is more prone to inter-
changes between phase and metrical levels, compromising
continuity.

When one correct beat is given as input to IBT, perfor-
mance increases up to 88% in the non-causal case. This
is a good result, although it also suggests that a number
of errors are made at the stage of phase selection (2.2.2)
during pre-tracking. Here again, as argued in the previous
section, this suggests than future work should be dedicated
to improving the induction phase. When two correct beats
are given, global performance increases, although perfor-
mance at the correct metrical level suffers a slight decrease,
due to the fact that this figure is computed on significantly
more data (i.e. IBT finds more correct metrical levels).

With regards to robustness to signal distortions, it seems
that as with tempo estimation, the use of continuous fea-
tures instead of discrete onsets results in higher robustness.
However, IBT performance still decreases about 2 points
on average with respect to clean data, calling for future
work related to more robust feature extraction.

When the tracking module is given “dumb” period hy-
potheses, tracking results are only marginally lower than
when the period is inferred with a more informed method.
This shows that the system has the desirable property to not
depend too heavily on correct estimation of the tempo and
to recover from errors. Future work should be dedicated
to evaluating the speed at which the system recovers from
errors, and experiments should be dedicated to fine-tuning
system parameters towards the best trade-off between re-
activeness to changes and error recovery, on one side, and
stability on the other side.

6. SUMMARY

This paper presents IBT, an agent-based tempo and beat
tracking system that causally (and non-causally) processes
incoming values of a continuous audio feature (e.g. on-
set detection function). Benchmarks on causal and non-
causal versions reveal competitive results, under alterna-
tive conditions. In particular, the proposed algorithm pro-
duces equivalent beat tracking results to those of BeatRoot,
and accurately estimates tempo at the level of state-of-the-
art algorithms. A special care has been put on design-
ing a system usable for real-time processing, with good
noise robustness, and with no bias towards particular met-
rical levels. IBT is open-source and freely available with
MARSYAS. Promising paths for future work include: tempo
induction improvements; informed alternates of the induc-
tion and tracking phases; beat tracking at several metrical
levels simultaneously; use of several input features.
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